This document summarizes a microservices meetup hosted by @mosa_siru. Key points include:
1. @mosa_siru is an engineer at DeNA and CTO of Gunosy.
2. The meetup covered Gunosy's architecture with over 45 GitHub repositories, 30 stacks, 10 Go APIs, and 10 Python batch processes using AWS services like Kinesis, Lambda, SQS and API Gateway.
3. Challenges discussed were managing 30 microservices, ensuring API latency below 50ms across availability zones, and handling 10 requests per second with nginx load balancing across 20 servers.
This document summarizes a microservices meetup hosted by @mosa_siru. Key points include:
1. @mosa_siru is an engineer at DeNA and CTO of Gunosy.
2. The meetup covered Gunosy's architecture with over 45 GitHub repositories, 30 stacks, 10 Go APIs, and 10 Python batch processes using AWS services like Kinesis, Lambda, SQS and API Gateway.
3. Challenges discussed were managing 30 microservices, ensuring API latency below 50ms across availability zones, and handling 10 requests per second with nginx load balancing across 20 servers.
GeoHash is a geocoding system that encodes geographic coordinates into a short string of letters and numbers. It allows nearby points on a map to be grouped together and represented by a common prefix. GeoHash strings can be used to filter spatial data in SQL queries or to encode latitude and longitude coordinates in URLs more concisely than decimal values. Several programming languages have open source libraries available that implement GeoHash encoding and decoding.
This study aims to develop an interactive idea-generation support system that enables users to consider the potential side effects of realizing new ideas.
In idea generation, confirmation bias often leads to an excessive focus on ``convenience,'' which can result in the oversight of unintended consequences, referred to as the ``side effects of convenience.''
To address this, we explored methods to alleviate user biases and expand perspectives through system-supported dialogue, facilitating a broader consideration of potential side effects.
The proposed system employs a stepwise idea-generation process supported by large language models (LLMs), enabling users to refine their ideas interactively.
By dividing the ideation process into distinct stages, the system mitigates biases at each stage while promoting ideas' concretization and identifying side effects through visually supported dialogues.
Preliminary evaluation suggests that engaging with the proposed system fosters awareness of diverse perspectives on potential side effects and facilitates the generation of ideas that proactively address these issues.
論文紹介:「Amodal Completion via Progressive Mixed Context Diffusion」「Amodal Insta...Toru Tamaki
Katherine Xu, Lingzhi Zhang, Jianbo Shi; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, "Amodal Completion via Progressive Mixed Context Diffusion"CVPR2024
https://openaccess.thecvf.com/content/CVPR2024/html/Xu_Amodal_Completion_via_Progressive_Mixed_Context_Diffusion_CVPR_2024_paper.html
Minh Tran, Khoa Vo, Tri Nguyen, and Ngan Le,"Amodal Instance Segmentation with Diffusion Shape Prior Estimation"ACCV 2024
https://uark-aicv.github.io/AISDiff/