SlideShare a Scribd company logo
漸近理論をスライド1枚で(フォローアッププログラムクラス講義07132016)
漸近理論をスライド1枚で(フォローアッププログラムクラス講義07132016)
漸近理論をスライド1枚で(フォローアッププログラムクラス講義07132016)
漸近理論をスライド1枚で(フォローアッププログラムクラス講義07132016)
漸近理論をスライド1枚で(フォローアッププログラムクラス講義07132016)
漸近理論をスライド1枚で(フォローアッププログラムクラス講義07132016)
漸近理論をスライド1枚で(フォローアッププログラムクラス講義07132016)
漸近理論をスライド1枚で(フォローアッププログラムクラス講義07132016)
漸近理論をスライド1枚で(フォローアッププログラムクラス講義07132016)
漸近理論をスライド1枚で(フォローアッププログラムクラス講義07132016)
漸近理論をスライド1枚で(フォローアッププログラムクラス講義07132016)
漸近理論をスライド1枚で(フォローアッププログラムクラス講義07132016)
漸近理論をスライド1枚で(フォローアッププログラムクラス講義07132016)
漸近理論をスライド1枚で(フォローアッププログラムクラス講義07132016)
漸近理論をスライド1枚で(フォローアッププログラムクラス講義07132016)
漸近理論をスライド1枚で(フォローアッププログラムクラス講義07132016)
漸近理論をスライド1枚で(フォローアッププログラムクラス講義07132016)
漸近理論をスライド1枚で(フォローアッププログラムクラス講義07132016)
漸近理論をスライド1枚で(フォローアッププログラムクラス講義07132016)
漸近理論をスライド1枚で(フォローアッププログラムクラス講義07132016)
漸近理論をスライド1枚で(フォローアッププログラムクラス講義07132016)
漸近理論をスライド1枚で(フォローアッププログラムクラス講義07132016)

More Related Content

What's hot (20)

構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展
構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展
構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展
Shiga University, RIKEN
 
因果探索: 基本から最近の発展までを概説
因果探索: 基本から最近の発展までを概説因果探索: 基本から最近の発展までを概説
因果探索: 基本から最近の発展までを概説
Shiga University, RIKEN
 
統計的学習の基礎 5章前半(~5.6)
統計的学習の基礎 5章前半(~5.6)統計的学習の基礎 5章前半(~5.6)
統計的学習の基礎 5章前半(~5.6)
Kota Mori
 
統計的因果推論勉強会 第1回
統計的因果推論勉強会 第1回統計的因果推論勉強会 第1回
統計的因果推論勉強会 第1回
Hikaru GOTO
 
ベイズ推定の概要@広島ベイズ塾
ベイズ推定の概要@広島ベイズ塾ベイズ推定の概要@広島ベイズ塾
ベイズ推定の概要@広島ベイズ塾
Yoshitake Takebayashi
 
セミパラメトリック推論の基礎
セミパラメトリック推論の基礎セミパラメトリック推論の基礎
セミパラメトリック推論の基礎
Daisuke Yoneoka
 
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
Ken'ichi Matsui
 
機械学習モデルのハイパパラメータ最適化
機械学習モデルのハイパパラメータ最適化機械学習モデルのハイパパラメータ最適化
機械学習モデルのハイパパラメータ最適化
gree_tech
 
劣モジュラ最適化と機械学習1章
劣モジュラ最適化と機械学習1章劣モジュラ最適化と機械学習1章
劣モジュラ最適化と機械学習1章
Hakky St
 
階層ベイズとWAIC
階層ベイズとWAIC階層ベイズとWAIC
階層ベイズとWAIC
Hiroshi Shimizu
 
PRMLの線形回帰モデル(線形基底関数モデル)
PRMLの線形回帰モデル(線形基底関数モデル)PRMLの線形回帰モデル(線形基底関数モデル)
PRMLの線形回帰モデル(線形基底関数モデル)
Yasunori Ozaki
 
星野「調査観察データの統計科学」第3章
星野「調査観察データの統計科学」第3章星野「調査観察データの統計科学」第3章
星野「調査観察データの統計科学」第3章
Shuyo Nakatani
 
Rで階層ベイズモデル
Rで階層ベイズモデルRで階層ベイズモデル
Rで階層ベイズモデル
Yohei Sato
 
相関と因果について考える:統計的因果推論、その(不)可能性の中心
相関と因果について考える:統計的因果推論、その(不)可能性の中心相関と因果について考える:統計的因果推論、その(不)可能性の中心
相関と因果について考える:統計的因果推論、その(不)可能性の中心
takehikoihayashi
 
ベイズ最適化によるハイパラーパラメータ探索
ベイズ最適化によるハイパラーパラメータ探索ベイズ最適化によるハイパラーパラメータ探索
ベイズ最適化によるハイパラーパラメータ探索
西岡 賢一郎
 
Recent Advances on Transfer Learning and Related Topics Ver.2
Recent Advances on Transfer Learning and Related Topics Ver.2Recent Advances on Transfer Learning and Related Topics Ver.2
Recent Advances on Transfer Learning and Related Topics Ver.2
Kota Matsui
 
臨床疫学研究における傾向スコア分析の使い⽅ 〜観察研究における治療効果研究〜
臨床疫学研究における傾向スコア分析の使い⽅ 〜観察研究における治療効果研究〜臨床疫学研究における傾向スコア分析の使い⽅ 〜観察研究における治療効果研究〜
臨床疫学研究における傾向スコア分析の使い⽅ 〜観察研究における治療効果研究〜
Yasuyuki Okumura
 
能動学習セミナー
能動学習セミナー能動学習セミナー
能動学習セミナー
Preferred Networks
 
連続変量を含む条件付相互情報量の推定
連続変量を含む条件付相互情報量の推定連続変量を含む条件付相互情報量の推定
連続変量を含む条件付相互情報量の推定
Joe Suzuki
 
構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展
構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展
構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展
Shiga University, RIKEN
 
因果探索: 基本から最近の発展までを概説
因果探索: 基本から最近の発展までを概説因果探索: 基本から最近の発展までを概説
因果探索: 基本から最近の発展までを概説
Shiga University, RIKEN
 
統計的学習の基礎 5章前半(~5.6)
統計的学習の基礎 5章前半(~5.6)統計的学習の基礎 5章前半(~5.6)
統計的学習の基礎 5章前半(~5.6)
Kota Mori
 
統計的因果推論勉強会 第1回
統計的因果推論勉強会 第1回統計的因果推論勉強会 第1回
統計的因果推論勉強会 第1回
Hikaru GOTO
 
ベイズ推定の概要@広島ベイズ塾
ベイズ推定の概要@広島ベイズ塾ベイズ推定の概要@広島ベイズ塾
ベイズ推定の概要@広島ベイズ塾
Yoshitake Takebayashi
 
セミパラメトリック推論の基礎
セミパラメトリック推論の基礎セミパラメトリック推論の基礎
セミパラメトリック推論の基礎
Daisuke Yoneoka
 
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
Ken'ichi Matsui
 
機械学習モデルのハイパパラメータ最適化
機械学習モデルのハイパパラメータ最適化機械学習モデルのハイパパラメータ最適化
機械学習モデルのハイパパラメータ最適化
gree_tech
 
劣モジュラ最適化と機械学習1章
劣モジュラ最適化と機械学習1章劣モジュラ最適化と機械学習1章
劣モジュラ最適化と機械学習1章
Hakky St
 
PRMLの線形回帰モデル(線形基底関数モデル)
PRMLの線形回帰モデル(線形基底関数モデル)PRMLの線形回帰モデル(線形基底関数モデル)
PRMLの線形回帰モデル(線形基底関数モデル)
Yasunori Ozaki
 
星野「調査観察データの統計科学」第3章
星野「調査観察データの統計科学」第3章星野「調査観察データの統計科学」第3章
星野「調査観察データの統計科学」第3章
Shuyo Nakatani
 
Rで階層ベイズモデル
Rで階層ベイズモデルRで階層ベイズモデル
Rで階層ベイズモデル
Yohei Sato
 
相関と因果について考える:統計的因果推論、その(不)可能性の中心
相関と因果について考える:統計的因果推論、その(不)可能性の中心相関と因果について考える:統計的因果推論、その(不)可能性の中心
相関と因果について考える:統計的因果推論、その(不)可能性の中心
takehikoihayashi
 
ベイズ最適化によるハイパラーパラメータ探索
ベイズ最適化によるハイパラーパラメータ探索ベイズ最適化によるハイパラーパラメータ探索
ベイズ最適化によるハイパラーパラメータ探索
西岡 賢一郎
 
Recent Advances on Transfer Learning and Related Topics Ver.2
Recent Advances on Transfer Learning and Related Topics Ver.2Recent Advances on Transfer Learning and Related Topics Ver.2
Recent Advances on Transfer Learning and Related Topics Ver.2
Kota Matsui
 
臨床疫学研究における傾向スコア分析の使い⽅ 〜観察研究における治療効果研究〜
臨床疫学研究における傾向スコア分析の使い⽅ 〜観察研究における治療効果研究〜臨床疫学研究における傾向スコア分析の使い⽅ 〜観察研究における治療効果研究〜
臨床疫学研究における傾向スコア分析の使い⽅ 〜観察研究における治療効果研究〜
Yasuyuki Okumura
 
連続変量を含む条件付相互情報量の推定
連続変量を含む条件付相互情報量の推定連続変量を含む条件付相互情報量の推定
連続変量を含む条件付相互情報量の推定
Joe Suzuki
 

More from Hideo Hirose (20)

データを読み取る感性
データを読み取る感性データを読み取る感性
データを読み取る感性
Hideo Hirose
 
データを読む感性
データを読む感性データを読む感性
データを読む感性
Hideo Hirose
 
Derivative of sine function: A graphical explanation
Derivative of sine function: A graphical explanationDerivative of sine function: A graphical explanation
Derivative of sine function: A graphical explanation
Hideo Hirose
 
Success/Failure Prediction for Final Examination using the Trend of Weekly On...
Success/Failure Prediction for Final Examination using the Trend of Weekly On...Success/Failure Prediction for Final Examination using the Trend of Weekly On...
Success/Failure Prediction for Final Examination using the Trend of Weekly On...
Hideo Hirose
 
Attendance to Lectures is Crucial in Order Not to Drop Out
Attendance to Lectures is Crucial in Order Not to Drop OutAttendance to Lectures is Crucial in Order Not to Drop Out
Attendance to Lectures is Crucial in Order Not to Drop Out
Hideo Hirose
 
HTT vs. HTH
HTT vs. HTHHTT vs. HTH
HTT vs. HTH
Hideo Hirose
 
統計の世界:予測を扱う科学 Statistics World: A Science of Prediction
統計の世界:予測を扱う科学 Statistics World: A Science of Prediction統計の世界:予測を扱う科学 Statistics World: A Science of Prediction
統計の世界:予測を扱う科学 Statistics World: A Science of Prediction
Hideo Hirose
 
Solve [X^2=A], where A is a matrix
Solve [X^2=A], where A is a matrixSolve [X^2=A], where A is a matrix
Solve [X^2=A], where A is a matrix
Hideo Hirose
 
コーヒーはホットかアイスか 意外なことが分かった
コーヒーはホットかアイスか 意外なことが分かったコーヒーはホットかアイスか 意外なことが分かった
コーヒーはホットかアイスか 意外なことが分かった
Hideo Hirose
 
多変数の極値問題は解析と線形代数の融合だ
多変数の極値問題は解析と線形代数の融合だ多変数の極値問題は解析と線形代数の融合だ
多変数の極値問題は解析と線形代数の融合だ
Hideo Hirose
 
Homotopy法による非線形方程式の解法
Homotopy法による非線形方程式の解法Homotopy法による非線形方程式の解法
Homotopy法による非線形方程式の解法
Hideo Hirose
 
Different classification results under different criteria, distance and proba...
Different classification results under different criteria, distance and proba...Different classification results under different criteria, distance and proba...
Different classification results under different criteria, distance and proba...
Hideo Hirose
 
雷の波形は指数関数(フォローアッププログラムクラス講義07072016)
雷の波形は指数関数(フォローアッププログラムクラス講義07072016)雷の波形は指数関数(フォローアッププログラムクラス講義07072016)
雷の波形は指数関数(フォローアッププログラムクラス講義07072016)
Hideo Hirose
 
微分は約分ではない(フォローアッププログラムクラス講義06152016)
微分は約分ではない(フォローアッププログラムクラス講義06152016)微分は約分ではない(フォローアッププログラムクラス講義06152016)
微分は約分ではない(フォローアッププログラムクラス講義06152016)
Hideo Hirose
 
Interesting but difficult problem: find the optimum saury layout on a gridiro...
Interesting but difficult problem: find the optimum saury layout on a gridiro...Interesting but difficult problem: find the optimum saury layout on a gridiro...
Interesting but difficult problem: find the optimum saury layout on a gridiro...
Hideo Hirose
 
Central Limit Theorem & Galton Board
Central Limit Theorem & Galton BoardCentral Limit Theorem & Galton Board
Central Limit Theorem & Galton Board
Hideo Hirose
 
回路方程式, ポアソン方程式, 中心極限定理による最適なサンマの焼き方
回路方程式, ポアソン方程式, 中心極限定理による最適なサンマの焼き方回路方程式, ポアソン方程式, 中心極限定理による最適なサンマの焼き方
回路方程式, ポアソン方程式, 中心極限定理による最適なサンマの焼き方
Hideo Hirose
 
Extended cumulative exposure model, ecem
Extended cumulative exposure model, ecemExtended cumulative exposure model, ecem
Extended cumulative exposure model, ecem
Hideo Hirose
 
「科学=予測」Science cafe 2011 june 10
「科学=予測」Science cafe 2011 june 10「科学=予測」Science cafe 2011 june 10
「科学=予測」Science cafe 2011 june 10
Hideo Hirose
 
Parameter estimation for the truncated weibull model using the ordinary diffe...
Parameter estimation for the truncated weibull model using the ordinary diffe...Parameter estimation for the truncated weibull model using the ordinary diffe...
Parameter estimation for the truncated weibull model using the ordinary diffe...
Hideo Hirose
 
データを読み取る感性
データを読み取る感性データを読み取る感性
データを読み取る感性
Hideo Hirose
 
データを読む感性
データを読む感性データを読む感性
データを読む感性
Hideo Hirose
 
Derivative of sine function: A graphical explanation
Derivative of sine function: A graphical explanationDerivative of sine function: A graphical explanation
Derivative of sine function: A graphical explanation
Hideo Hirose
 
Success/Failure Prediction for Final Examination using the Trend of Weekly On...
Success/Failure Prediction for Final Examination using the Trend of Weekly On...Success/Failure Prediction for Final Examination using the Trend of Weekly On...
Success/Failure Prediction for Final Examination using the Trend of Weekly On...
Hideo Hirose
 
Attendance to Lectures is Crucial in Order Not to Drop Out
Attendance to Lectures is Crucial in Order Not to Drop OutAttendance to Lectures is Crucial in Order Not to Drop Out
Attendance to Lectures is Crucial in Order Not to Drop Out
Hideo Hirose
 
統計の世界:予測を扱う科学 Statistics World: A Science of Prediction
統計の世界:予測を扱う科学 Statistics World: A Science of Prediction統計の世界:予測を扱う科学 Statistics World: A Science of Prediction
統計の世界:予測を扱う科学 Statistics World: A Science of Prediction
Hideo Hirose
 
Solve [X^2=A], where A is a matrix
Solve [X^2=A], where A is a matrixSolve [X^2=A], where A is a matrix
Solve [X^2=A], where A is a matrix
Hideo Hirose
 
コーヒーはホットかアイスか 意外なことが分かった
コーヒーはホットかアイスか 意外なことが分かったコーヒーはホットかアイスか 意外なことが分かった
コーヒーはホットかアイスか 意外なことが分かった
Hideo Hirose
 
多変数の極値問題は解析と線形代数の融合だ
多変数の極値問題は解析と線形代数の融合だ多変数の極値問題は解析と線形代数の融合だ
多変数の極値問題は解析と線形代数の融合だ
Hideo Hirose
 
Homotopy法による非線形方程式の解法
Homotopy法による非線形方程式の解法Homotopy法による非線形方程式の解法
Homotopy法による非線形方程式の解法
Hideo Hirose
 
Different classification results under different criteria, distance and proba...
Different classification results under different criteria, distance and proba...Different classification results under different criteria, distance and proba...
Different classification results under different criteria, distance and proba...
Hideo Hirose
 
雷の波形は指数関数(フォローアッププログラムクラス講義07072016)
雷の波形は指数関数(フォローアッププログラムクラス講義07072016)雷の波形は指数関数(フォローアッププログラムクラス講義07072016)
雷の波形は指数関数(フォローアッププログラムクラス講義07072016)
Hideo Hirose
 
微分は約分ではない(フォローアッププログラムクラス講義06152016)
微分は約分ではない(フォローアッププログラムクラス講義06152016)微分は約分ではない(フォローアッププログラムクラス講義06152016)
微分は約分ではない(フォローアッププログラムクラス講義06152016)
Hideo Hirose
 
Interesting but difficult problem: find the optimum saury layout on a gridiro...
Interesting but difficult problem: find the optimum saury layout on a gridiro...Interesting but difficult problem: find the optimum saury layout on a gridiro...
Interesting but difficult problem: find the optimum saury layout on a gridiro...
Hideo Hirose
 
Central Limit Theorem & Galton Board
Central Limit Theorem & Galton BoardCentral Limit Theorem & Galton Board
Central Limit Theorem & Galton Board
Hideo Hirose
 
回路方程式, ポアソン方程式, 中心極限定理による最適なサンマの焼き方
回路方程式, ポアソン方程式, 中心極限定理による最適なサンマの焼き方回路方程式, ポアソン方程式, 中心極限定理による最適なサンマの焼き方
回路方程式, ポアソン方程式, 中心極限定理による最適なサンマの焼き方
Hideo Hirose
 
Extended cumulative exposure model, ecem
Extended cumulative exposure model, ecemExtended cumulative exposure model, ecem
Extended cumulative exposure model, ecem
Hideo Hirose
 
「科学=予測」Science cafe 2011 june 10
「科学=予測」Science cafe 2011 june 10「科学=予測」Science cafe 2011 june 10
「科学=予測」Science cafe 2011 june 10
Hideo Hirose
 
Parameter estimation for the truncated weibull model using the ordinary diffe...
Parameter estimation for the truncated weibull model using the ordinary diffe...Parameter estimation for the truncated weibull model using the ordinary diffe...
Parameter estimation for the truncated weibull model using the ordinary diffe...
Hideo Hirose