SlideShare a Scribd company logo
2017 10 28 

Web
Tokyo webmining 2017-10-28
Twitter: @hamukazu
Python 5
EC 

ASP
• Scipy/Numpy

• 

• 

• 

•
• 

• 

•
scikit-learn TensorFlow 

• 

• 

• 

• 

•
Python
•
Numpy 

• Cython
s = 0
for i in range(1, 100000001):
s += i
print(s)
1 1
s = sum(range(1, 100000001))
print(s)
import numpy as np
a = np.arange(1, 100000001, dtype=np.int64)
print(a.sum())
s = 0
for i in range(1, 100000001):
s += i
print(s)
s = sum(range(1, 100000001))
print(s)
import numpy as np
a = np.arange(1, 100000001, dtype=np.int64)
print(a.sum())
30.21
12.33
0.38
Numpy
• Numpy 

• Numpy 

•
Cython
• Python C 

• 

• Numpy
Cython
def prime(n):
p = [True] * (n + 1)
m = 2
while m < n + 1:
if p[m]:
i = m * 2
while i < n + 1:
p[i] = False
i += m
m += 1
i = n
while not p[i]:
i -= 1
return i
n 

p(10000000)
Python 4.75 Cython 3.04
def prime(n):
p = [True] * (n + 1)
m = 2
while m < n + 1:
if p[m]:
i = m * 2
while i < n + 1:
p[i] = False
i += m
m += 1
i = n
while not p[i]:
i -= 1
return i
def prime(int n):
cdef int i, m
p = [True] * (n + 1)
m = 2
while m < n + 1:
if p[m]:
i = m * 2
while i < n + 1:
p[i] = False
i += m
m += 1
i = n
while not p[i]:
i -= 1
return i
3.04 3.04
def prime(int n):
cdef int m, i
cdef int * p = <int * >malloc((n + 1) * sizeof(int))
for i in range(n + 1):
p[i] = 1
m = 2
while m < n + 1:
if p[m]:
i = m * 2
while i < n + 1:
p[i] = 0
i += m
m += 1
i = n
while not p[i]:
i -= 1
free(p)
return i
3.04 0.17
C
Cython
• 

• 

•
http://bit.ly/kimikazu20140913 http://bit.ly/kimikazu20160204
Python
PyCon JP 2014 2016
…
• 

•
Tokyo webmining 2017-10-28
Premature optimization is the root of all evil.
— Donald Knuth
Tokyo webmining 2017-10-28
•


•


• 

• XP


•
• 

• 

•
• 

•


•
XP


• 

• ☓ ○


• 

•


•
• 

• 

• 

• 

•


•
Scikit-learn
SpectralClustering
• 

•


• 

•
XT
X
• 

• 

• 

• 

• 

• 

• 

•
x
Softplus f(x) = log(1 + ex
)
f(x) ⇡ x
f(1000)
• 

•


• 

• 

•
• Python 

•


• 

• 

• 

•

More Related Content

What's hot (20)

Pythonic Math
Pythonic MathPythonic Math
Pythonic Math
Kirby Urner
 
Recommendation System --Theory and Practice
Recommendation System --Theory and PracticeRecommendation System --Theory and Practice
Recommendation System --Theory and Practice
Kimikazu Kato
 
TensorFlow example for AI Ukraine2016
TensorFlow example  for AI Ukraine2016TensorFlow example  for AI Ukraine2016
TensorFlow example for AI Ukraine2016
Andrii Babii
 
Machine Intelligence at Google Scale: TensorFlow
Machine Intelligence at Google Scale: TensorFlowMachine Intelligence at Google Scale: TensorFlow
Machine Intelligence at Google Scale: TensorFlow
DataWorks Summit/Hadoop Summit
 
About RNN
About RNNAbout RNN
About RNN
Young Oh Jeong
 
About RNN
About RNNAbout RNN
About RNN
Young Oh Jeong
 
Tensor flow (1)
Tensor flow (1)Tensor flow (1)
Tensor flow (1)
景逸 王
 
Introduction to Machine Learning with TensorFlow
Introduction to Machine Learning with TensorFlowIntroduction to Machine Learning with TensorFlow
Introduction to Machine Learning with TensorFlow
Paolo Tomeo
 
Your first TensorFlow programming with Jupyter
Your first TensorFlow programming with JupyterYour first TensorFlow programming with Jupyter
Your first TensorFlow programming with Jupyter
Etsuji Nakai
 
Network Analysis with networkX : Real-World Example-1
Network Analysis with networkX : Real-World Example-1Network Analysis with networkX : Real-World Example-1
Network Analysis with networkX : Real-World Example-1
Kyunghoon Kim
 
Tensorflow - Intro (2017)
Tensorflow - Intro (2017)Tensorflow - Intro (2017)
Tensorflow - Intro (2017)
Alessio Tonioni
 
Hacking Python ASTs, Pycon DE 2017, Suhas
Hacking Python ASTs, Pycon DE 2017, SuhasHacking Python ASTs, Pycon DE 2017, Suhas
Hacking Python ASTs, Pycon DE 2017, Suhas
Suhas SG
 
Sergey Shelpuk & Olha Romaniuk - “Deep learning, Tensorflow, and Fashion: how...
Sergey Shelpuk & Olha Romaniuk - “Deep learning, Tensorflow, and Fashion: how...Sergey Shelpuk & Olha Romaniuk - “Deep learning, Tensorflow, and Fashion: how...
Sergey Shelpuk & Olha Romaniuk - “Deep learning, Tensorflow, and Fashion: how...
Lviv Startup Club
 
Introducton to Convolutional Nerural Network with TensorFlow
Introducton to Convolutional Nerural Network with TensorFlowIntroducton to Convolutional Nerural Network with TensorFlow
Introducton to Convolutional Nerural Network with TensorFlow
Etsuji Nakai
 
TensorFlow Dev Summit 2017 요약
TensorFlow Dev Summit 2017 요약TensorFlow Dev Summit 2017 요약
TensorFlow Dev Summit 2017 요약
Jin Joong Kim
 
Pointers lesson 4 (malloc and its use)
Pointers lesson 4 (malloc and its use)Pointers lesson 4 (malloc and its use)
Pointers lesson 4 (malloc and its use)
SetuMaheshwari1
 
"PyTorch Deep Learning Framework: Status and Directions," a Presentation from...
"PyTorch Deep Learning Framework: Status and Directions," a Presentation from..."PyTorch Deep Learning Framework: Status and Directions," a Presentation from...
"PyTorch Deep Learning Framework: Status and Directions," a Presentation from...
Edge AI and Vision Alliance
 
Explanation on Tensorflow example -Deep mnist for expert
Explanation on Tensorflow example -Deep mnist for expertExplanation on Tensorflow example -Deep mnist for expert
Explanation on Tensorflow example -Deep mnist for expert
홍배 김
 
Tensorflow in practice by Engineer - donghwi cha
Tensorflow in practice by Engineer - donghwi chaTensorflow in practice by Engineer - donghwi cha
Tensorflow in practice by Engineer - donghwi cha
Donghwi Cha
 
PyTorch for Deep Learning Practitioners
PyTorch for Deep Learning PractitionersPyTorch for Deep Learning Practitioners
PyTorch for Deep Learning Practitioners
Bayu Aldi Yansyah
 
Recommendation System --Theory and Practice
Recommendation System --Theory and PracticeRecommendation System --Theory and Practice
Recommendation System --Theory and Practice
Kimikazu Kato
 
TensorFlow example for AI Ukraine2016
TensorFlow example  for AI Ukraine2016TensorFlow example  for AI Ukraine2016
TensorFlow example for AI Ukraine2016
Andrii Babii
 
Tensor flow (1)
Tensor flow (1)Tensor flow (1)
Tensor flow (1)
景逸 王
 
Introduction to Machine Learning with TensorFlow
Introduction to Machine Learning with TensorFlowIntroduction to Machine Learning with TensorFlow
Introduction to Machine Learning with TensorFlow
Paolo Tomeo
 
Your first TensorFlow programming with Jupyter
Your first TensorFlow programming with JupyterYour first TensorFlow programming with Jupyter
Your first TensorFlow programming with Jupyter
Etsuji Nakai
 
Network Analysis with networkX : Real-World Example-1
Network Analysis with networkX : Real-World Example-1Network Analysis with networkX : Real-World Example-1
Network Analysis with networkX : Real-World Example-1
Kyunghoon Kim
 
Tensorflow - Intro (2017)
Tensorflow - Intro (2017)Tensorflow - Intro (2017)
Tensorflow - Intro (2017)
Alessio Tonioni
 
Hacking Python ASTs, Pycon DE 2017, Suhas
Hacking Python ASTs, Pycon DE 2017, SuhasHacking Python ASTs, Pycon DE 2017, Suhas
Hacking Python ASTs, Pycon DE 2017, Suhas
Suhas SG
 
Sergey Shelpuk & Olha Romaniuk - “Deep learning, Tensorflow, and Fashion: how...
Sergey Shelpuk & Olha Romaniuk - “Deep learning, Tensorflow, and Fashion: how...Sergey Shelpuk & Olha Romaniuk - “Deep learning, Tensorflow, and Fashion: how...
Sergey Shelpuk & Olha Romaniuk - “Deep learning, Tensorflow, and Fashion: how...
Lviv Startup Club
 
Introducton to Convolutional Nerural Network with TensorFlow
Introducton to Convolutional Nerural Network with TensorFlowIntroducton to Convolutional Nerural Network with TensorFlow
Introducton to Convolutional Nerural Network with TensorFlow
Etsuji Nakai
 
TensorFlow Dev Summit 2017 요약
TensorFlow Dev Summit 2017 요약TensorFlow Dev Summit 2017 요약
TensorFlow Dev Summit 2017 요약
Jin Joong Kim
 
Pointers lesson 4 (malloc and its use)
Pointers lesson 4 (malloc and its use)Pointers lesson 4 (malloc and its use)
Pointers lesson 4 (malloc and its use)
SetuMaheshwari1
 
"PyTorch Deep Learning Framework: Status and Directions," a Presentation from...
"PyTorch Deep Learning Framework: Status and Directions," a Presentation from..."PyTorch Deep Learning Framework: Status and Directions," a Presentation from...
"PyTorch Deep Learning Framework: Status and Directions," a Presentation from...
Edge AI and Vision Alliance
 
Explanation on Tensorflow example -Deep mnist for expert
Explanation on Tensorflow example -Deep mnist for expertExplanation on Tensorflow example -Deep mnist for expert
Explanation on Tensorflow example -Deep mnist for expert
홍배 김
 
Tensorflow in practice by Engineer - donghwi cha
Tensorflow in practice by Engineer - donghwi chaTensorflow in practice by Engineer - donghwi cha
Tensorflow in practice by Engineer - donghwi cha
Donghwi Cha
 
PyTorch for Deep Learning Practitioners
PyTorch for Deep Learning PractitionersPyTorch for Deep Learning Practitioners
PyTorch for Deep Learning Practitioners
Bayu Aldi Yansyah
 

Viewers also liked (20)

映像解析における周辺要素
映像解析における周辺要素映像解析における周辺要素
映像解析における周辺要素
Takashi Kaneda
 
オープニングトーク - 創設の思い・目的・進行方針  -データマイニング+WEB勉強会@東京
オープニングトーク - 創設の思い・目的・進行方針  -データマイニング+WEB勉強会@東京オープニングトーク - 創設の思い・目的・進行方針  -データマイニング+WEB勉強会@東京
オープニングトーク - 創設の思い・目的・進行方針  -データマイニング+WEB勉強会@東京
Koichi Hamada
 
Variational Autoencoderの紹介
Variational Autoencoderの紹介Variational Autoencoderの紹介
Variational Autoencoderの紹介
Ken'ichi Matsui
 
対話返答生成における個性の追加反映
対話返答生成における個性の追加反映対話返答生成における個性の追加反映
対話返答生成における個性の追加反映
Koichi Hamada
 
深層学習とベイズ統計
深層学習とベイズ統計深層学習とベイズ統計
深層学習とベイズ統計
Yuta Kashino
 
MCMCサンプルの使い方 ~見る・決める・探す・発生させる~
MCMCサンプルの使い方 ~見る・決める・探す・発生させる~MCMCサンプルの使い方 ~見る・決める・探す・発生させる~
MCMCサンプルの使い方 ~見る・決める・探す・発生させる~
. .
 
20161029 TVI Tokyowebmining Seminar for Share
20161029 TVI Tokyowebmining Seminar for Share20161029 TVI Tokyowebmining Seminar for Share
20161029 TVI Tokyowebmining Seminar for Share
Yasushi Gunya
 
アンカンファレンス @ 第50回 データマイニング+WEB @東京
アンカンファレンス @ 第50回 データマイニング+WEB @東京アンカンファレンス @ 第50回 データマイニング+WEB @東京
アンカンファレンス @ 第50回 データマイニング+WEB @東京
Izumi Akiyama
 
PL/CUDA - GPU Accelerated In-Database Analytics
PL/CUDA - GPU Accelerated In-Database AnalyticsPL/CUDA - GPU Accelerated In-Database Analytics
PL/CUDA - GPU Accelerated In-Database Analytics
Kohei KaiGai
 
動的最適化の今までとこれから
動的最適化の今までとこれから動的最適化の今までとこれから
動的最適化の今までとこれから
Kazuki Baba
 
機械学習ゴリゴリ派のための数学とPython
機械学習ゴリゴリ派のための数学とPython機械学習ゴリゴリ派のための数学とPython
機械学習ゴリゴリ派のための数学とPython
Kimikazu Kato
 
20170310_InDatabaseAnalytics_#1
20170310_InDatabaseAnalytics_#120170310_InDatabaseAnalytics_#1
20170310_InDatabaseAnalytics_#1
Kohei KaiGai
 
ドローン農業最前線
ドローン農業最前線ドローン農業最前線
ドローン農業最前線
tetsuya furukawa
 
計量経済学と 機械学習の交差点入り口 (公開用)
計量経済学と 機械学習の交差点入り口 (公開用)計量経済学と 機械学習の交差点入り口 (公開用)
計量経済学と 機械学習の交差点入り口 (公開用)
Shota Yasui
 
レコメンド研究のあれこれ
レコメンド研究のあれこれレコメンド研究のあれこれ
レコメンド研究のあれこれ
Masahiro Sato
 
[DL輪読会]Learning by Association - A versatile semi-supervised training method ...
[DL輪読会]Learning by Association - A versatile semi-supervised training method ...[DL輪読会]Learning by Association - A versatile semi-supervised training method ...
[DL輪読会]Learning by Association - A versatile semi-supervised training method ...
Deep Learning JP
 
深層学習の判断根拠を理解するための 研究とその意義 @PRMU 2017熊本
深層学習の判断根拠を理解するための 研究とその意義 @PRMU 2017熊本深層学習の判断根拠を理解するための 研究とその意義 @PRMU 2017熊本
深層学習の判断根拠を理解するための 研究とその意義 @PRMU 2017熊本
Takahiro Kubo
 
PoisoningAttackSVM (ICMLreading2012)
PoisoningAttackSVM (ICMLreading2012)PoisoningAttackSVM (ICMLreading2012)
PoisoningAttackSVM (ICMLreading2012)
Hidekazu Oiwa
 
もしその単語がなかったら
もしその単語がなかったらもしその単語がなかったら
もしその単語がなかったら
Hiroshi Nakagawa
 
[DLHacks LT] PytorchのDataLoader -torchtextのソースコードを読んでみた-
[DLHacks LT] PytorchのDataLoader -torchtextのソースコードを読んでみた-[DLHacks LT] PytorchのDataLoader -torchtextのソースコードを読んでみた-
[DLHacks LT] PytorchのDataLoader -torchtextのソースコードを読んでみた-
Deep Learning JP
 
映像解析における周辺要素
映像解析における周辺要素映像解析における周辺要素
映像解析における周辺要素
Takashi Kaneda
 
オープニングトーク - 創設の思い・目的・進行方針  -データマイニング+WEB勉強会@東京
オープニングトーク - 創設の思い・目的・進行方針  -データマイニング+WEB勉強会@東京オープニングトーク - 創設の思い・目的・進行方針  -データマイニング+WEB勉強会@東京
オープニングトーク - 創設の思い・目的・進行方針  -データマイニング+WEB勉強会@東京
Koichi Hamada
 
Variational Autoencoderの紹介
Variational Autoencoderの紹介Variational Autoencoderの紹介
Variational Autoencoderの紹介
Ken'ichi Matsui
 
対話返答生成における個性の追加反映
対話返答生成における個性の追加反映対話返答生成における個性の追加反映
対話返答生成における個性の追加反映
Koichi Hamada
 
深層学習とベイズ統計
深層学習とベイズ統計深層学習とベイズ統計
深層学習とベイズ統計
Yuta Kashino
 
MCMCサンプルの使い方 ~見る・決める・探す・発生させる~
MCMCサンプルの使い方 ~見る・決める・探す・発生させる~MCMCサンプルの使い方 ~見る・決める・探す・発生させる~
MCMCサンプルの使い方 ~見る・決める・探す・発生させる~
. .
 
20161029 TVI Tokyowebmining Seminar for Share
20161029 TVI Tokyowebmining Seminar for Share20161029 TVI Tokyowebmining Seminar for Share
20161029 TVI Tokyowebmining Seminar for Share
Yasushi Gunya
 
アンカンファレンス @ 第50回 データマイニング+WEB @東京
アンカンファレンス @ 第50回 データマイニング+WEB @東京アンカンファレンス @ 第50回 データマイニング+WEB @東京
アンカンファレンス @ 第50回 データマイニング+WEB @東京
Izumi Akiyama
 
PL/CUDA - GPU Accelerated In-Database Analytics
PL/CUDA - GPU Accelerated In-Database AnalyticsPL/CUDA - GPU Accelerated In-Database Analytics
PL/CUDA - GPU Accelerated In-Database Analytics
Kohei KaiGai
 
動的最適化の今までとこれから
動的最適化の今までとこれから動的最適化の今までとこれから
動的最適化の今までとこれから
Kazuki Baba
 
機械学習ゴリゴリ派のための数学とPython
機械学習ゴリゴリ派のための数学とPython機械学習ゴリゴリ派のための数学とPython
機械学習ゴリゴリ派のための数学とPython
Kimikazu Kato
 
20170310_InDatabaseAnalytics_#1
20170310_InDatabaseAnalytics_#120170310_InDatabaseAnalytics_#1
20170310_InDatabaseAnalytics_#1
Kohei KaiGai
 
ドローン農業最前線
ドローン農業最前線ドローン農業最前線
ドローン農業最前線
tetsuya furukawa
 
計量経済学と 機械学習の交差点入り口 (公開用)
計量経済学と 機械学習の交差点入り口 (公開用)計量経済学と 機械学習の交差点入り口 (公開用)
計量経済学と 機械学習の交差点入り口 (公開用)
Shota Yasui
 
レコメンド研究のあれこれ
レコメンド研究のあれこれレコメンド研究のあれこれ
レコメンド研究のあれこれ
Masahiro Sato
 
[DL輪読会]Learning by Association - A versatile semi-supervised training method ...
[DL輪読会]Learning by Association - A versatile semi-supervised training method ...[DL輪読会]Learning by Association - A versatile semi-supervised training method ...
[DL輪読会]Learning by Association - A versatile semi-supervised training method ...
Deep Learning JP
 
深層学習の判断根拠を理解するための 研究とその意義 @PRMU 2017熊本
深層学習の判断根拠を理解するための 研究とその意義 @PRMU 2017熊本深層学習の判断根拠を理解するための 研究とその意義 @PRMU 2017熊本
深層学習の判断根拠を理解するための 研究とその意義 @PRMU 2017熊本
Takahiro Kubo
 
PoisoningAttackSVM (ICMLreading2012)
PoisoningAttackSVM (ICMLreading2012)PoisoningAttackSVM (ICMLreading2012)
PoisoningAttackSVM (ICMLreading2012)
Hidekazu Oiwa
 
もしその単語がなかったら
もしその単語がなかったらもしその単語がなかったら
もしその単語がなかったら
Hiroshi Nakagawa
 
[DLHacks LT] PytorchのDataLoader -torchtextのソースコードを読んでみた-
[DLHacks LT] PytorchのDataLoader -torchtextのソースコードを読んでみた-[DLHacks LT] PytorchのDataLoader -torchtextのソースコードを読んでみた-
[DLHacks LT] PytorchのDataLoader -torchtextのソースコードを読んでみた-
Deep Learning JP
 

Similar to Tokyo webmining 2017-10-28 (20)

Swift for tensorflow
Swift for tensorflowSwift for tensorflow
Swift for tensorflow
규영 허
 
Introduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdfIntroduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdf
sumitt6_25730773
 
SFSCON23 - Emily Bourne Yaman Güçlü - Pyccel write Python code, get Fortran ...
SFSCON23 - Emily Bourne Yaman Güçlü - Pyccel  write Python code, get Fortran ...SFSCON23 - Emily Bourne Yaman Güçlü - Pyccel  write Python code, get Fortran ...
SFSCON23 - Emily Bourne Yaman Güçlü - Pyccel write Python code, get Fortran ...
South Tyrol Free Software Conference
 
Python高级编程(二)
Python高级编程(二)Python高级编程(二)
Python高级编程(二)
Qiangning Hong
 
Actors for Behavioural Simulation
Actors for Behavioural SimulationActors for Behavioural Simulation
Actors for Behavioural Simulation
ClarkTony
 
Mpi in-python
Mpi in-pythonMpi in-python
Mpi in-python
A Jorge Garcia
 
Writing Faster Python 3
Writing Faster Python 3Writing Faster Python 3
Writing Faster Python 3
Sebastian Witowski
 
Recurrences
RecurrencesRecurrences
Recurrences
Dr Sandeep Kumar Poonia
 
111015 tokyo scipy2_discussionquestionaire_i_python
111015 tokyo scipy2_discussionquestionaire_i_python111015 tokyo scipy2_discussionquestionaire_i_python
111015 tokyo scipy2_discussionquestionaire_i_python
Shohei Hido
 
Pythran: Static compiler for high performance by Mehdi Amini PyData SV 2014
Pythran: Static compiler for high performance by Mehdi Amini PyData SV 2014Pythran: Static compiler for high performance by Mehdi Amini PyData SV 2014
Pythran: Static compiler for high performance by Mehdi Amini PyData SV 2014
PyData
 
Hprec7.1
Hprec7.1Hprec7.1
Hprec7.1
stevenhbills
 
Lenguaje python en I+D. Numpy, Sympy y Pandas
Lenguaje python en I+D. Numpy, Sympy y PandasLenguaje python en I+D. Numpy, Sympy y Pandas
Lenguaje python en I+D. Numpy, Sympy y Pandas
José Luis Muñoz Meza
 
Python at Warp Speed
Python at Warp SpeedPython at Warp Speed
Python at Warp Speed
Andreas Schreiber
 
Introduction to computing Processing and performance.pdf
Introduction to computing Processing and performance.pdfIntroduction to computing Processing and performance.pdf
Introduction to computing Processing and performance.pdf
TulasiramKandula1
 
Numerical_Analysis_Python_Presentation.pptx
Numerical_Analysis_Python_Presentation.pptxNumerical_Analysis_Python_Presentation.pptx
Numerical_Analysis_Python_Presentation.pptx
siniha2538
 
PyTorch 튜토리얼 (Touch to PyTorch)
PyTorch 튜토리얼 (Touch to PyTorch)PyTorch 튜토리얼 (Touch to PyTorch)
PyTorch 튜토리얼 (Touch to PyTorch)
Hansol Kang
 
Numba: Array-oriented Python Compiler for NumPy
Numba: Array-oriented Python Compiler for NumPyNumba: Array-oriented Python Compiler for NumPy
Numba: Array-oriented Python Compiler for NumPy
Travis Oliphant
 
Time Series Analysis:Basic Stochastic Signal Recovery
Time Series Analysis:Basic Stochastic Signal RecoveryTime Series Analysis:Basic Stochastic Signal Recovery
Time Series Analysis:Basic Stochastic Signal Recovery
Daniel Cuneo
 
Xi CBSE Computer Science lab programs
Xi CBSE Computer Science lab programsXi CBSE Computer Science lab programs
Xi CBSE Computer Science lab programs
Prof. Dr. K. Adisesha
 
Lecture 1 and 2 of Data Structures & Algorithms
Lecture 1 and 2 of Data Structures & AlgorithmsLecture 1 and 2 of Data Structures & Algorithms
Lecture 1 and 2 of Data Structures & Algorithms
haseebanjum2611
 
Swift for tensorflow
Swift for tensorflowSwift for tensorflow
Swift for tensorflow
규영 허
 
Introduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdfIntroduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdf
sumitt6_25730773
 
SFSCON23 - Emily Bourne Yaman Güçlü - Pyccel write Python code, get Fortran ...
SFSCON23 - Emily Bourne Yaman Güçlü - Pyccel  write Python code, get Fortran ...SFSCON23 - Emily Bourne Yaman Güçlü - Pyccel  write Python code, get Fortran ...
SFSCON23 - Emily Bourne Yaman Güçlü - Pyccel write Python code, get Fortran ...
South Tyrol Free Software Conference
 
Python高级编程(二)
Python高级编程(二)Python高级编程(二)
Python高级编程(二)
Qiangning Hong
 
Actors for Behavioural Simulation
Actors for Behavioural SimulationActors for Behavioural Simulation
Actors for Behavioural Simulation
ClarkTony
 
111015 tokyo scipy2_discussionquestionaire_i_python
111015 tokyo scipy2_discussionquestionaire_i_python111015 tokyo scipy2_discussionquestionaire_i_python
111015 tokyo scipy2_discussionquestionaire_i_python
Shohei Hido
 
Pythran: Static compiler for high performance by Mehdi Amini PyData SV 2014
Pythran: Static compiler for high performance by Mehdi Amini PyData SV 2014Pythran: Static compiler for high performance by Mehdi Amini PyData SV 2014
Pythran: Static compiler for high performance by Mehdi Amini PyData SV 2014
PyData
 
Lenguaje python en I+D. Numpy, Sympy y Pandas
Lenguaje python en I+D. Numpy, Sympy y PandasLenguaje python en I+D. Numpy, Sympy y Pandas
Lenguaje python en I+D. Numpy, Sympy y Pandas
José Luis Muñoz Meza
 
Introduction to computing Processing and performance.pdf
Introduction to computing Processing and performance.pdfIntroduction to computing Processing and performance.pdf
Introduction to computing Processing and performance.pdf
TulasiramKandula1
 
Numerical_Analysis_Python_Presentation.pptx
Numerical_Analysis_Python_Presentation.pptxNumerical_Analysis_Python_Presentation.pptx
Numerical_Analysis_Python_Presentation.pptx
siniha2538
 
PyTorch 튜토리얼 (Touch to PyTorch)
PyTorch 튜토리얼 (Touch to PyTorch)PyTorch 튜토리얼 (Touch to PyTorch)
PyTorch 튜토리얼 (Touch to PyTorch)
Hansol Kang
 
Numba: Array-oriented Python Compiler for NumPy
Numba: Array-oriented Python Compiler for NumPyNumba: Array-oriented Python Compiler for NumPy
Numba: Array-oriented Python Compiler for NumPy
Travis Oliphant
 
Time Series Analysis:Basic Stochastic Signal Recovery
Time Series Analysis:Basic Stochastic Signal RecoveryTime Series Analysis:Basic Stochastic Signal Recovery
Time Series Analysis:Basic Stochastic Signal Recovery
Daniel Cuneo
 
Xi CBSE Computer Science lab programs
Xi CBSE Computer Science lab programsXi CBSE Computer Science lab programs
Xi CBSE Computer Science lab programs
Prof. Dr. K. Adisesha
 
Lecture 1 and 2 of Data Structures & Algorithms
Lecture 1 and 2 of Data Structures & AlgorithmsLecture 1 and 2 of Data Structures & Algorithms
Lecture 1 and 2 of Data Structures & Algorithms
haseebanjum2611
 

More from Kimikazu Kato (20)

Pythonを使った機械学習の学習
Pythonを使った機械学習の学習Pythonを使った機械学習の学習
Pythonを使った機械学習の学習
Kimikazu Kato
 
Fast and Probvably Seedings for k-Means
Fast and Probvably Seedings for k-MeansFast and Probvably Seedings for k-Means
Fast and Probvably Seedings for k-Means
Kimikazu Kato
 
Pythonで機械学習入門以前
Pythonで機械学習入門以前Pythonで機械学習入門以前
Pythonで機械学習入門以前
Kimikazu Kato
 
Pythonによる機械学習
Pythonによる機械学習Pythonによる機械学習
Pythonによる機械学習
Kimikazu Kato
 
Introduction to behavior based recommendation system
Introduction to behavior based recommendation systemIntroduction to behavior based recommendation system
Introduction to behavior based recommendation system
Kimikazu Kato
 
Pythonによる機械学習の最前線
Pythonによる機械学習の最前線Pythonによる機械学習の最前線
Pythonによる機械学習の最前線
Kimikazu Kato
 
Sparse pca via bipartite matching
Sparse pca via bipartite matchingSparse pca via bipartite matching
Sparse pca via bipartite matching
Kimikazu Kato
 
正しいプログラミング言語の覚え方
正しいプログラミング言語の覚え方正しいプログラミング言語の覚え方
正しいプログラミング言語の覚え方
Kimikazu Kato
 
養成読本と私
養成読本と私養成読本と私
養成読本と私
Kimikazu Kato
 
Introduction to NumPy for Machine Learning Programmers
Introduction to NumPy for Machine Learning ProgrammersIntroduction to NumPy for Machine Learning Programmers
Introduction to NumPy for Machine Learning Programmers
Kimikazu Kato
 
A Safe Rule for Sparse Logistic Regression
A Safe Rule for Sparse Logistic RegressionA Safe Rule for Sparse Logistic Regression
A Safe Rule for Sparse Logistic Regression
Kimikazu Kato
 
特定の不快感を与えるツイートの分類と自動生成について
特定の不快感を与えるツイートの分類と自動生成について特定の不快感を与えるツイートの分類と自動生成について
特定の不快感を与えるツイートの分類と自動生成について
Kimikazu Kato
 
Sapporo20140709
Sapporo20140709Sapporo20140709
Sapporo20140709
Kimikazu Kato
 
【論文紹介】Approximate Bayesian Image Interpretation Using Generative Probabilisti...
【論文紹介】Approximate Bayesian Image Interpretation Using Generative Probabilisti...【論文紹介】Approximate Bayesian Image Interpretation Using Generative Probabilisti...
【論文紹介】Approximate Bayesian Image Interpretation Using Generative Probabilisti...
Kimikazu Kato
 
Zuang-FPSGD
Zuang-FPSGDZuang-FPSGD
Zuang-FPSGD
Kimikazu Kato
 
About Our Recommender System
About Our Recommender SystemAbout Our Recommender System
About Our Recommender System
Kimikazu Kato
 
ネット通販向けレコメンドシステム提供サービスについて
ネット通販向けレコメンドシステム提供サービスについてネット通販向けレコメンドシステム提供サービスについて
ネット通販向けレコメンドシステム提供サービスについて
Kimikazu Kato
 
関東GPGPU勉強会資料
関東GPGPU勉強会資料関東GPGPU勉強会資料
関東GPGPU勉強会資料
Kimikazu Kato
 
2012-03-08 MSS研究会
2012-03-08 MSS研究会2012-03-08 MSS研究会
2012-03-08 MSS研究会
Kimikazu Kato
 
純粋関数型アルゴリズム入門
純粋関数型アルゴリズム入門純粋関数型アルゴリズム入門
純粋関数型アルゴリズム入門
Kimikazu Kato
 
Pythonを使った機械学習の学習
Pythonを使った機械学習の学習Pythonを使った機械学習の学習
Pythonを使った機械学習の学習
Kimikazu Kato
 
Fast and Probvably Seedings for k-Means
Fast and Probvably Seedings for k-MeansFast and Probvably Seedings for k-Means
Fast and Probvably Seedings for k-Means
Kimikazu Kato
 
Pythonで機械学習入門以前
Pythonで機械学習入門以前Pythonで機械学習入門以前
Pythonで機械学習入門以前
Kimikazu Kato
 
Pythonによる機械学習
Pythonによる機械学習Pythonによる機械学習
Pythonによる機械学習
Kimikazu Kato
 
Introduction to behavior based recommendation system
Introduction to behavior based recommendation systemIntroduction to behavior based recommendation system
Introduction to behavior based recommendation system
Kimikazu Kato
 
Pythonによる機械学習の最前線
Pythonによる機械学習の最前線Pythonによる機械学習の最前線
Pythonによる機械学習の最前線
Kimikazu Kato
 
Sparse pca via bipartite matching
Sparse pca via bipartite matchingSparse pca via bipartite matching
Sparse pca via bipartite matching
Kimikazu Kato
 
正しいプログラミング言語の覚え方
正しいプログラミング言語の覚え方正しいプログラミング言語の覚え方
正しいプログラミング言語の覚え方
Kimikazu Kato
 
Introduction to NumPy for Machine Learning Programmers
Introduction to NumPy for Machine Learning ProgrammersIntroduction to NumPy for Machine Learning Programmers
Introduction to NumPy for Machine Learning Programmers
Kimikazu Kato
 
A Safe Rule for Sparse Logistic Regression
A Safe Rule for Sparse Logistic RegressionA Safe Rule for Sparse Logistic Regression
A Safe Rule for Sparse Logistic Regression
Kimikazu Kato
 
特定の不快感を与えるツイートの分類と自動生成について
特定の不快感を与えるツイートの分類と自動生成について特定の不快感を与えるツイートの分類と自動生成について
特定の不快感を与えるツイートの分類と自動生成について
Kimikazu Kato
 
【論文紹介】Approximate Bayesian Image Interpretation Using Generative Probabilisti...
【論文紹介】Approximate Bayesian Image Interpretation Using Generative Probabilisti...【論文紹介】Approximate Bayesian Image Interpretation Using Generative Probabilisti...
【論文紹介】Approximate Bayesian Image Interpretation Using Generative Probabilisti...
Kimikazu Kato
 
About Our Recommender System
About Our Recommender SystemAbout Our Recommender System
About Our Recommender System
Kimikazu Kato
 
ネット通販向けレコメンドシステム提供サービスについて
ネット通販向けレコメンドシステム提供サービスについてネット通販向けレコメンドシステム提供サービスについて
ネット通販向けレコメンドシステム提供サービスについて
Kimikazu Kato
 
関東GPGPU勉強会資料
関東GPGPU勉強会資料関東GPGPU勉強会資料
関東GPGPU勉強会資料
Kimikazu Kato
 
2012-03-08 MSS研究会
2012-03-08 MSS研究会2012-03-08 MSS研究会
2012-03-08 MSS研究会
Kimikazu Kato
 
純粋関数型アルゴリズム入門
純粋関数型アルゴリズム入門純粋関数型アルゴリズム入門
純粋関数型アルゴリズム入門
Kimikazu Kato
 

Recently uploaded (20)

Evaluation Challenges in Using Generative AI for Science & Technical Content
Evaluation Challenges in Using Generative AI for Science & Technical ContentEvaluation Challenges in Using Generative AI for Science & Technical Content
Evaluation Challenges in Using Generative AI for Science & Technical Content
Paul Groth
 
GDG Cloud Southlake #43: Tommy Todd: The Quantum Apocalypse: A Looming Threat...
GDG Cloud Southlake #43: Tommy Todd: The Quantum Apocalypse: A Looming Threat...GDG Cloud Southlake #43: Tommy Todd: The Quantum Apocalypse: A Looming Threat...
GDG Cloud Southlake #43: Tommy Todd: The Quantum Apocalypse: A Looming Threat...
James Anderson
 
Marko.js - Unsung Hero of Scalable Web Frameworks (DevDays 2025)
Marko.js - Unsung Hero of Scalable Web Frameworks (DevDays 2025)Marko.js - Unsung Hero of Scalable Web Frameworks (DevDays 2025)
Marko.js - Unsung Hero of Scalable Web Frameworks (DevDays 2025)
Eugene Fidelin
 
UiPath Community Zurich: Release Management and Build Pipelines
UiPath Community Zurich: Release Management and Build PipelinesUiPath Community Zurich: Release Management and Build Pipelines
UiPath Community Zurich: Release Management and Build Pipelines
UiPathCommunity
 
Multistream in SIP and NoSIP @ OpenSIPS Summit 2025
Multistream in SIP and NoSIP @ OpenSIPS Summit 2025Multistream in SIP and NoSIP @ OpenSIPS Summit 2025
Multistream in SIP and NoSIP @ OpenSIPS Summit 2025
Lorenzo Miniero
 
UiPath Community Berlin: Studio Tips & Tricks and UiPath Insights
UiPath Community Berlin: Studio Tips & Tricks and UiPath InsightsUiPath Community Berlin: Studio Tips & Tricks and UiPath Insights
UiPath Community Berlin: Studio Tips & Tricks and UiPath Insights
UiPathCommunity
 
Droidal: AI Agents Revolutionizing Healthcare
Droidal: AI Agents Revolutionizing HealthcareDroidal: AI Agents Revolutionizing Healthcare
Droidal: AI Agents Revolutionizing Healthcare
Droidal LLC
 
Let’s Get Slack Certified! 🚀- Slack Community
Let’s Get Slack Certified! 🚀- Slack CommunityLet’s Get Slack Certified! 🚀- Slack Community
Let’s Get Slack Certified! 🚀- Slack Community
SanjeetMishra29
 
Contributing to WordPress With & Without Code.pptx
Contributing to WordPress With & Without Code.pptxContributing to WordPress With & Without Code.pptx
Contributing to WordPress With & Without Code.pptx
Patrick Lumumba
 
TrustArc Webinar: Mastering Privacy Contracting
TrustArc Webinar: Mastering Privacy ContractingTrustArc Webinar: Mastering Privacy Contracting
TrustArc Webinar: Mastering Privacy Contracting
TrustArc
 
Introducing Ensemble Cloudlet vRouter
Introducing Ensemble  Cloudlet vRouterIntroducing Ensemble  Cloudlet vRouter
Introducing Ensemble Cloudlet vRouter
Adtran
 
MCP Dev Summit - Pragmatic Scaling of Enterprise GenAI with MCP
MCP Dev Summit - Pragmatic Scaling of Enterprise GenAI with MCPMCP Dev Summit - Pragmatic Scaling of Enterprise GenAI with MCP
MCP Dev Summit - Pragmatic Scaling of Enterprise GenAI with MCP
Sambhav Kothari
 
Dr Jimmy Schwarzkopf presentation on the SUMMIT 2025 A
Dr Jimmy Schwarzkopf presentation on the SUMMIT 2025 ADr Jimmy Schwarzkopf presentation on the SUMMIT 2025 A
Dr Jimmy Schwarzkopf presentation on the SUMMIT 2025 A
Dr. Jimmy Schwarzkopf
 
Cyber Security Legal Framework in Nepal.pptx
Cyber Security Legal Framework in Nepal.pptxCyber Security Legal Framework in Nepal.pptx
Cyber Security Legal Framework in Nepal.pptx
Ghimire B.R.
 
Cyber security cyber security cyber security cyber security cyber security cy...
Cyber security cyber security cyber security cyber security cyber security cy...Cyber security cyber security cyber security cyber security cyber security cy...
Cyber security cyber security cyber security cyber security cyber security cy...
pranavbodhak
 
ECS25 - The adventures of a Microsoft 365 Platform Owner - Website.pptx
ECS25 - The adventures of a Microsoft 365 Platform Owner - Website.pptxECS25 - The adventures of a Microsoft 365 Platform Owner - Website.pptx
ECS25 - The adventures of a Microsoft 365 Platform Owner - Website.pptx
Jasper Oosterveld
 
Dev Dives: System-to-system integration with UiPath API Workflows
Dev Dives: System-to-system integration with UiPath API WorkflowsDev Dives: System-to-system integration with UiPath API Workflows
Dev Dives: System-to-system integration with UiPath API Workflows
UiPathCommunity
 
A Comprehensive Guide on Integrating Monoova Payment Gateway
A Comprehensive Guide on Integrating Monoova Payment GatewayA Comprehensive Guide on Integrating Monoova Payment Gateway
A Comprehensive Guide on Integrating Monoova Payment Gateway
danielle hunter
 
European Accessibility Act & Integrated Accessibility Testing
European Accessibility Act & Integrated Accessibility TestingEuropean Accessibility Act & Integrated Accessibility Testing
European Accessibility Act & Integrated Accessibility Testing
Julia Undeutsch
 
Gihbli AI and Geo sitution |use/misuse of Ai Technology
Gihbli AI and Geo sitution |use/misuse of Ai TechnologyGihbli AI and Geo sitution |use/misuse of Ai Technology
Gihbli AI and Geo sitution |use/misuse of Ai Technology
zainkhurram1111
 
Evaluation Challenges in Using Generative AI for Science & Technical Content
Evaluation Challenges in Using Generative AI for Science & Technical ContentEvaluation Challenges in Using Generative AI for Science & Technical Content
Evaluation Challenges in Using Generative AI for Science & Technical Content
Paul Groth
 
GDG Cloud Southlake #43: Tommy Todd: The Quantum Apocalypse: A Looming Threat...
GDG Cloud Southlake #43: Tommy Todd: The Quantum Apocalypse: A Looming Threat...GDG Cloud Southlake #43: Tommy Todd: The Quantum Apocalypse: A Looming Threat...
GDG Cloud Southlake #43: Tommy Todd: The Quantum Apocalypse: A Looming Threat...
James Anderson
 
Marko.js - Unsung Hero of Scalable Web Frameworks (DevDays 2025)
Marko.js - Unsung Hero of Scalable Web Frameworks (DevDays 2025)Marko.js - Unsung Hero of Scalable Web Frameworks (DevDays 2025)
Marko.js - Unsung Hero of Scalable Web Frameworks (DevDays 2025)
Eugene Fidelin
 
UiPath Community Zurich: Release Management and Build Pipelines
UiPath Community Zurich: Release Management and Build PipelinesUiPath Community Zurich: Release Management and Build Pipelines
UiPath Community Zurich: Release Management and Build Pipelines
UiPathCommunity
 
Multistream in SIP and NoSIP @ OpenSIPS Summit 2025
Multistream in SIP and NoSIP @ OpenSIPS Summit 2025Multistream in SIP and NoSIP @ OpenSIPS Summit 2025
Multistream in SIP and NoSIP @ OpenSIPS Summit 2025
Lorenzo Miniero
 
UiPath Community Berlin: Studio Tips & Tricks and UiPath Insights
UiPath Community Berlin: Studio Tips & Tricks and UiPath InsightsUiPath Community Berlin: Studio Tips & Tricks and UiPath Insights
UiPath Community Berlin: Studio Tips & Tricks and UiPath Insights
UiPathCommunity
 
Droidal: AI Agents Revolutionizing Healthcare
Droidal: AI Agents Revolutionizing HealthcareDroidal: AI Agents Revolutionizing Healthcare
Droidal: AI Agents Revolutionizing Healthcare
Droidal LLC
 
Let’s Get Slack Certified! 🚀- Slack Community
Let’s Get Slack Certified! 🚀- Slack CommunityLet’s Get Slack Certified! 🚀- Slack Community
Let’s Get Slack Certified! 🚀- Slack Community
SanjeetMishra29
 
Contributing to WordPress With & Without Code.pptx
Contributing to WordPress With & Without Code.pptxContributing to WordPress With & Without Code.pptx
Contributing to WordPress With & Without Code.pptx
Patrick Lumumba
 
TrustArc Webinar: Mastering Privacy Contracting
TrustArc Webinar: Mastering Privacy ContractingTrustArc Webinar: Mastering Privacy Contracting
TrustArc Webinar: Mastering Privacy Contracting
TrustArc
 
Introducing Ensemble Cloudlet vRouter
Introducing Ensemble  Cloudlet vRouterIntroducing Ensemble  Cloudlet vRouter
Introducing Ensemble Cloudlet vRouter
Adtran
 
MCP Dev Summit - Pragmatic Scaling of Enterprise GenAI with MCP
MCP Dev Summit - Pragmatic Scaling of Enterprise GenAI with MCPMCP Dev Summit - Pragmatic Scaling of Enterprise GenAI with MCP
MCP Dev Summit - Pragmatic Scaling of Enterprise GenAI with MCP
Sambhav Kothari
 
Dr Jimmy Schwarzkopf presentation on the SUMMIT 2025 A
Dr Jimmy Schwarzkopf presentation on the SUMMIT 2025 ADr Jimmy Schwarzkopf presentation on the SUMMIT 2025 A
Dr Jimmy Schwarzkopf presentation on the SUMMIT 2025 A
Dr. Jimmy Schwarzkopf
 
Cyber Security Legal Framework in Nepal.pptx
Cyber Security Legal Framework in Nepal.pptxCyber Security Legal Framework in Nepal.pptx
Cyber Security Legal Framework in Nepal.pptx
Ghimire B.R.
 
Cyber security cyber security cyber security cyber security cyber security cy...
Cyber security cyber security cyber security cyber security cyber security cy...Cyber security cyber security cyber security cyber security cyber security cy...
Cyber security cyber security cyber security cyber security cyber security cy...
pranavbodhak
 
ECS25 - The adventures of a Microsoft 365 Platform Owner - Website.pptx
ECS25 - The adventures of a Microsoft 365 Platform Owner - Website.pptxECS25 - The adventures of a Microsoft 365 Platform Owner - Website.pptx
ECS25 - The adventures of a Microsoft 365 Platform Owner - Website.pptx
Jasper Oosterveld
 
Dev Dives: System-to-system integration with UiPath API Workflows
Dev Dives: System-to-system integration with UiPath API WorkflowsDev Dives: System-to-system integration with UiPath API Workflows
Dev Dives: System-to-system integration with UiPath API Workflows
UiPathCommunity
 
A Comprehensive Guide on Integrating Monoova Payment Gateway
A Comprehensive Guide on Integrating Monoova Payment GatewayA Comprehensive Guide on Integrating Monoova Payment Gateway
A Comprehensive Guide on Integrating Monoova Payment Gateway
danielle hunter
 
European Accessibility Act & Integrated Accessibility Testing
European Accessibility Act & Integrated Accessibility TestingEuropean Accessibility Act & Integrated Accessibility Testing
European Accessibility Act & Integrated Accessibility Testing
Julia Undeutsch
 
Gihbli AI and Geo sitution |use/misuse of Ai Technology
Gihbli AI and Geo sitution |use/misuse of Ai TechnologyGihbli AI and Geo sitution |use/misuse of Ai Technology
Gihbli AI and Geo sitution |use/misuse of Ai Technology
zainkhurram1111
 

Tokyo webmining 2017-10-28