AI auf Edge Geräten
Dominik Helleberg Building IoT / 03.04.2019
AI or Machine Learning?
3
If it is written in Python, it's probably
Machine Learning.
If it is written in PowerPoint, it's
probably AI.
4 https://twitter.com/matvelloso/status/1065778379612282885?lang=de
Scenario
5
Why?
6
› Latency
› Autonomy
› Connectivity
› Security
› Economic (Costs: Hardware / Power)
› Privacy
Privacy
7 http://cnrpark.it/
Privacy
8
{
"timestamp":"1552035532715",
"slots":{
"id:214" : 0,
"id:215" : 1,
"id:286" : 1
}
}
Examples
9
Google Clips
https://ai.googleblog.com/2017/10/portrait-mode-on-pixel-2-and-pixel-2-xl.html
Portrait Mode
Examples
10
ARCore
https://ai.googleblog.com/2019/03/real-time-ar-self-expression-with.html
Alexa
HikVision
Face Detection
Examples
11
https://www.starship.xyz/
Robots
https://cloud.google.com/blog/products/ai-machine-learning/monitoring-home-
appliances-from-power-readings-with-ml
The Challenge
12
https://arstechnica.com/information-technology/2015/12/facebooks-open-sourcing-of-ai-hardware-is-the-start-of-the-deep-learning-revolution
https://cloud.google.com/tpu/
The Challenge
13
The Choices - Hardware
14
Software
15
CNN
LSTM
RNN
…
Optimization
Tools / Manual
Optimized
Network
(Reduced Accuarcy)
Software - Quantization
16
float
int
› Accelerated computations (maybe)
› Reduced size
https://sahnimanas.github.io/2018/06/24/quantization-in-tf-lite.html
› Reduced Accuracy
Software - Quantization
17
Quantization-Aware-training / Post-Training-Quantization
0,62
0,63
0,64
0,65
0,66
0,67
0,68
0,69
0,7
0,71
0,72
Top 1 Acc
Float Q-aware Training Post Training Q
Software - Pruning
18
https://www.oreilly.com/ideas/compressing-and-regularizing-deep-neural-networks
Software - Pruning
19
https://www.oreilly.com/ideas/compressing-and-regularizing-deep-neural-networks
0,56
0,58
0,6
0,62
0,64
0,66
0,68
0,7
0,72
Top 1 Acc
Channel Pruning
0% 50% 60% 70% 80%
The choices - Software
21
Converter
/ Optimizer
ML / DL
Framework
Runtime
› Consider the tools when selecting Hardware!
Vendor specific
limited features
limited network-architectures
The „project“
22
Build a smart device which can
› Recognize objects it sees („a person“)
› React in < 1 second to it
The „project“
23
Recognize objects it sees -> Image Classification
Choose network architecture:
› LeNet
› VGG
› GoogleNet
› Inception
› ResNet
› SqueezeNet
› NasNet
› AlexNet
› MobileNet
› …
› Try to stick to existing nets!
› MobileNetV1
The choices - Hardware
24
CPU
SoC
GPU
ASIC
MCU
FPGA
› React in < 1 second to it
The choices - Hardware
25
› How to compare?
› GOPS / TOPS
› GFLOPS / TFLOPS
› Inference / Sec
› Inference / Watt
= =
The choices - Hardware
26
Evaluation Hardware
GPU
FPGA
MCU+ASIC
ASIC
CPU
SoCs
Software
27
CNN
MobileNetV1
.pb
Jetson TX2
Raspberry Pi
Intel i7
.tflite
tfliteC
Qualcomm
SD 605
int8
float32
Open
Vino
.bin
.xml
Myriad X
float16
DNNC
.elf
Xilinx Zynq
UltraScale+
int8
Kendryte
modelC
.kmodel
Kendryte
K210
int8
Edge TPU
.tflite
The „project“
28
0
100
200
300
400
500
600
700
800
MobileNetV1 in ms
Performance
RasPi Jetson TX2 Myriad-X Zynq ZU3EG Edge TPU K210 MCU
The „project“
29
0
10
20
30
40
50
60
70
80
90
100
MobileNetV1 in ms
Performance
RasPi Jetson TX2 Myriad-X Zynq ZU3EG Edge TPU K210 MCU
The „project“
30
Performance is not (always) the key issue
› Cost
› Accuracy
› Power / Heat
› Flexibility
› Tooling
› Availibility
› …
Conclusion
31
› Validate your explicit use case
› Official Performance numbers -> rough guideline
› Your Model-Architecture might dictate your Hardware
› Always validate accuracy
› More „tools“ -> more effort / time
› Build a CI-Pipeline + Versionize everything
› Technology is in flux
› You‘re on the “bleeding“ egde
“Bleeding“ Edge Technology
32
I tensorflow/contrib/lite/toco/import_tensorflow.cc:937]
Converting unsupported operation: Pack
I tensorflow/contrib/lite/toco/import_tensorflow.cc:937]
Converting unsupported operation: Where
Usb_WritePipe: System err 995 W WinUsb_WritePipe failed with
error:=995 i[35mE: [xLink] [ 0] dispatcherEventSend:908
nUsb_ReadPipeWrite failed event -2 :[0m [31mF: [xLink] [ 0]
dispatcherResponseServe:346 Sno request for this response:
USB_READ_REL_RESP 1 9121 [0m y#### (i == MAX_EVENTS)
USB_READ_REL_RESP 1 9121
“Bleeding“ Edge Technology
33
The „project“
34
DEMO
Vielen Dank
Dominik Helleberg
Schanzenstraße 6-20
51063 Köln
dominik.helleberg@inovex.de

More Related Content

PPTX
JETSON : AI at the EDGE
PDF
Industrial Agility: Come Rispondere alla Quarta Rivoluzione Industriale
PDF
Nexvision corporate presentation
PDF
Artificial intelligence on the Edge
PDF
Machine Learning with New Hardware Challegens
PDF
FPGA Hardware Accelerator for Machine Learning
PDF
Running deep learning onto heterogenous hardware
PPTX
IoT Week 2021_Jens Hagemeyer presentation
JETSON : AI at the EDGE
Industrial Agility: Come Rispondere alla Quarta Rivoluzione Industriale
Nexvision corporate presentation
Artificial intelligence on the Edge
Machine Learning with New Hardware Challegens
FPGA Hardware Accelerator for Machine Learning
Running deep learning onto heterogenous hardware
IoT Week 2021_Jens Hagemeyer presentation

Similar to AI auf Edge-Geraeten (20)

PPT
IoT consideration selection
PPTX
Dov Nimratz, Roman Chobik "Embedded artificial intelligence"
PPTX
Technologies comparison: Genuino 101 vs uTensor
PPTX
AI on the Edge
PDF
Implementing AI: Hardware Challenges: Heterogeneous and Adaptive Computing fo...
 
PDF
TinyML: Machine Learning for Microcontrollers
PDF
IRJET- Autonomous Underwater Vehicle: Electronics and Software Implementation...
PPTX
Technology and AI sharing - From 2016 to Y2017 and Beyond
PDF
Tensorflow IoT - 1 Wk coding challenge
PDF
Deep Learning Edge
PDF
Tensorflow for IoT
PDF
Yufeng Guo - Tensor Processing Units: how TPUs enable the next generation of ...
PDF
Edge AI Miramond technical seminCERN.pdf
PPTX
AI Hardware Landscape 2021
PDF
Breaking New Frontiers in Robotics and Edge Computing with AI
PDF
“Deep Learning on Mobile Devices,” a Presentation from Siddha Ganju
PDF
Edge AI: Deep Learning techniques for Computer Vision applied to Embedded Sys...
PPTX
LEGaTO: Low-Energy Heterogeneous Computing Use of AI in the project
PDF
IRJET - Implementation of SDC: Self-Driving Car based on Raspberry Pi
PDF
IRJET- Blind Navigation System using Artificial Intelligence
IoT consideration selection
Dov Nimratz, Roman Chobik "Embedded artificial intelligence"
Technologies comparison: Genuino 101 vs uTensor
AI on the Edge
Implementing AI: Hardware Challenges: Heterogeneous and Adaptive Computing fo...
 
TinyML: Machine Learning for Microcontrollers
IRJET- Autonomous Underwater Vehicle: Electronics and Software Implementation...
Technology and AI sharing - From 2016 to Y2017 and Beyond
Tensorflow IoT - 1 Wk coding challenge
Deep Learning Edge
Tensorflow for IoT
Yufeng Guo - Tensor Processing Units: how TPUs enable the next generation of ...
Edge AI Miramond technical seminCERN.pdf
AI Hardware Landscape 2021
Breaking New Frontiers in Robotics and Edge Computing with AI
“Deep Learning on Mobile Devices,” a Presentation from Siddha Ganju
Edge AI: Deep Learning techniques for Computer Vision applied to Embedded Sys...
LEGaTO: Low-Energy Heterogeneous Computing Use of AI in the project
IRJET - Implementation of SDC: Self-Driving Car based on Raspberry Pi
IRJET- Blind Navigation System using Artificial Intelligence
Ad

More from inovex GmbH (20)

PDF
lldb – Debugger auf Abwegen
PDF
Are you sure about that?! Uncertainty Quantification in AI
PDF
Why natural language is next step in the AI evolution
PDF
WWDC 2019 Recap
PDF
Network Policies
PDF
Interpretable Machine Learning
PDF
Jenkins X – CI/CD in wolkigen Umgebungen
PDF
Prometheus on Kubernetes
PDF
Deep Learning for Recommender Systems
PDF
Azure IoT Edge
PDF
Representation Learning von Zeitreihen
PDF
Talk to me – Chatbots und digitale Assistenten
PDF
Künstlich intelligent?
PDF
Dev + Ops = Go
PDF
Das Android Open Source Project
PDF
Machine Learning Interpretability
PDF
Performance evaluation of GANs in a semisupervised OCR use case
PDF
People & Products – Lessons learned from the daily IT madness
PDF
Infrastructure as (real) Code – Manage your K8s resources with Pulumi
PDF
Remote First – Der Arbeitsplatz in der Cloud
lldb – Debugger auf Abwegen
Are you sure about that?! Uncertainty Quantification in AI
Why natural language is next step in the AI evolution
WWDC 2019 Recap
Network Policies
Interpretable Machine Learning
Jenkins X – CI/CD in wolkigen Umgebungen
Prometheus on Kubernetes
Deep Learning for Recommender Systems
Azure IoT Edge
Representation Learning von Zeitreihen
Talk to me – Chatbots und digitale Assistenten
Künstlich intelligent?
Dev + Ops = Go
Das Android Open Source Project
Machine Learning Interpretability
Performance evaluation of GANs in a semisupervised OCR use case
People & Products – Lessons learned from the daily IT madness
Infrastructure as (real) Code – Manage your K8s resources with Pulumi
Remote First – Der Arbeitsplatz in der Cloud
Ad

Recently uploaded (20)

PPTX
Matchmaking for JVMs: How to Pick the Perfect GC Partner
PPTX
CNN LeNet5 Architecture: Neural Networks
PDF
Practical Indispensable Project Management Tips for Delivering Successful Exp...
PDF
MCP Security Tutorial - Beginner to Advanced
PPTX
Airline CRS | Airline CRS Systems | CRS System
PPTX
Python is a high-level, interpreted programming language
PDF
PDF-XChange Editor Plus 10.7.0.398.0 Crack Free Download Latest 2025
PDF
E-Commerce Website Development Companyin india
PDF
Internet Download Manager IDM Crack powerful download accelerator New Version...
PDF
AI-Powered Fuzz Testing: The Future of QA
PDF
EaseUS PDF Editor Pro 6.2.0.2 Crack with License Key 2025
PDF
Wondershare Recoverit Full Crack New Version (Latest 2025)
PDF
DNT Brochure 2025 – ISV Solutions @ D365
PPTX
Plex Media Server 1.28.2.6151 With Crac5 2022 Free .
PDF
The Dynamic Duo Transforming Financial Accounting Systems Through Modern Expe...
PPTX
Trending Python Topics for Data Visualization in 2025
PDF
AI/ML Infra Meetup | LLM Agents and Implementation Challenges
PDF
novaPDF Pro 11.9.482 Crack + License Key [Latest 2025]
PDF
Top 10 Software Development Trends to Watch in 2025 🚀.pdf
PDF
BoxLang Dynamic AWS Lambda - Japan Edition
Matchmaking for JVMs: How to Pick the Perfect GC Partner
CNN LeNet5 Architecture: Neural Networks
Practical Indispensable Project Management Tips for Delivering Successful Exp...
MCP Security Tutorial - Beginner to Advanced
Airline CRS | Airline CRS Systems | CRS System
Python is a high-level, interpreted programming language
PDF-XChange Editor Plus 10.7.0.398.0 Crack Free Download Latest 2025
E-Commerce Website Development Companyin india
Internet Download Manager IDM Crack powerful download accelerator New Version...
AI-Powered Fuzz Testing: The Future of QA
EaseUS PDF Editor Pro 6.2.0.2 Crack with License Key 2025
Wondershare Recoverit Full Crack New Version (Latest 2025)
DNT Brochure 2025 – ISV Solutions @ D365
Plex Media Server 1.28.2.6151 With Crac5 2022 Free .
The Dynamic Duo Transforming Financial Accounting Systems Through Modern Expe...
Trending Python Topics for Data Visualization in 2025
AI/ML Infra Meetup | LLM Agents and Implementation Challenges
novaPDF Pro 11.9.482 Crack + License Key [Latest 2025]
Top 10 Software Development Trends to Watch in 2025 🚀.pdf
BoxLang Dynamic AWS Lambda - Japan Edition

AI auf Edge-Geraeten