4
Most read
5
Most read
11
Most read
9.6 Binomial Theorem
Chapter 9 Sequences, Probability, and Counting
Theory
Concepts and Objectives
⚫ The objectives for this section are
⚫ Apply the Binomial Theorem.
Binomial Series
⚫ A binomial squared becomes
⚫ A binomial cubed becomes
( )
+ = + +
2 2 2
2
a b a ab b
( ) ( )( )
+ = + +
3 2
a b a b a b
( )( )
= + + +
2 2
2
a b a ab b
= + + + + +
2 2
3 3
2 2
2 2
a b a b ab
a b b
a
= + + +
3 2 2 3
3 3
a a b ab b
Binomial Series (cont.)
⚫ As you may recall from Algebra II, the coefficients
correspond to rows from Pascal’s Triangle
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
Binomial Series (cont.)
⚫ Example: Expand ( )
+
5
2 1
x
Binomial Series (cont.)
⚫ Example: Expand
a = 2x and b = 1; the exponents begin and end at 5
(a goes down while b goes up). Looking at row 5 on the
triangle, our coefficients are 1, 5, 10, 10, 5, 1, so we write
our expression as follows:
(Notice that the exponents apply to the entire term of the
binomial, not just the variable.)
( )
+
5
2 1
x
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )
+ + + + +
5 4 3 2 2 3 4 5
5 10 1
1 1 1
2 2 2 1
2 1
5 2
0
x x x x x
= + + + + +
5 4 3 2
32 80 80 40 10 1
x x x x x
+ + + + +
5 4 3 2 2 3 4 5
5 10 10 5
a a a a a
b b b b b
Binomial Series (cont.)
⚫ Consider the binomial series :
If we multiply the coefficient of a term by a fraction
consisting of the exponent of a over the term number,
we get the coefficient of the next number.
( )
+
7
a b
= + + + + + + +
7 6 5 2 4 3 3 4 2 5 6 7
7 21 35 35 21 7
a a b a b a b a b a b ab b
8
7
6
5
4
3
2
1
   
= =
   
   
exp. 7
coeff. 1 7,
term # 1
 
=
 
 
6
7 21,
2
 
 
 
5
21 =35, ...
3
Binomial Series (cont.)
⚫ Now let’s see what happens to if we don’t
simplify the fractions as we calculate them:
( )
+
8
a b
1
2
3
4
5
8
a
7
8
1
a b
6 2
8 7
1 2
a b
5 3
8 7 6
1 2 3
a b
4 4
8 7 6 5
1 2 3 4
a b
Do you see the pattern?
What is it?
Binomial Series (cont.)
⚫ The coefficients of a binomial series can be written as
factorials. For example, let’s look at the coefficient for
the fourth term:
=
8 7 6 8 7 6
1 2 3 1 2 3
=
8 7 6 5!
1 2 3 5!
=
8!
3! 5!
Binomial Series (cont.)
⚫ Looking back at the original expression:
Notice how the numbers in the coefficient expression
are found elsewhere in the expression.
⚫ 8 is the value of the exponent to which (a + b) is
raised.
⚫ 5 is the value of a’s exponent and 3 is the value of b’s.
⚫ The exponent of b is always one less than the term
number (4).
( )
+ = + +
5 3
8 !
... ...
! !
5
3
8
a b a b
Binomial Theorem
⚫ The formula for the term containing br of (a + b)n,
therefore, is
or nCr
⚫ Example: Find the term containing y6 of
( )
−
−
!
! !
n r r
n
a b
r n r
n
r
 
=  
 
( )
10
8
x y
−
Binomial Theorem (cont.)
⚫ The formula for the term containing br of (a + b)n,
therefore, is
or nCr
⚫ Example: Find the term containing y6 of
( )
−
−
!
! !
n r r
n
a b
r n r
n
r
 
=  
 
( )
10
8
x y
−
( )( ) ( ) ( )
6
10 6 4 6
10
8 210 262144
6
x y x y
−
 
− =
 
  4 6
55,050,240x y
=
Binomial Theorem (cont.)
⚫ Example: Find the term in which contains f 9.
( )
15
e f
−
Binomial Theorem (cont.)
⚫ Example: Find the term in which contains f 9.
Since n = 15, n – r = 15 – 9 = 6. Therefore the term is
(When dealing with negative terms such as f, recall that
even exponents will produce positive terms and odd
exponents will produce negative terms.)
( )
15
e f
−
( )
9
6 6 9
15
5005
6
e f e f
 
− = −
 
 
Binomial Theorem (cont.)
⚫ Similarly, the kth term of binomial expansion of
is found by realizing that the exponent of b will be k – 1,
which gives us the formula:
(replace r with k – 1)
( )
n
a b
+
( )
1 1
1
n k k
n
a b
k
− − −
 
 
−
 
Binomial Theorem (cont.)
⚫ Example: Find the 4th term of ( )
12
2c d
−
Binomial Theorem (cont.)
⚫ Example: Find the 4th term of
n = 12, k = 4, which means that k – 1 = 3
( )
12
2c d
−
( ) ( ) ( )( )
9 3 9 3
12
2 220 512
3
c d c d
 
− = −
 
 
9 3
112,640c d
= −
Binomial Theorem
⚫ Your calculator can also find the coefficient:
4th term of
n = 12, k – 1 = 3, n – (k –1) = 9
2l9¢b5312,3·
( )
12
2c d
−
Binomial Theorem (cont.)
⚫ Desmos can also find the coefficient using a function
called nCr(n, r):
4th term of
n = 12, k – 1 = 3, n – (k –1) = 9
( )
12
2c d
−
( ) ( )
9 3
12
2
3
c d
 
−
 
 
Binomial Theorem Practice
⚫ Example: Expand ( )
−
5
2 3
x
Binomial Theorem Practice
⚫ Example: Expand ( )
−
5
2 3
x
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
5 0 4 1 3 2
2 3 1 4 0 5
5 5 5
2 3 2 3 2 3
0 1 2
5 5 5
2 3 2 3 2 3
3 4 5
x x x
x x x
     
= − + − + −
     
     
     
+ − + − + −
     
     
Binomial Theorem Practice
⚫ Example: Expand ( )
−
5
2 3
x
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
5 0 4 1 3 2
2 3 1 4 0 5
5 5 5
2 3 2 3 2 3
0 1 2
5 5 5
2 3 2 3 2 3
3 4 5
x x x
x x x
     
= − + − + −
     
     
     
+ − + − + −
     
     
( )( )( ) ( )( )( ) ( )( )( )
( )( )( ) ( )( )( ) ( )( )( )
5 4 3
2
1 32 1 5 16 3 10 8 9
10 4 27 5 2 81 1 1 243
x x x
x x
= + − +
+ − + + −
Binomial Theorem Practice
⚫ Example: Expand ( )
−
5
2 3
x
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
5 0 4 1 3 2
2 3 1 4 0 5
5 5 5
2 3 2 3 2 3
0 1 2
5 5 5
2 3 2 3 2 3
3 4 5
x x x
x x x
     
= − + − + −
     
     
     
+ − + − + −
     
     
( )( )( ) ( )( )( ) ( )( )( )
( )( )( ) ( )( )( ) ( )( )( )
5 4 3
2
1 32 1 5 16 3 10 8 9
10 4 27 5 2 81 1 1 243
x x x
x x
= + − +
+ − + + −
5 4 3 2
32 240 720 1080 810 243
x x x x x
= − + − + −
Classwork
⚫ College Algebra 2e
⚫ 9.6: 8-36 (4); 9.5: 36-52 (4); 9.4: 46-62 (even)
⚫ 9.6 Classwork Check
⚫ Quiz 9.5

More Related Content

PDF
11.4 The Binomial Theorem
PPT
1632 the binomial theorem-02
PPT
THE BINOMIAL THEOREM
PPT
1631 the binomial theorem
PPT
binomial_theorem_notes.ppt
PDF
1631-thebinomialtheorem-161031145734.pdf
PPTX
Binomial Theorem
PPTX
Binomial theorem
11.4 The Binomial Theorem
1632 the binomial theorem-02
THE BINOMIAL THEOREM
1631 the binomial theorem
binomial_theorem_notes.ppt
1631-thebinomialtheorem-161031145734.pdf
Binomial Theorem
Binomial theorem

Similar to 9.6 Binomial Theorem (20)

PPT
PPT
The binomial theorem class 11 maths
PDF
Binomial
PDF
PDF
thebinomialtheorem-170110005856.pdf
PPT
Binomial theorem
DOCX
Binomial theorem for any index
PPT
Pc 9-5.ppt
PPTX
Pascal triangle and binomial theorem
PPTX
15 April 2024 CONT –Binomial theorem.pptx
PPT
6.1 Binomial expansion of (a+b)n file in math classes
PDF
Algebra 2 Section 4-2
PPTX
The Binomial Theorem.pptx
PPTX
Binomial Theorem for any index real.pptx
PPTX
L10 binomial theorem
PDF
STAB52 Introduction to probability (Summer 2025) Lecture 2
PPT
12 2 Combinations And Binomial Thm
PPTX
Binomial theorem
PDF
Binomial Theorem what are its functions and what it means
PPTX
Lesson 5: Polynomials
The binomial theorem class 11 maths
Binomial
thebinomialtheorem-170110005856.pdf
Binomial theorem
Binomial theorem for any index
Pc 9-5.ppt
Pascal triangle and binomial theorem
15 April 2024 CONT –Binomial theorem.pptx
6.1 Binomial expansion of (a+b)n file in math classes
Algebra 2 Section 4-2
The Binomial Theorem.pptx
Binomial Theorem for any index real.pptx
L10 binomial theorem
STAB52 Introduction to probability (Summer 2025) Lecture 2
12 2 Combinations And Binomial Thm
Binomial theorem
Binomial Theorem what are its functions and what it means
Lesson 5: Polynomials
Ad

More from smiller5 (20)

PDF
T7.3 The Unit Circle and Angles Presentation
PDF
T7.2 Right Triangle Trigonometry Presentation
PDF
1.3 Factoring Quadratics (Presentation).pdf
PPTX
1.3 Factoring Polynomial and Quadratic Expressions
PDF
Trigonometry 7.1 Angles (Degrees and Radians)
PDF
6.7 Exponential and Logarithmic Models
PDF
4.5 Special Segments in Triangles
PDF
1.4 Conditional Statements
PDF
1.3 Distance and Midpoint Formulas
PDF
1.5 Quadratic Equations.pdf
PDF
3.2 Graphs of Functions
PDF
3.2 Graphs of Functions
PDF
3.1 Functions
PDF
2.5 Transformations of Functions
PDF
2.2 More on Functions and Their Graphs
PDF
1.6 Other Types of Equations
PDF
1.5 Quadratic Equations (Review)
PDF
2.1 Basics of Functions and Their Graphs
PDF
13.3 Venn Diagrams & Two-Way Tables
PDF
13.2 Independent & Dependent Events
T7.3 The Unit Circle and Angles Presentation
T7.2 Right Triangle Trigonometry Presentation
1.3 Factoring Quadratics (Presentation).pdf
1.3 Factoring Polynomial and Quadratic Expressions
Trigonometry 7.1 Angles (Degrees and Radians)
6.7 Exponential and Logarithmic Models
4.5 Special Segments in Triangles
1.4 Conditional Statements
1.3 Distance and Midpoint Formulas
1.5 Quadratic Equations.pdf
3.2 Graphs of Functions
3.2 Graphs of Functions
3.1 Functions
2.5 Transformations of Functions
2.2 More on Functions and Their Graphs
1.6 Other Types of Equations
1.5 Quadratic Equations (Review)
2.1 Basics of Functions and Their Graphs
13.3 Venn Diagrams & Two-Way Tables
13.2 Independent & Dependent Events
Ad

Recently uploaded (20)

PDF
AI-driven educational solutions for real-life interventions in the Philippine...
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
PDF
LIFE & LIVING TRILOGY - PART (3) REALITY & MYSTERY.pdf
PDF
Journal of Dental Science - UDMY (2020).pdf
PPTX
DRUGS USED FOR HORMONAL DISORDER, SUPPLIMENTATION, CONTRACEPTION, & MEDICAL T...
PDF
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
PDF
Journal of Dental Science - UDMY (2021).pdf
PPTX
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
PDF
Climate and Adaptation MCQs class 7 from chatgpt
PDF
Environmental Education MCQ BD2EE - Share Source.pdf
PDF
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
PDF
International_Financial_Reporting_Standa.pdf
PPTX
Unit 4 Computer Architecture Multicore Processor.pptx
PDF
IP : I ; Unit I : Preformulation Studies
PDF
BP 505 T. PHARMACEUTICAL JURISPRUDENCE (UNIT 2).pdf
PDF
Literature_Review_methods_ BRACU_MKT426 course material
PDF
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
PPTX
Introduction to pro and eukaryotes and differences.pptx
PPTX
B.Sc. DS Unit 2 Software Engineering.pptx
PDF
BP 505 T. PHARMACEUTICAL JURISPRUDENCE (UNIT 1).pdf
AI-driven educational solutions for real-life interventions in the Philippine...
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
LIFE & LIVING TRILOGY - PART (3) REALITY & MYSTERY.pdf
Journal of Dental Science - UDMY (2020).pdf
DRUGS USED FOR HORMONAL DISORDER, SUPPLIMENTATION, CONTRACEPTION, & MEDICAL T...
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
Journal of Dental Science - UDMY (2021).pdf
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
Climate and Adaptation MCQs class 7 from chatgpt
Environmental Education MCQ BD2EE - Share Source.pdf
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
International_Financial_Reporting_Standa.pdf
Unit 4 Computer Architecture Multicore Processor.pptx
IP : I ; Unit I : Preformulation Studies
BP 505 T. PHARMACEUTICAL JURISPRUDENCE (UNIT 2).pdf
Literature_Review_methods_ BRACU_MKT426 course material
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
Introduction to pro and eukaryotes and differences.pptx
B.Sc. DS Unit 2 Software Engineering.pptx
BP 505 T. PHARMACEUTICAL JURISPRUDENCE (UNIT 1).pdf

9.6 Binomial Theorem

  • 1. 9.6 Binomial Theorem Chapter 9 Sequences, Probability, and Counting Theory
  • 2. Concepts and Objectives ⚫ The objectives for this section are ⚫ Apply the Binomial Theorem.
  • 3. Binomial Series ⚫ A binomial squared becomes ⚫ A binomial cubed becomes ( ) + = + + 2 2 2 2 a b a ab b ( ) ( )( ) + = + + 3 2 a b a b a b ( )( ) = + + + 2 2 2 a b a ab b = + + + + + 2 2 3 3 2 2 2 2 a b a b ab a b b a = + + + 3 2 2 3 3 3 a a b ab b
  • 4. Binomial Series (cont.) ⚫ As you may recall from Algebra II, the coefficients correspond to rows from Pascal’s Triangle 0 1 1 1 1 2 1 2 1 3 1 3 3 1 4 1 4 6 4 1 5 1 5 10 10 5 1 6 1 6 15 20 15 6 1
  • 5. Binomial Series (cont.) ⚫ Example: Expand ( ) + 5 2 1 x
  • 6. Binomial Series (cont.) ⚫ Example: Expand a = 2x and b = 1; the exponents begin and end at 5 (a goes down while b goes up). Looking at row 5 on the triangle, our coefficients are 1, 5, 10, 10, 5, 1, so we write our expression as follows: (Notice that the exponents apply to the entire term of the binomial, not just the variable.) ( ) + 5 2 1 x ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) + + + + + 5 4 3 2 2 3 4 5 5 10 1 1 1 1 2 2 2 1 2 1 5 2 0 x x x x x = + + + + + 5 4 3 2 32 80 80 40 10 1 x x x x x + + + + + 5 4 3 2 2 3 4 5 5 10 10 5 a a a a a b b b b b
  • 7. Binomial Series (cont.) ⚫ Consider the binomial series : If we multiply the coefficient of a term by a fraction consisting of the exponent of a over the term number, we get the coefficient of the next number. ( ) + 7 a b = + + + + + + + 7 6 5 2 4 3 3 4 2 5 6 7 7 21 35 35 21 7 a a b a b a b a b a b ab b 8 7 6 5 4 3 2 1     = =         exp. 7 coeff. 1 7, term # 1   =     6 7 21, 2       5 21 =35, ... 3
  • 8. Binomial Series (cont.) ⚫ Now let’s see what happens to if we don’t simplify the fractions as we calculate them: ( ) + 8 a b 1 2 3 4 5 8 a 7 8 1 a b 6 2 8 7 1 2 a b 5 3 8 7 6 1 2 3 a b 4 4 8 7 6 5 1 2 3 4 a b Do you see the pattern? What is it?
  • 9. Binomial Series (cont.) ⚫ The coefficients of a binomial series can be written as factorials. For example, let’s look at the coefficient for the fourth term: = 8 7 6 8 7 6 1 2 3 1 2 3 = 8 7 6 5! 1 2 3 5! = 8! 3! 5!
  • 10. Binomial Series (cont.) ⚫ Looking back at the original expression: Notice how the numbers in the coefficient expression are found elsewhere in the expression. ⚫ 8 is the value of the exponent to which (a + b) is raised. ⚫ 5 is the value of a’s exponent and 3 is the value of b’s. ⚫ The exponent of b is always one less than the term number (4). ( ) + = + + 5 3 8 ! ... ... ! ! 5 3 8 a b a b
  • 11. Binomial Theorem ⚫ The formula for the term containing br of (a + b)n, therefore, is or nCr ⚫ Example: Find the term containing y6 of ( ) − − ! ! ! n r r n a b r n r n r   =     ( ) 10 8 x y −
  • 12. Binomial Theorem (cont.) ⚫ The formula for the term containing br of (a + b)n, therefore, is or nCr ⚫ Example: Find the term containing y6 of ( ) − − ! ! ! n r r n a b r n r n r   =     ( ) 10 8 x y − ( )( ) ( ) ( ) 6 10 6 4 6 10 8 210 262144 6 x y x y −   − =     4 6 55,050,240x y =
  • 13. Binomial Theorem (cont.) ⚫ Example: Find the term in which contains f 9. ( ) 15 e f −
  • 14. Binomial Theorem (cont.) ⚫ Example: Find the term in which contains f 9. Since n = 15, n – r = 15 – 9 = 6. Therefore the term is (When dealing with negative terms such as f, recall that even exponents will produce positive terms and odd exponents will produce negative terms.) ( ) 15 e f − ( ) 9 6 6 9 15 5005 6 e f e f   − = −    
  • 15. Binomial Theorem (cont.) ⚫ Similarly, the kth term of binomial expansion of is found by realizing that the exponent of b will be k – 1, which gives us the formula: (replace r with k – 1) ( ) n a b + ( ) 1 1 1 n k k n a b k − − −     −  
  • 16. Binomial Theorem (cont.) ⚫ Example: Find the 4th term of ( ) 12 2c d −
  • 17. Binomial Theorem (cont.) ⚫ Example: Find the 4th term of n = 12, k = 4, which means that k – 1 = 3 ( ) 12 2c d − ( ) ( ) ( )( ) 9 3 9 3 12 2 220 512 3 c d c d   − = −     9 3 112,640c d = −
  • 18. Binomial Theorem ⚫ Your calculator can also find the coefficient: 4th term of n = 12, k – 1 = 3, n – (k –1) = 9 2l9¢b5312,3· ( ) 12 2c d −
  • 19. Binomial Theorem (cont.) ⚫ Desmos can also find the coefficient using a function called nCr(n, r): 4th term of n = 12, k – 1 = 3, n – (k –1) = 9 ( ) 12 2c d − ( ) ( ) 9 3 12 2 3 c d   −    
  • 20. Binomial Theorem Practice ⚫ Example: Expand ( ) − 5 2 3 x
  • 21. Binomial Theorem Practice ⚫ Example: Expand ( ) − 5 2 3 x ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 5 0 4 1 3 2 2 3 1 4 0 5 5 5 5 2 3 2 3 2 3 0 1 2 5 5 5 2 3 2 3 2 3 3 4 5 x x x x x x       = − + − + −                   + − + − + −            
  • 22. Binomial Theorem Practice ⚫ Example: Expand ( ) − 5 2 3 x ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 5 0 4 1 3 2 2 3 1 4 0 5 5 5 5 2 3 2 3 2 3 0 1 2 5 5 5 2 3 2 3 2 3 3 4 5 x x x x x x       = − + − + −                   + − + − + −             ( )( )( ) ( )( )( ) ( )( )( ) ( )( )( ) ( )( )( ) ( )( )( ) 5 4 3 2 1 32 1 5 16 3 10 8 9 10 4 27 5 2 81 1 1 243 x x x x x = + − + + − + + −
  • 23. Binomial Theorem Practice ⚫ Example: Expand ( ) − 5 2 3 x ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 5 0 4 1 3 2 2 3 1 4 0 5 5 5 5 2 3 2 3 2 3 0 1 2 5 5 5 2 3 2 3 2 3 3 4 5 x x x x x x       = − + − + −                   + − + − + −             ( )( )( ) ( )( )( ) ( )( )( ) ( )( )( ) ( )( )( ) ( )( )( ) 5 4 3 2 1 32 1 5 16 3 10 8 9 10 4 27 5 2 81 1 1 243 x x x x x = + − + + − + + − 5 4 3 2 32 240 720 1080 810 243 x x x x x = − + − + −
  • 24. Classwork ⚫ College Algebra 2e ⚫ 9.6: 8-36 (4); 9.5: 36-52 (4); 9.4: 46-62 (even) ⚫ 9.6 Classwork Check ⚫ Quiz 9.5