The document discusses Big O notation, which is used to classify algorithms based on how their running time scales with input size. It provides examples of common Big O notations like O(1), O(log n), O(n), O(n^2), and O(n!). The document also explains that Big O looks only at the fastest growing term as input size increases. Well-chosen data structures can help reduce an algorithm's Big O complexity. For example, searching a sorted list is O(log n) rather than O(n) for an unsorted list.