ROBERT SEDGEWICK | KEVIN WAYNE
F O U R T H E D I T I O N
Algorithms
http://algs4.cs.princeton.edu
Algorithms ROBERT SEDGEWICK | KEVIN WAYNE
2.1 ELEMENTARY SORTS
‣ rules of the game
‣ selection sort
‣ insertion sort
‣ shellsort
‣ shuffling
‣ convex hull
http://algs4.cs.princeton.edu
ROBERT SEDGEWICK | KEVIN WAYNE
Algorithms
‣ rules of the game
‣ selection sort
‣ insertion sort
‣ shellsort
‣ shuffling
‣ convex hull
2.1 ELEMENTARY SORTS
Ex. Student records in a university.
Sort. Rearrange array of N items into ascending order.
3
Sorting problem
item
key
Chen 3 A 991-878-4944 308 Blair
Rohde 2 A 232-343-5555 343 Forbes
Gazsi 4 B 766-093-9873 101 Brown
Furia 1 A 766-093-9873 101 Brown
Kanaga 3 B 898-122-9643 22 Brown
Andrews 3 A 664-480-0023 097 Little
Battle 4 C 874-088-1212 121 Whitman
Andrews 3 A 664-480-0023 097 Little
Battle 4 C 874-088-1212 121 Whitman
Chen 3 A 991-878-4944 308 Blair
Furia 1 A 766-093-9873 101 Brown
Gazsi 4 B 766-093-9873 101 Brown
Kanaga 3 B 898-122-9643 22 Brown
Rohde 2 A 232-343-5555 343 Forbes
Goal. Sort any type of data.
Ex 1. Sort random real numbers in ascending order.
% java Experiment 10
0.08614716385210452
0.09054270895414829
0.10708746304898642
0.21166190071646818
0.363292849257276
0.460954145685913
0.5340026311350087
0.7216129793703496
0.9003500354411443
0.9293994908845686
public class Experiment
{
public static void main(String[] args)
{
int N = Integer.parseInt(args[0]);
Double[] a = new Double[N];
for (int i = 0; i < N; i++)
a[i] = StdRandom.uniform();
Insertion.sort(a);
for (int i = 0; i < N; i++)
StdOut.println(a[i]);
}
}
4
Sample sort client 1
seems artificial, but stay tuned for an application
Goal. Sort any type of data.
Ex 2. Sort strings from file in alphabetical order.
5
Sample sort client 2
public class StringSorter
{
public static void main(String[] args)
{
String[] a = In.readStrings(args[0]);
Insertion.sort(a);
for (int i = 0; i < a.length; i++)
StdOut.println(a[i]);
}
}
% more words3.txt
bed bug dad yet zoo ... all bad yes
% java StringSorter words3.txt
all bad bed bug dad ... yes yet zoo
Goal. Sort any type of data.
Ex 3. Sort the files in a given directory by filename.
6
% java FileSorter .
Insertion.class
Insertion.java
InsertionX.class
InsertionX.java
Selection.class
Selection.java
Shell.class
Shell.java
ShellX.class
ShellX.java
Sample sort client 3
import java.io.File;
public class FileSorter
{
public static void main(String[] args)
{
File directory = new File(args[0]);
File[] files = directory.listFiles();
Insertion.sort(files);
for (int i = 0; i < files.length; i++)
StdOut.println(files[i].getName());
}
}
7
Callbacks
Goal. Sort any type of data.
Q. How can sort() know how to compare data of type Double, String, and
java.io.File without any information about the type of an item's key?
Callback = reference to executable code.
・Client passes array of objects to sort() function.
・The sort() function calls back object's compareTo() method as needed.
Implementing callbacks.
・Java: interfaces.
・C: function pointers.
・C++: class-type functors.
・C#: delegates.
・Python, Perl, ML, Javascript: first-class functions.
Callbacks: roadmap
8
client
import java.io.File;
public class FileSorter
{
public static void main(String[] args)
{
File directory = new File(args[0]);
File[] files = directory.listFiles();
Insertion.sort(files);
for (int i = 0; i < files.length; i++)
StdOut.println(files[i].getName());
}
}
sort implementation
key point: no dependence
on File data type
public static void sort(Comparable[] a)
{
int N = a.length;
for (int i = 0; i < N; i++)
for (int j = i; j > 0; j--)
if (a[j].compareTo(a[j-1]) < 0)
exch(a, j, j-1);
else break;
}
object implementation
public class File
implements Comparable<File>
{
...
public int compareTo(File b)
{
...
return -1;
...
return +1;
...
return 0;
}
}
Comparable interface (built in to Java)
public interface Comparable<Item>
{
public int compareTo(Item that);
}
A total order is a binary relation ≤ that satisfies:
・Antisymmetry: if v ≤ w and w ≤ v, then v = w.
・Transitivity: if v ≤ w and w ≤ x, then v ≤ x.
・Totality: either v ≤ w or w ≤ v or both.
Ex.
・Standard order for natural and real numbers.
・Chronological order for dates or times.
・Alphabetical order for strings.
・…
Surprising but true. The <= operator for double is not a total order. (!)
9
Total order
an intransitive relation
violates totality: (Double.NaN <= Double.NaN) is false
Implement compareTo() so that v.compareTo(w)
・Is a total order.
・Returns a negative integer, zero, or positive integer
if v is less than, equal to, or greater than w, respectively.
・Throws an exception if incompatible types (or either is null).
Built-in comparable types. Integer, Double, String, Date, File, ...
User-defined comparable types. Implement the Comparable interface.
10
Comparable API
greater than (return +1)
v
w
less than (return -1)
v
w
equal to (return 0)
v w
Date data type. Simplified version of java.util.Date.
public class Date implements Comparable<Date>
{
private final int month, day, year;
public Date(int m, int d, int y)
{
month = m;
day = d;
year = y;
}
public int compareTo(Date that)
{
if (this.year < that.year ) return -1;
if (this.year > that.year ) return +1;
if (this.month < that.month) return -1;
if (this.month > that.month) return +1;
if (this.day < that.day ) return -1;
if (this.day > that.day ) return +1;
return 0;
}
}
11
Implementing the Comparable interface
only compare dates
to other dates
Helper functions. Refer to data through compares and exchanges.
Less. Is item v less than w ?
Exchange. Swap item in array a[] at index i with the one at index j.
12
Two useful sorting abstractions
private static boolean less(Comparable v, Comparable w)
{ return v.compareTo(w) < 0; }
private static void exch(Comparable[] a, int i, int j)
{
Comparable swap = a[i];
a[i] = a[j];
a[j] = swap;
}
Goal. Test if an array is sorted.
Q. If the sorting algorithm passes the test, did it correctly sort the array?
A.
13
Testing
private static boolean isSorted(Comparable[] a)
{
for (int i = 1; i < a.length; i++)
if (less(a[i], a[i-1])) return false;
return true;
}
http://algs4.cs.princeton.edu
ROBERT SEDGEWICK | KEVIN WAYNE
Algorithms
‣ rules of the game
‣ selection sort
‣ insertion sort
‣ shellsort
‣ shuffling
‣ convex hull
2.1 ELEMENTARY SORTS
http://algs4.cs.princeton.edu
ROBERT SEDGEWICK | KEVIN WAYNE
Algorithms
‣ rules of the game
‣ selection sort
‣ insertion sort
‣ shellsort
‣ shuffling
‣ convex hull
2.1 ELEMENTARY SORTS
・In iteration i, find index min of smallest remaining entry.
・Swap a[i] and a[min].
Selection sort demo
16
initial
17
Selection sort
Algorithm. ↑ scans from left to right.
Invariants.
・Entries the left of ↑ (including ↑) fixed and in ascending order.
・No entry to right of ↑ is smaller than any entry to the left of ↑.
in final order ↑
18
Selection sort inner loop
To maintain algorithm invariants:
・Move the pointer to the right.
・Identify index of minimum entry on right.
・Exchange into position.
i++;
↑in final order
in final order
exch(a, i, min);
↑↑
int min = i;
for (int j = i+1; j < N; j++)
if (less(a[j], a[min]))
min = j;
↑↑in final order
19
Selection sort: Java implementation
public class Selection
{
public static void sort(Comparable[] a)
{
int N = a.length;
for (int i = 0; i < N; i++)
{
int min = i;
for (int j = i+1; j < N; j++)
if (less(a[j], a[min]))
min = j;
exch(a, i, min);
}
}
private static boolean less(Comparable v, Comparable w)
{ /* as before */ }
private static void exch(Comparable[] a, int i, int j)
{ /* as before */ }
}
Selection sort: mathematical analysis
Proposition. Selection sort uses (N – 1) + (N – 2) + ... + 1 + 0 ~ N 2 / 2 compares
and N exchanges.
Running time insensitive to input. Quadratic time, even if input is sorted.
Data movement is minimal. Linear number of exchanges.
20
Trace of selection sort (array contents just after each exchange)
a[]
i min 0 1 2 3 4 5 6 7 8 9 10
S O R T E X A M P L E
0 6 S O R T E X A M P L E
1 4 A O R T E X S M P L E
2 10 A E R T O X S M P L E
3 9 A E E T O X S M P L R
4 7 A E E L O X S M P T R
5 7 A E E L M X S O P T R
6 8 A E E L M O S X P T R
7 10 A E E L M O P X S T R
8 8 A E E L M O P R S T X
9 9 A E E L M O P R S T X
10 10 A E E L M O P R S T X
A E E L M O P R S T X
entries in gray are
in final position
entries in black
are examined to find
the minimum
entries in red
are a[min]
Selection sort: animations
21
http://www.sorting-algorithms.com/selection-sort
20 random items
in final order
not in final order
algorithm position
Selection sort: animations
22
in final order
not in final order
algorithm position
http://www.sorting-algorithms.com/selection-sort
20 partially-sorted items
http://algs4.cs.princeton.edu
ROBERT SEDGEWICK | KEVIN WAYNE
Algorithms
‣ rules of the game
‣ selection sort
‣ insertion sort
‣ shellsort
‣ shuffling
‣ convex hull
2.1 ELEMENTARY SORTS
http://algs4.cs.princeton.edu
ROBERT SEDGEWICK | KEVIN WAYNE
Algorithms
‣ rules of the game
‣ selection sort
‣ insertion sort
‣ shellsort
‣ shuffling
‣ convex hull
2.1 ELEMENTARY SORTS
・In iteration i, swap a[i] with each larger entry to its left.
・
Insertion sort demo
25
26
Insertion sort
Algorithm. ↑ scans from left to right.
Invariants.
・Entries to the left of ↑ (including ↑) are in ascending order.
・Entries to the right of ↑ have not yet been seen.
in order ↑ not yet seen
27
Insertion sort inner loop
To maintain algorithm invariants:
・Move the pointer to the right.
・Moving from right to left, exchange
a[i] with each larger entry to its left.
i++;
in order not yet seen
↑
for (int j = i; j > 0; j--)
if (less(a[j], a[j-1]))
exch(a, j, j-1);
else break;
in order not yet seen
↑↑↑↑
Insertion sort: Java implementation
28
public class Insertion
{
public static void sort(Comparable[] a)
{
int N = a.length;
for (int i = 0; i < N; i++)
for (int j = i; j > 0; j--)
if (less(a[j], a[j-1]))
exch(a, j, j-1);
else break;
}
private static boolean less(Comparable v, Comparable w)
{ /* as before */ }
private static void exch(Comparable[] a, int i, int j)
{ /* as before */ }
}
Proposition. To sort a randomly-ordered array with distinct keys,
insertion sort uses ~ ¼ N 2 compares and ~ ¼ N 2 exchanges on average.
Pf. Expect each entry to move halfway back.
Insertion sort: mathematical analysis
29
Trace of insertion sort (array contents just after each insertion)
a[]
i j 0 1 2 3 4 5 6 7 8 9 10
S O R T E X A M P L E
1 0 O S R T E X A M P L E
2 1 O R S T E X A M P L E
3 3 O R S T E X A M P L E
4 0 E O R S T X A M P L E
5 5 E O R S T X A M P L E
6 0 A E O R S T X M P L E
7 2 A E M O R S T X P L E
8 4 A E M O P R S T X L E
9 2 A E L M O P R S T X E
10 2 A E E L M O P R S T X
A E E L M O P R S T X
entries in black
moved one position
right for insertion
entries in gray
do not move
entry in red
is a[j]
Insertion sort: trace
30
Insertion sort: animation
31
in order
not yet seen
algorithm position
http://www.sorting-algorithms.com/insertion-sort
40 random items
Best case. If the array is in ascending order, insertion sort makes
N - 1 compares and 0 exchanges.
Worst case. If the array is in descending order (and no duplicates),
insertion sort makes ~ ½ N 2 compares and ~ ½ N 2 exchanges.
Insertion sort: best and worst case
32
X T S R P O M L E E A
A E E L M O P R S T X
Insertion sort: animation
33
http://www.sorting-algorithms.com/insertion-sort
40 reverse-sorted items
in order
not yet seen
algorithm position
Def. An inversion is a pair of keys that are out of order.
Def. An array is partially sorted if the number of inversions is ≤ c N.
・Ex 1. A subarray of size 10 appended to a sorted subarray of size N.
・Ex 2. An array of size N with only 10 entries out of place.
Proposition. For partially-sorted arrays, insertion sort runs in linear time.
Pf. Number of exchanges equals the number of inversions.
Insertion sort: partially-sorted arrays
34
A E E L M O T R X P S
T-R T-P T-S R-P X-P X-S
(6 inversions)
number of compares = exchanges + (N – 1)
Insertion sort: animation
35
http://www.sorting-algorithms.com/insertion-sort
40 partially-sorted items
in order
not yet seen
algorithm position
http://algs4.cs.princeton.edu
ROBERT SEDGEWICK | KEVIN WAYNE
Algorithms
‣ rules of the game
‣ selection sort
‣ insertion sort
‣ shellsort
‣ shuffling
‣ convex hull
2.1 ELEMENTARY SORTS
http://algs4.cs.princeton.edu
ROBERT SEDGEWICK | KEVIN WAYNE
Algorithms
‣ rules of the game
‣ selection sort
‣ insertion sort
‣ shellsort
‣ shuffling
‣ convex hull
2.1 ELEMENTARY SORTS
Idea. Move entries more than one position at a time by h-sorting the array.
Shellsort. [Shell 1959] h-sort array for decreasing sequence of values of h.
Shellsort overview
an h-sorted array is h interleaved sorted subsequences
38
L E E A M H L E P S O L T S X R
L M P T
E H S S
E L O X
A E L R
P H E L L S O R T E X A M S L E
P S
H L
E E
L
L
h = 4
h = 13
An h-sorted file is h interleaved sorted files
(8 additional files of size 1)
Shellsort trace (array contents after each pass)
P H E L L S O R T E X A M S L E
A E E E H L L L M O P R S S T X
L E E A M H L E P S O L T S X R
S H E L L S O R T E X A M P L Einput
13-sort
4-sort
1-sort
How to h-sort an array? Insertion sort, with stride length h.
Why insertion sort?
・Big increments ⇒ small subarray.
・Small increments ⇒ nearly in order. [stay tuned]
h-sorting
M O L E E X A S P R T
E O L M E X A S P R T
E E L M O X A S P R T
E E L M O X A S P R T
A E L E O X M S P R T
A E L E O X M S P R T
A E L E O P M S X R T
A E L E O P M S X R T
A E L E O P M S X R T
A E L E O P M S X R T
3-sorting an array
39
Shellsort example: increments 7, 3, 1
S O R T E X A M P L E
input
S O R T E X A M P L E
M O R T E X A S P L E
M O R T E X A S P L E
M O L T E X A S P R E
M O L E E X A S P R T
7-sort
M O L E E X A S P R T
E O L M E X A S P R T
E E L M O X A S P R T
E E L M O X A S P R T
A E L E O X M S P R T
A E L E O X M S P R T
A E L E O P M S X R T
A E L E O P M S X R T
A E L E O P M S X R T
3-sort
A E L E O P M S X R T
A E L E O P M S X R T
A E L E O P M S X R T
A E E L O P M S X R T
A E E L O P M S X R T
A E E L O P M S X R T
A E E L M O P S X R T
A E E L M O P S X R T
A E E L M O P S X R T
A E E L M O P R S X T
A E E L M O P R S T X
1-sort
A E E L M O P R S T X
result
40
41
Shellsort: intuition
Proposition. A g-sorted array remains g-sorted after h-sorting it.
Challenge. Prove this fact—it's more subtle than you'd think!
M O L E E X A S P R T
E O L M E X A S P R T
E E L M O X A S P R T
E E L M O X A S P R T
A E L E O X M S P R T
A E L E O X M S P R T
A E L E O P M S X R T
A E L E O P M S X R T
A E L E O P M S X R T
A E L E O P M S X R T
3-sort
still 7-sorted
S O R T E X A M P L E
M O R T E X A S P L E
M O R T E X A S P L E
M O L T E X A S P R E
M O L E E X A S P R T
7-sort
Shellsort: which increment sequence to use?
Powers of two. 1, 2, 4, 8, 16, 32, ...
No.
Powers of two minus one. 1, 3, 7, 15, 31, 63, …
Maybe.
3x + 1. 1, 4, 13, 40, 121, 364, …
OK. Easy to compute.
Sedgewick. 1, 5, 19, 41, 109, 209, 505, 929, 2161, 3905, …
Good. Tough to beat in empirical studies.
42
merging of (9 ⨉ 4i) – (9 ⨉ 2i) + 1
and 4i – (3 ⨉ 2i) + 1
public class Shell
{
public static void sort(Comparable[] a)
{
int N = a.length;
int h = 1;
while (h < N/3) h = 3*h + 1; // 1, 4, 13, 40, 121, 364, ...
while (h >= 1)
{ // h-sort the array.
for (int i = h; i < N; i++)
{
for (int j = i; j >= h && less(a[j], a[j-h]); j -= h)
exch(a, j, j-h);
}
h = h/3;
}
}
private static boolean less(Comparable v, Comparable w)
{ /* as before */ }
private static void exch(Comparable[] a, int i, int j)
{ /* as before */ }
}
Shellsort: Java implementation
43
insertion sort
3x+1 increment
sequence
move to next
increment
Shellsort: visual trace
44
Visual trace of shellsort
input
40-sorted
13-sorted
4-sorted
result
Shellsort: animation
45
h-sorted
current subsequence
algorithm position
50 random items
other elementshttp://www.sorting-algorithms.com/shell-sort
Shellsort: animation
46
http://www.sorting-algorithms.com/shell-sort
50 partially-sorted items
h-sorted
current subsequence
algorithm position
other elements
Proposition. The worst-case number of compares used by shellsort with
the 3x+1 increments is O(N 3/2).
Property. Number of compares used by shellsort with the 3x+1 increments
is at most by a small multiple of N times the # of increments used.
Remark. Accurate model has not yet been discovered (!)
47
Shellsort: analysis
measured in thousands
N compares N1.289 2.5 N lg N
5,000 93 58 106
10,000 209 143 230
20,000 467 349 495
40,000 1022 855 1059
80,000 2266 2089 2257
Why are we interested in shellsort?
Example of simple idea leading to substantial performance gains.
Useful in practice.
・Fast unless array size is huge (used for small subarrays).
・Tiny, fixed footprint for code (used in some embedded systems).
・Hardware sort prototype.
Simple algorithm, nontrivial performance, interesting questions.
・Asymptotic growth rate?
・Best sequence of increments?
・Average-case performance?
Lesson. Some good algorithms are still waiting discovery.
48
open problem: find a better increment sequence
bzip2, /linux/kernel/groups.c
uClibc
http://algs4.cs.princeton.edu
ROBERT SEDGEWICK | KEVIN WAYNE
Algorithms
‣ rules of the game
‣ selection sort
‣ insertion sort
‣ shellsort
‣ shuffling
‣ convex hull
2.1 ELEMENTARY SORTS
http://algs4.cs.princeton.edu
ROBERT SEDGEWICK | KEVIN WAYNE
Algorithms
‣ rules of the game
‣ selection sort
‣ insertion sort
‣ shellsort
‣ shuffling
‣ convex hull
2.1 ELEMENTARY SORTS
Goal. Rearrange array so that result is a uniformly random permutation.
How to shuffle an array
51
Goal. Rearrange array so that result is a uniformly random permutation.
How to shuffle an array
52
・Generate a random real number for each array entry.
・Sort the array.
Shuffle sort
53
0.14190.1576 0.42180.48540.8003 0.9157 0.95720.96490.9706
useful for shuffling
columns in a spreadsheet
・Generate a random real number for each array entry.
・Sort the array.
Shuffle sort
54
0.1419 0.1576 0.4218 0.4854 0.8003 0.9157 0.9572 0.9649 0.9706
useful for shuffling
columns in a spreadsheet
・Generate a random real number for each array entry.
・Sort the array.
Proposition. Shuffle sort produces a uniformly random permutation
of the input array, provided no duplicate values.
Shuffle sort
55
0.1419 0.1576 0.4218 0.4854 0.8003 0.9157 0.9572 0.9649 0.9706
assuming real numbers
uniformly at random
useful for shuffling
columns in a spreadsheet
Microsoft antitrust probe by EU. Microsoft agreed to provide a randomized
ballot screen for users to select browser in Windows 7.
56
War story (Microsoft)
http://www.browserchoice.eu
appeared last
50% of the time
Microsoft antitrust probe by EU. Microsoft agreed to provide a randomized
ballot screen for users to select browser in Windows 7.
Solution? Implement shuffle sort by making comparator always return a
random answer.
57
War story (Microsoft)
function RandomSort (a,b)
{
return (0.5 - Math.random());
}
Microsoft's implementation in Javascript
public int compareTo(Browser that)
{
double r = Math.random();
if (r < 0.5) return -1;
if (r > 0.5) return +1;
return 0;
}
browser comparator
(should implement a total order)
・In iteration i, pick integer r between 0 and i uniformly at random.
・Swap a[i] and a[r].
Knuth shuffle demo
58
・In iteration i, pick integer r between 0 and i uniformly at random.
・Swap a[i] and a[r].
Proposition. [Fisher-Yates 1938] Knuth shuffling algorithm produces a
uniformly random permutation of the input array in linear time.
Knuth shuffle
59
assuming integers
uniformly at random
・In iteration i, pick integer r between 0 and i uniformly at random.
・Swap a[i] and a[r].
Knuth shuffle
60
between 0 and i
public class StdRandom
{
...
public static void shuffle(Object[] a)
{
int N = a.length;
for (int i = 0; i < N; i++)
{
int r = StdRandom.uniform(i + 1);
exch(a, i, r);
}
}
}
common bug: between 0 and N – 1
correct variant: between i and N – 1
Texas hold'em poker. Software must shuffle electronic cards.
War story (online poker)
61
How We Learned to Cheat at Online Poker: A Study in Software Security
http://www.datamation.com/entdev/article.php/616221
Bug 1. Random number r never 52 ⇒ 52nd card can't end up in 52nd place.
Bug 2. Shuffle not uniform (should be between 1 and i).
Bug 3. random() uses 32-bit seed ⇒ 232 possible shuffles.
Bug 4. Seed = milliseconds since midnight ⇒ 86.4 million shuffles.
Exploit. After seeing 5 cards and synchronizing with server clock,
can determine all future cards in real time.
War story (online poker)
62
for i := 1 to 52 do begin
r := random(51) + 1;
swap := card[r];
card[r] := card[i];
card[i] := swap;
end;
between 1 and 51
Shuffling algorithm in FAQ at www.planetpoker.com
“ The generation of random numbers is too important to be left to chance. ”
— Robert R. Coveyou
Best practices for shuffling (if your business depends on it).
・Use a hardware random-number generator that has passed both
the FIPS 140-2 and the NIST statistical test suites.
・Continuously monitor statistic properties:
hardware random-number generators are fragile and fail silently.
・Use an unbiased shuffling algorithm.
Bottom line. Shuffling a deck of cards is hard!
War story (online poker)
63
http://algs4.cs.princeton.edu
ROBERT SEDGEWICK | KEVIN WAYNE
Algorithms
‣ rules of the game
‣ selection sort
‣ insertion sort
‣ shellsort
‣ shuffling
‣ convex hull
2.1 ELEMENTARY SORTS
http://algs4.cs.princeton.edu
ROBERT SEDGEWICK | KEVIN WAYNE
Algorithms
‣ rules of the game
‣ selection sort
‣ insertion sort
‣ shellsort
‣ shuffling
‣ convex hull
2.1 ELEMENTARY SORTS
The convex hull of a set of N points is the smallest perimeter fence
enclosing the points.
Equivalent definitions.
・Smallest convex set containing all the points.
・Smallest area convex polygon enclosing the points.
・Convex polygon enclosing the points, whose vertices are points in set.
66
Convex hull
67
Convex hull
The convex hull of a set of N points is the smallest perimeter fence
enclosing the points.
Convex hull output. Sequence of vertices in counterclockwise order.
vertex
on convex hull boundary,
but not vertices
68
Convex hull: mechanical algorithm
Mechanical algorithm. Hammer nails perpendicular to plane; stretch elastic
rubber band around points.
http://www.idlcoyote.com/math_tips/convexhull.html
Robot motion planning. Find shortest path in the plane from s to t
that avoids a polygonal obstacle.
Fact. Shortest path is either straight line from s to t or it is one of two
polygonal chains of convex hull.
69
Convex hull application: motion planning
s t
obstacle
70
Convex hull application: farthest pair
Farthest pair problem. Given N points in the plane, find a pair of points
with the largest Euclidean distance between them.
Fact. Farthest pair of points are extreme points on convex hull.
Fact. Can traverse the convex hull by making only counterclockwise turns.
Fact. The vertices of convex hull appear in increasing order of polar angle
with respect to point p with lowest y-coordinate.
71
Convex hull: geometric properties
1
p
3
4
5
67
8
9
10
1112
2
・Choose point p with smallest y-coordinate.
・Sort points by polar angle with p.
・Consider points in order; discard unless it create a ccw turn.
72
Graham scan demo
p
・Choose point p with smallest y-coordinate.
・Sort points by polar angle with p.
・Consider points in order; discard unless it create a ccw turn.
10
11
12
73
Graham scan demo
1
0
5
67
2
3
9
4
8
74
Graham scan: implementation challenges
Q. How to find point p with smallest y-coordinate?
A. Define a total order, comparing by y-coordinate. [next lecture]
Q. How to sort points by polar angle with respect to p ?
A. Define a total order for each point p. [next lecture]
Q. How to determine whether p1 → p2 → p3 is a counterclockwise turn?
A. Computational geometry. [next two slides]
Q. How to sort efficiently?
A. Mergesort sorts in N log N time. [next lecture]
Q. How to handle degeneracies (three or more points on a line)?
A. Requires some care, but not hard. [see booksite]
75
CCW. Given three points a, b, and c, is a → b → c a counterclockwise turn?
Lesson. Geometric primitives are tricky to implement.
・Dealing with degenerate cases.
・Coping with floating-point precision.
Implementing ccw
a
b
yes
a
c
no
c b
a
b
yes
(∞-slope)
a
b
no
(collinear)
b
a
no
(collinear)
a
c
no
(collinear)
c
c c b
is c to the left of the ray a→b
CCW. Given three points a, b, and c, is a → b → c a counterclockwise turn?
・Determinant (or cross product) gives 2x signed area of planar triangle.
・If signed area > 0, then a → b → c is counterclockwise.
・If signed area < 0, then a → b → c is clockwise.
・If signed area = 0, then a → b → c are collinear.
< 0> 0
76
Implementing ccw
€
2 × Area(a, b, c) =
ax ay 1
bx by 1
cx cy 1
= (bx − ax )(cy − ay ) − (by − ay )(cx − ax )
(ax, ay)
(bx, by)
(cx, cy) (ax, ay)
(bx, by)
(cx, cy)
(b - a) × (c - a)
(ax, ay)
(cx, cy)
(bx, by)
= 0
counterclockwise clockwise collinear
77
Immutable point data type
public class Point2D
{
private final double x;
private final double y;
public Point2D(double x, double y)
{
this.x = x;
this.y = y;
}
...
public static int ccw(Point2D a, Point2D b, Point2D c)
{
double area2 = (b.x-a.x)*(c.y-a.y) - (b.y-a.y)*(c.x-a.x);
if (area2 < 0) return -1; // clockwise
else if (area2 > 0) return +1; // counter-clockwise
else return 0; // collinear
}
}
danger of
floating-point
roundoff error
http://algs4.cs.princeton.edu
ROBERT SEDGEWICK | KEVIN WAYNE
Algorithms
‣ rules of the game
‣ selection sort
‣ insertion sort
‣ shellsort
‣ shuffling
‣ convex hull
2.1 ELEMENTARY SORTS
ROBERT SEDGEWICK | KEVIN WAYNE
F O U R T H E D I T I O N
Algorithms
http://algs4.cs.princeton.edu
Algorithms ROBERT SEDGEWICK | KEVIN WAYNE
2.1 ELEMENTARY SORTS
‣ rules of the game
‣ selection sort
‣ insertion sort
‣ shellsort
‣ shuffling
‣ convex hull

21 elementarysorts 2

  • 1.
    ROBERT SEDGEWICK |KEVIN WAYNE F O U R T H E D I T I O N Algorithms http://algs4.cs.princeton.edu Algorithms ROBERT SEDGEWICK | KEVIN WAYNE 2.1 ELEMENTARY SORTS ‣ rules of the game ‣ selection sort ‣ insertion sort ‣ shellsort ‣ shuffling ‣ convex hull
  • 2.
    http://algs4.cs.princeton.edu ROBERT SEDGEWICK |KEVIN WAYNE Algorithms ‣ rules of the game ‣ selection sort ‣ insertion sort ‣ shellsort ‣ shuffling ‣ convex hull 2.1 ELEMENTARY SORTS
  • 3.
    Ex. Student recordsin a university. Sort. Rearrange array of N items into ascending order. 3 Sorting problem item key Chen 3 A 991-878-4944 308 Blair Rohde 2 A 232-343-5555 343 Forbes Gazsi 4 B 766-093-9873 101 Brown Furia 1 A 766-093-9873 101 Brown Kanaga 3 B 898-122-9643 22 Brown Andrews 3 A 664-480-0023 097 Little Battle 4 C 874-088-1212 121 Whitman Andrews 3 A 664-480-0023 097 Little Battle 4 C 874-088-1212 121 Whitman Chen 3 A 991-878-4944 308 Blair Furia 1 A 766-093-9873 101 Brown Gazsi 4 B 766-093-9873 101 Brown Kanaga 3 B 898-122-9643 22 Brown Rohde 2 A 232-343-5555 343 Forbes
  • 4.
    Goal. Sort anytype of data. Ex 1. Sort random real numbers in ascending order. % java Experiment 10 0.08614716385210452 0.09054270895414829 0.10708746304898642 0.21166190071646818 0.363292849257276 0.460954145685913 0.5340026311350087 0.7216129793703496 0.9003500354411443 0.9293994908845686 public class Experiment { public static void main(String[] args) { int N = Integer.parseInt(args[0]); Double[] a = new Double[N]; for (int i = 0; i < N; i++) a[i] = StdRandom.uniform(); Insertion.sort(a); for (int i = 0; i < N; i++) StdOut.println(a[i]); } } 4 Sample sort client 1 seems artificial, but stay tuned for an application
  • 5.
    Goal. Sort anytype of data. Ex 2. Sort strings from file in alphabetical order. 5 Sample sort client 2 public class StringSorter { public static void main(String[] args) { String[] a = In.readStrings(args[0]); Insertion.sort(a); for (int i = 0; i < a.length; i++) StdOut.println(a[i]); } } % more words3.txt bed bug dad yet zoo ... all bad yes % java StringSorter words3.txt all bad bed bug dad ... yes yet zoo
  • 6.
    Goal. Sort anytype of data. Ex 3. Sort the files in a given directory by filename. 6 % java FileSorter . Insertion.class Insertion.java InsertionX.class InsertionX.java Selection.class Selection.java Shell.class Shell.java ShellX.class ShellX.java Sample sort client 3 import java.io.File; public class FileSorter { public static void main(String[] args) { File directory = new File(args[0]); File[] files = directory.listFiles(); Insertion.sort(files); for (int i = 0; i < files.length; i++) StdOut.println(files[i].getName()); } }
  • 7.
    7 Callbacks Goal. Sort anytype of data. Q. How can sort() know how to compare data of type Double, String, and java.io.File without any information about the type of an item's key? Callback = reference to executable code. ・Client passes array of objects to sort() function. ・The sort() function calls back object's compareTo() method as needed. Implementing callbacks. ・Java: interfaces. ・C: function pointers. ・C++: class-type functors. ・C#: delegates. ・Python, Perl, ML, Javascript: first-class functions.
  • 8.
    Callbacks: roadmap 8 client import java.io.File; publicclass FileSorter { public static void main(String[] args) { File directory = new File(args[0]); File[] files = directory.listFiles(); Insertion.sort(files); for (int i = 0; i < files.length; i++) StdOut.println(files[i].getName()); } } sort implementation key point: no dependence on File data type public static void sort(Comparable[] a) { int N = a.length; for (int i = 0; i < N; i++) for (int j = i; j > 0; j--) if (a[j].compareTo(a[j-1]) < 0) exch(a, j, j-1); else break; } object implementation public class File implements Comparable<File> { ... public int compareTo(File b) { ... return -1; ... return +1; ... return 0; } } Comparable interface (built in to Java) public interface Comparable<Item> { public int compareTo(Item that); }
  • 9.
    A total orderis a binary relation ≤ that satisfies: ・Antisymmetry: if v ≤ w and w ≤ v, then v = w. ・Transitivity: if v ≤ w and w ≤ x, then v ≤ x. ・Totality: either v ≤ w or w ≤ v or both. Ex. ・Standard order for natural and real numbers. ・Chronological order for dates or times. ・Alphabetical order for strings. ・… Surprising but true. The <= operator for double is not a total order. (!) 9 Total order an intransitive relation violates totality: (Double.NaN <= Double.NaN) is false
  • 10.
    Implement compareTo() sothat v.compareTo(w) ・Is a total order. ・Returns a negative integer, zero, or positive integer if v is less than, equal to, or greater than w, respectively. ・Throws an exception if incompatible types (or either is null). Built-in comparable types. Integer, Double, String, Date, File, ... User-defined comparable types. Implement the Comparable interface. 10 Comparable API greater than (return +1) v w less than (return -1) v w equal to (return 0) v w
  • 11.
    Date data type.Simplified version of java.util.Date. public class Date implements Comparable<Date> { private final int month, day, year; public Date(int m, int d, int y) { month = m; day = d; year = y; } public int compareTo(Date that) { if (this.year < that.year ) return -1; if (this.year > that.year ) return +1; if (this.month < that.month) return -1; if (this.month > that.month) return +1; if (this.day < that.day ) return -1; if (this.day > that.day ) return +1; return 0; } } 11 Implementing the Comparable interface only compare dates to other dates
  • 12.
    Helper functions. Referto data through compares and exchanges. Less. Is item v less than w ? Exchange. Swap item in array a[] at index i with the one at index j. 12 Two useful sorting abstractions private static boolean less(Comparable v, Comparable w) { return v.compareTo(w) < 0; } private static void exch(Comparable[] a, int i, int j) { Comparable swap = a[i]; a[i] = a[j]; a[j] = swap; }
  • 13.
    Goal. Test ifan array is sorted. Q. If the sorting algorithm passes the test, did it correctly sort the array? A. 13 Testing private static boolean isSorted(Comparable[] a) { for (int i = 1; i < a.length; i++) if (less(a[i], a[i-1])) return false; return true; }
  • 14.
    http://algs4.cs.princeton.edu ROBERT SEDGEWICK |KEVIN WAYNE Algorithms ‣ rules of the game ‣ selection sort ‣ insertion sort ‣ shellsort ‣ shuffling ‣ convex hull 2.1 ELEMENTARY SORTS
  • 15.
    http://algs4.cs.princeton.edu ROBERT SEDGEWICK |KEVIN WAYNE Algorithms ‣ rules of the game ‣ selection sort ‣ insertion sort ‣ shellsort ‣ shuffling ‣ convex hull 2.1 ELEMENTARY SORTS
  • 16.
    ・In iteration i,find index min of smallest remaining entry. ・Swap a[i] and a[min]. Selection sort demo 16 initial
  • 17.
    17 Selection sort Algorithm. ↑scans from left to right. Invariants. ・Entries the left of ↑ (including ↑) fixed and in ascending order. ・No entry to right of ↑ is smaller than any entry to the left of ↑. in final order ↑
  • 18.
    18 Selection sort innerloop To maintain algorithm invariants: ・Move the pointer to the right. ・Identify index of minimum entry on right. ・Exchange into position. i++; ↑in final order in final order exch(a, i, min); ↑↑ int min = i; for (int j = i+1; j < N; j++) if (less(a[j], a[min])) min = j; ↑↑in final order
  • 19.
    19 Selection sort: Javaimplementation public class Selection { public static void sort(Comparable[] a) { int N = a.length; for (int i = 0; i < N; i++) { int min = i; for (int j = i+1; j < N; j++) if (less(a[j], a[min])) min = j; exch(a, i, min); } } private static boolean less(Comparable v, Comparable w) { /* as before */ } private static void exch(Comparable[] a, int i, int j) { /* as before */ } }
  • 20.
    Selection sort: mathematicalanalysis Proposition. Selection sort uses (N – 1) + (N – 2) + ... + 1 + 0 ~ N 2 / 2 compares and N exchanges. Running time insensitive to input. Quadratic time, even if input is sorted. Data movement is minimal. Linear number of exchanges. 20 Trace of selection sort (array contents just after each exchange) a[] i min 0 1 2 3 4 5 6 7 8 9 10 S O R T E X A M P L E 0 6 S O R T E X A M P L E 1 4 A O R T E X S M P L E 2 10 A E R T O X S M P L E 3 9 A E E T O X S M P L R 4 7 A E E L O X S M P T R 5 7 A E E L M X S O P T R 6 8 A E E L M O S X P T R 7 10 A E E L M O P X S T R 8 8 A E E L M O P R S T X 9 9 A E E L M O P R S T X 10 10 A E E L M O P R S T X A E E L M O P R S T X entries in gray are in final position entries in black are examined to find the minimum entries in red are a[min]
  • 21.
  • 22.
    Selection sort: animations 22 infinal order not in final order algorithm position http://www.sorting-algorithms.com/selection-sort 20 partially-sorted items
  • 23.
    http://algs4.cs.princeton.edu ROBERT SEDGEWICK |KEVIN WAYNE Algorithms ‣ rules of the game ‣ selection sort ‣ insertion sort ‣ shellsort ‣ shuffling ‣ convex hull 2.1 ELEMENTARY SORTS
  • 24.
    http://algs4.cs.princeton.edu ROBERT SEDGEWICK |KEVIN WAYNE Algorithms ‣ rules of the game ‣ selection sort ‣ insertion sort ‣ shellsort ‣ shuffling ‣ convex hull 2.1 ELEMENTARY SORTS
  • 25.
    ・In iteration i,swap a[i] with each larger entry to its left. ・ Insertion sort demo 25
  • 26.
    26 Insertion sort Algorithm. ↑scans from left to right. Invariants. ・Entries to the left of ↑ (including ↑) are in ascending order. ・Entries to the right of ↑ have not yet been seen. in order ↑ not yet seen
  • 27.
    27 Insertion sort innerloop To maintain algorithm invariants: ・Move the pointer to the right. ・Moving from right to left, exchange a[i] with each larger entry to its left. i++; in order not yet seen ↑ for (int j = i; j > 0; j--) if (less(a[j], a[j-1])) exch(a, j, j-1); else break; in order not yet seen ↑↑↑↑
  • 28.
    Insertion sort: Javaimplementation 28 public class Insertion { public static void sort(Comparable[] a) { int N = a.length; for (int i = 0; i < N; i++) for (int j = i; j > 0; j--) if (less(a[j], a[j-1])) exch(a, j, j-1); else break; } private static boolean less(Comparable v, Comparable w) { /* as before */ } private static void exch(Comparable[] a, int i, int j) { /* as before */ } }
  • 29.
    Proposition. To sorta randomly-ordered array with distinct keys, insertion sort uses ~ ¼ N 2 compares and ~ ¼ N 2 exchanges on average. Pf. Expect each entry to move halfway back. Insertion sort: mathematical analysis 29 Trace of insertion sort (array contents just after each insertion) a[] i j 0 1 2 3 4 5 6 7 8 9 10 S O R T E X A M P L E 1 0 O S R T E X A M P L E 2 1 O R S T E X A M P L E 3 3 O R S T E X A M P L E 4 0 E O R S T X A M P L E 5 5 E O R S T X A M P L E 6 0 A E O R S T X M P L E 7 2 A E M O R S T X P L E 8 4 A E M O P R S T X L E 9 2 A E L M O P R S T X E 10 2 A E E L M O P R S T X A E E L M O P R S T X entries in black moved one position right for insertion entries in gray do not move entry in red is a[j]
  • 30.
  • 31.
    Insertion sort: animation 31 inorder not yet seen algorithm position http://www.sorting-algorithms.com/insertion-sort 40 random items
  • 32.
    Best case. Ifthe array is in ascending order, insertion sort makes N - 1 compares and 0 exchanges. Worst case. If the array is in descending order (and no duplicates), insertion sort makes ~ ½ N 2 compares and ~ ½ N 2 exchanges. Insertion sort: best and worst case 32 X T S R P O M L E E A A E E L M O P R S T X
  • 33.
  • 34.
    Def. An inversionis a pair of keys that are out of order. Def. An array is partially sorted if the number of inversions is ≤ c N. ・Ex 1. A subarray of size 10 appended to a sorted subarray of size N. ・Ex 2. An array of size N with only 10 entries out of place. Proposition. For partially-sorted arrays, insertion sort runs in linear time. Pf. Number of exchanges equals the number of inversions. Insertion sort: partially-sorted arrays 34 A E E L M O T R X P S T-R T-P T-S R-P X-P X-S (6 inversions) number of compares = exchanges + (N – 1)
  • 35.
  • 36.
    http://algs4.cs.princeton.edu ROBERT SEDGEWICK |KEVIN WAYNE Algorithms ‣ rules of the game ‣ selection sort ‣ insertion sort ‣ shellsort ‣ shuffling ‣ convex hull 2.1 ELEMENTARY SORTS
  • 37.
    http://algs4.cs.princeton.edu ROBERT SEDGEWICK |KEVIN WAYNE Algorithms ‣ rules of the game ‣ selection sort ‣ insertion sort ‣ shellsort ‣ shuffling ‣ convex hull 2.1 ELEMENTARY SORTS
  • 38.
    Idea. Move entriesmore than one position at a time by h-sorting the array. Shellsort. [Shell 1959] h-sort array for decreasing sequence of values of h. Shellsort overview an h-sorted array is h interleaved sorted subsequences 38 L E E A M H L E P S O L T S X R L M P T E H S S E L O X A E L R P H E L L S O R T E X A M S L E P S H L E E L L h = 4 h = 13 An h-sorted file is h interleaved sorted files (8 additional files of size 1) Shellsort trace (array contents after each pass) P H E L L S O R T E X A M S L E A E E E H L L L M O P R S S T X L E E A M H L E P S O L T S X R S H E L L S O R T E X A M P L Einput 13-sort 4-sort 1-sort
  • 39.
    How to h-sortan array? Insertion sort, with stride length h. Why insertion sort? ・Big increments ⇒ small subarray. ・Small increments ⇒ nearly in order. [stay tuned] h-sorting M O L E E X A S P R T E O L M E X A S P R T E E L M O X A S P R T E E L M O X A S P R T A E L E O X M S P R T A E L E O X M S P R T A E L E O P M S X R T A E L E O P M S X R T A E L E O P M S X R T A E L E O P M S X R T 3-sorting an array 39
  • 40.
    Shellsort example: increments7, 3, 1 S O R T E X A M P L E input S O R T E X A M P L E M O R T E X A S P L E M O R T E X A S P L E M O L T E X A S P R E M O L E E X A S P R T 7-sort M O L E E X A S P R T E O L M E X A S P R T E E L M O X A S P R T E E L M O X A S P R T A E L E O X M S P R T A E L E O X M S P R T A E L E O P M S X R T A E L E O P M S X R T A E L E O P M S X R T 3-sort A E L E O P M S X R T A E L E O P M S X R T A E L E O P M S X R T A E E L O P M S X R T A E E L O P M S X R T A E E L O P M S X R T A E E L M O P S X R T A E E L M O P S X R T A E E L M O P S X R T A E E L M O P R S X T A E E L M O P R S T X 1-sort A E E L M O P R S T X result 40
  • 41.
    41 Shellsort: intuition Proposition. Ag-sorted array remains g-sorted after h-sorting it. Challenge. Prove this fact—it's more subtle than you'd think! M O L E E X A S P R T E O L M E X A S P R T E E L M O X A S P R T E E L M O X A S P R T A E L E O X M S P R T A E L E O X M S P R T A E L E O P M S X R T A E L E O P M S X R T A E L E O P M S X R T A E L E O P M S X R T 3-sort still 7-sorted S O R T E X A M P L E M O R T E X A S P L E M O R T E X A S P L E M O L T E X A S P R E M O L E E X A S P R T 7-sort
  • 42.
    Shellsort: which incrementsequence to use? Powers of two. 1, 2, 4, 8, 16, 32, ... No. Powers of two minus one. 1, 3, 7, 15, 31, 63, … Maybe. 3x + 1. 1, 4, 13, 40, 121, 364, … OK. Easy to compute. Sedgewick. 1, 5, 19, 41, 109, 209, 505, 929, 2161, 3905, … Good. Tough to beat in empirical studies. 42 merging of (9 ⨉ 4i) – (9 ⨉ 2i) + 1 and 4i – (3 ⨉ 2i) + 1
  • 43.
    public class Shell { publicstatic void sort(Comparable[] a) { int N = a.length; int h = 1; while (h < N/3) h = 3*h + 1; // 1, 4, 13, 40, 121, 364, ... while (h >= 1) { // h-sort the array. for (int i = h; i < N; i++) { for (int j = i; j >= h && less(a[j], a[j-h]); j -= h) exch(a, j, j-h); } h = h/3; } } private static boolean less(Comparable v, Comparable w) { /* as before */ } private static void exch(Comparable[] a, int i, int j) { /* as before */ } } Shellsort: Java implementation 43 insertion sort 3x+1 increment sequence move to next increment
  • 44.
    Shellsort: visual trace 44 Visualtrace of shellsort input 40-sorted 13-sorted 4-sorted result
  • 45.
    Shellsort: animation 45 h-sorted current subsequence algorithmposition 50 random items other elementshttp://www.sorting-algorithms.com/shell-sort
  • 46.
  • 47.
    Proposition. The worst-casenumber of compares used by shellsort with the 3x+1 increments is O(N 3/2). Property. Number of compares used by shellsort with the 3x+1 increments is at most by a small multiple of N times the # of increments used. Remark. Accurate model has not yet been discovered (!) 47 Shellsort: analysis measured in thousands N compares N1.289 2.5 N lg N 5,000 93 58 106 10,000 209 143 230 20,000 467 349 495 40,000 1022 855 1059 80,000 2266 2089 2257
  • 48.
    Why are weinterested in shellsort? Example of simple idea leading to substantial performance gains. Useful in practice. ・Fast unless array size is huge (used for small subarrays). ・Tiny, fixed footprint for code (used in some embedded systems). ・Hardware sort prototype. Simple algorithm, nontrivial performance, interesting questions. ・Asymptotic growth rate? ・Best sequence of increments? ・Average-case performance? Lesson. Some good algorithms are still waiting discovery. 48 open problem: find a better increment sequence bzip2, /linux/kernel/groups.c uClibc
  • 49.
    http://algs4.cs.princeton.edu ROBERT SEDGEWICK |KEVIN WAYNE Algorithms ‣ rules of the game ‣ selection sort ‣ insertion sort ‣ shellsort ‣ shuffling ‣ convex hull 2.1 ELEMENTARY SORTS
  • 50.
    http://algs4.cs.princeton.edu ROBERT SEDGEWICK |KEVIN WAYNE Algorithms ‣ rules of the game ‣ selection sort ‣ insertion sort ‣ shellsort ‣ shuffling ‣ convex hull 2.1 ELEMENTARY SORTS
  • 51.
    Goal. Rearrange arrayso that result is a uniformly random permutation. How to shuffle an array 51
  • 52.
    Goal. Rearrange arrayso that result is a uniformly random permutation. How to shuffle an array 52
  • 53.
    ・Generate a randomreal number for each array entry. ・Sort the array. Shuffle sort 53 0.14190.1576 0.42180.48540.8003 0.9157 0.95720.96490.9706 useful for shuffling columns in a spreadsheet
  • 54.
    ・Generate a randomreal number for each array entry. ・Sort the array. Shuffle sort 54 0.1419 0.1576 0.4218 0.4854 0.8003 0.9157 0.9572 0.9649 0.9706 useful for shuffling columns in a spreadsheet
  • 55.
    ・Generate a randomreal number for each array entry. ・Sort the array. Proposition. Shuffle sort produces a uniformly random permutation of the input array, provided no duplicate values. Shuffle sort 55 0.1419 0.1576 0.4218 0.4854 0.8003 0.9157 0.9572 0.9649 0.9706 assuming real numbers uniformly at random useful for shuffling columns in a spreadsheet
  • 56.
    Microsoft antitrust probeby EU. Microsoft agreed to provide a randomized ballot screen for users to select browser in Windows 7. 56 War story (Microsoft) http://www.browserchoice.eu appeared last 50% of the time
  • 57.
    Microsoft antitrust probeby EU. Microsoft agreed to provide a randomized ballot screen for users to select browser in Windows 7. Solution? Implement shuffle sort by making comparator always return a random answer. 57 War story (Microsoft) function RandomSort (a,b) { return (0.5 - Math.random()); } Microsoft's implementation in Javascript public int compareTo(Browser that) { double r = Math.random(); if (r < 0.5) return -1; if (r > 0.5) return +1; return 0; } browser comparator (should implement a total order)
  • 58.
    ・In iteration i,pick integer r between 0 and i uniformly at random. ・Swap a[i] and a[r]. Knuth shuffle demo 58
  • 59.
    ・In iteration i,pick integer r between 0 and i uniformly at random. ・Swap a[i] and a[r]. Proposition. [Fisher-Yates 1938] Knuth shuffling algorithm produces a uniformly random permutation of the input array in linear time. Knuth shuffle 59 assuming integers uniformly at random
  • 60.
    ・In iteration i,pick integer r between 0 and i uniformly at random. ・Swap a[i] and a[r]. Knuth shuffle 60 between 0 and i public class StdRandom { ... public static void shuffle(Object[] a) { int N = a.length; for (int i = 0; i < N; i++) { int r = StdRandom.uniform(i + 1); exch(a, i, r); } } } common bug: between 0 and N – 1 correct variant: between i and N – 1
  • 61.
    Texas hold'em poker.Software must shuffle electronic cards. War story (online poker) 61 How We Learned to Cheat at Online Poker: A Study in Software Security http://www.datamation.com/entdev/article.php/616221
  • 62.
    Bug 1. Randomnumber r never 52 ⇒ 52nd card can't end up in 52nd place. Bug 2. Shuffle not uniform (should be between 1 and i). Bug 3. random() uses 32-bit seed ⇒ 232 possible shuffles. Bug 4. Seed = milliseconds since midnight ⇒ 86.4 million shuffles. Exploit. After seeing 5 cards and synchronizing with server clock, can determine all future cards in real time. War story (online poker) 62 for i := 1 to 52 do begin r := random(51) + 1; swap := card[r]; card[r] := card[i]; card[i] := swap; end; between 1 and 51 Shuffling algorithm in FAQ at www.planetpoker.com “ The generation of random numbers is too important to be left to chance. ” — Robert R. Coveyou
  • 63.
    Best practices forshuffling (if your business depends on it). ・Use a hardware random-number generator that has passed both the FIPS 140-2 and the NIST statistical test suites. ・Continuously monitor statistic properties: hardware random-number generators are fragile and fail silently. ・Use an unbiased shuffling algorithm. Bottom line. Shuffling a deck of cards is hard! War story (online poker) 63
  • 64.
    http://algs4.cs.princeton.edu ROBERT SEDGEWICK |KEVIN WAYNE Algorithms ‣ rules of the game ‣ selection sort ‣ insertion sort ‣ shellsort ‣ shuffling ‣ convex hull 2.1 ELEMENTARY SORTS
  • 65.
    http://algs4.cs.princeton.edu ROBERT SEDGEWICK |KEVIN WAYNE Algorithms ‣ rules of the game ‣ selection sort ‣ insertion sort ‣ shellsort ‣ shuffling ‣ convex hull 2.1 ELEMENTARY SORTS
  • 66.
    The convex hullof a set of N points is the smallest perimeter fence enclosing the points. Equivalent definitions. ・Smallest convex set containing all the points. ・Smallest area convex polygon enclosing the points. ・Convex polygon enclosing the points, whose vertices are points in set. 66 Convex hull
  • 67.
    67 Convex hull The convexhull of a set of N points is the smallest perimeter fence enclosing the points. Convex hull output. Sequence of vertices in counterclockwise order. vertex on convex hull boundary, but not vertices
  • 68.
    68 Convex hull: mechanicalalgorithm Mechanical algorithm. Hammer nails perpendicular to plane; stretch elastic rubber band around points. http://www.idlcoyote.com/math_tips/convexhull.html
  • 69.
    Robot motion planning.Find shortest path in the plane from s to t that avoids a polygonal obstacle. Fact. Shortest path is either straight line from s to t or it is one of two polygonal chains of convex hull. 69 Convex hull application: motion planning s t obstacle
  • 70.
    70 Convex hull application:farthest pair Farthest pair problem. Given N points in the plane, find a pair of points with the largest Euclidean distance between them. Fact. Farthest pair of points are extreme points on convex hull.
  • 71.
    Fact. Can traversethe convex hull by making only counterclockwise turns. Fact. The vertices of convex hull appear in increasing order of polar angle with respect to point p with lowest y-coordinate. 71 Convex hull: geometric properties 1 p 3 4 5 67 8 9 10 1112 2
  • 72.
    ・Choose point pwith smallest y-coordinate. ・Sort points by polar angle with p. ・Consider points in order; discard unless it create a ccw turn. 72 Graham scan demo p
  • 73.
    ・Choose point pwith smallest y-coordinate. ・Sort points by polar angle with p. ・Consider points in order; discard unless it create a ccw turn. 10 11 12 73 Graham scan demo 1 0 5 67 2 3 9 4 8
  • 74.
    74 Graham scan: implementationchallenges Q. How to find point p with smallest y-coordinate? A. Define a total order, comparing by y-coordinate. [next lecture] Q. How to sort points by polar angle with respect to p ? A. Define a total order for each point p. [next lecture] Q. How to determine whether p1 → p2 → p3 is a counterclockwise turn? A. Computational geometry. [next two slides] Q. How to sort efficiently? A. Mergesort sorts in N log N time. [next lecture] Q. How to handle degeneracies (three or more points on a line)? A. Requires some care, but not hard. [see booksite]
  • 75.
    75 CCW. Given threepoints a, b, and c, is a → b → c a counterclockwise turn? Lesson. Geometric primitives are tricky to implement. ・Dealing with degenerate cases. ・Coping with floating-point precision. Implementing ccw a b yes a c no c b a b yes (∞-slope) a b no (collinear) b a no (collinear) a c no (collinear) c c c b is c to the left of the ray a→b
  • 76.
    CCW. Given threepoints a, b, and c, is a → b → c a counterclockwise turn? ・Determinant (or cross product) gives 2x signed area of planar triangle. ・If signed area > 0, then a → b → c is counterclockwise. ・If signed area < 0, then a → b → c is clockwise. ・If signed area = 0, then a → b → c are collinear. < 0> 0 76 Implementing ccw € 2 × Area(a, b, c) = ax ay 1 bx by 1 cx cy 1 = (bx − ax )(cy − ay ) − (by − ay )(cx − ax ) (ax, ay) (bx, by) (cx, cy) (ax, ay) (bx, by) (cx, cy) (b - a) × (c - a) (ax, ay) (cx, cy) (bx, by) = 0 counterclockwise clockwise collinear
  • 77.
    77 Immutable point datatype public class Point2D { private final double x; private final double y; public Point2D(double x, double y) { this.x = x; this.y = y; } ... public static int ccw(Point2D a, Point2D b, Point2D c) { double area2 = (b.x-a.x)*(c.y-a.y) - (b.y-a.y)*(c.x-a.x); if (area2 < 0) return -1; // clockwise else if (area2 > 0) return +1; // counter-clockwise else return 0; // collinear } } danger of floating-point roundoff error
  • 78.
    http://algs4.cs.princeton.edu ROBERT SEDGEWICK |KEVIN WAYNE Algorithms ‣ rules of the game ‣ selection sort ‣ insertion sort ‣ shellsort ‣ shuffling ‣ convex hull 2.1 ELEMENTARY SORTS
  • 79.
    ROBERT SEDGEWICK |KEVIN WAYNE F O U R T H E D I T I O N Algorithms http://algs4.cs.princeton.edu Algorithms ROBERT SEDGEWICK | KEVIN WAYNE 2.1 ELEMENTARY SORTS ‣ rules of the game ‣ selection sort ‣ insertion sort ‣ shellsort ‣ shuffling ‣ convex hull