SlideShare a Scribd company logo
2
Most read
16
Most read
17
Most read
Stiffness Method Problem
Dr. Kasi Rekha
B.Tech., M.Tech., Ph.D., MIE
1
Presented by
• Analyze the continuous beam shown in figure
using Stiffness method.
2
40 kN 60 kN 80 kN
A B C
D
2m 4m 2m4m 4m
2 I 1.5 I
60 kN 80 kN
B C
D
4m 2m4m 4m
2 I 1.5 I
80 kN-m
• Step1:
– Degree of Freedom or Kinematic Indeterminacy : 3
3
B C
D
4m 2m4m 4m
2 I 1.5 I
θb θc θd
4
• Step 2:
– Assign Coordinate Numbers in the direction of degrees of
Freedom
B C
D
4m 2m4m 4m
2 I 1.5 I
1 2 3
5
• Step 3:
– Restrain the structure at all coordinates
B C
D
4m 2m4m 4m
2 I 1.5 I
1 2 3
6
• Step 4:
– Determination of Fixed End Moments
60 kN 80 kN
B C
D
4m 2m4m 4m
2 I 1.5 I
• 𝑀 𝐹
𝑏𝑐
= −
𝑤𝑎𝑏2
𝑙2 = −
60×4×42
82 = −60 𝑘𝑁 − 𝑚
• 𝑀 𝐹
𝑐𝑏
=
𝑤𝑎2 𝑏
𝑙2 =
60×4×42
82 = 60 𝑘𝑁 − 𝑚
• 𝑀 𝐹
𝑐𝑑
= −
𝑤𝑎𝑏2
𝑙2 = −
80×4×22
62 = −35.55 𝑘𝑁 − 𝑚
• 𝑀 𝐹
𝑑𝑐
=
𝑤𝑎2 𝑏
𝑙2 =
80×22×4
62 = 71.11𝑘𝑁 − 𝑚
7
• Step 5:
– Calculation of forces in co ordinate numbers
𝑃1𝑙 = 𝑀 𝐹
𝑏𝑐
= - 60 kN-m
𝑃2𝑙 = 𝑀 𝐹
𝑐𝑏
+ 𝑀 𝐹
𝑐𝑑
= 60-35.55= 24.45 kN-m
𝑃3𝑙 = 𝑀 𝐹
𝑑𝑐
= 71.11 kN-m
8
B C
D
4m 2m4m 4m
2 I 1.5 I
1 2 3
• Step 6:
– Assembly of Stiffness Matrix
i. Applying Unit Rotation in co ordinate direction 1
9
B C
D
4m 2m4m 4m
2 I 1.5 I
1 2 3
θb = 1 θc = 0 θd = 0
10
𝐾11 = 𝐾𝑏𝑐 =
2𝐸𝐼
𝐿
[2𝜃 𝑏 + 𝜃𝑐] =
2𝐸(2𝐼)
8
2 × 1 + 0 =EI
𝐾21 = 𝐾𝑐𝑏 =
2𝐸𝐼
𝐿
[2𝜃𝑐 + 𝜃 𝑏] =
2𝐸(2𝐼)
8
2 × 0 + 1 = 0.5 EI
𝐾31 = 0
11
• Step 6:
– Assembly of Stiffness Matrix
ii. Applying Unit Rotation in co ordinate direction 2
8m 6m
θb = 0
1
2 3
2 I 1.5 I
θc = 1 θd = 0
12
𝐾12 = 𝐾𝑏𝑐 =
2𝐸𝐼
𝐿
[2𝜃 𝑏 + 𝜃𝑐] =
2𝐸(2𝐼)
8
2 × 0 + 1 = 0.5EI
3𝐾22 = 𝐾𝑐𝑏 + 𝐾𝑐𝑑
=
2𝐸𝐼
𝐿 𝑐𝑏
[2𝜃𝑐 + 𝜃 𝑏] +
2𝐸𝐼
𝐿 𝑐𝑑
2𝜃𝑐 + 𝜃 𝑑
0 =
2𝐸(2𝐼)
8
2 × 1 + 0 +
2𝐸(1.5𝐼)
6
2 × 1 + 0 = 2𝐸𝐼
𝐾32 = 𝐾 𝑑𝑐 =
2𝐸𝐼
𝐿 𝑏𝑐
[2𝜃 𝑑 + 𝜃𝑐] =
2𝐸(1.5𝐼)
6
2 × 0 + 1 = 0.5EI
13
• Step 6:
– Assembly of Stiffness Matrix
iii. Applying Unit Rotation in co ordinate direction 3
2 I 1.5 I
8m 6m
1
2 3
θb = 0
θc = 0 θd = 1
14
0𝐾13 = 𝐾𝑏𝑐 = 0
3𝐾23 = 𝐾𝑐𝑑
=
2𝐸𝐼
𝐿 𝑏𝑐
2𝜃𝑐 + 𝜃 𝑑
0 =
2𝐸(1.5𝐼)
6
2 × 0 + 1 = 0.5𝐸𝐼
𝐾33 = 𝐾 𝑑𝑐 =
2𝐸𝐼
𝐿 𝑏𝑐
[2𝜃 𝑑 + 𝜃𝑐] =
2𝐸(1.5𝐼)
6
2 × 1 + 0 = EI
• GLOBAL STIFFNESS MATRIX
𝐾 =
𝐾11 𝐾12 𝐾13
𝐾21 𝐾22 𝐾23
𝐾31 𝐾32 𝐾33
= EI
1 0.5 0
0.5 2 0.5
0 0.5 1
15
• STEP7:
– Calculation of Actual Forces
𝑃 − 𝑃𝐿 =
𝑃1 − 𝑃1𝐿
𝑃2 − 𝑃2𝐿
𝑃3 − 𝑃3𝐿
=
−80 − (−60)
0 − 24.45
0 − 71.11
=
−20
−24.45
−71.11
16
17
• GLOBAL STIFFNESS MATRIX
K Δ = P-𝑃𝐿
EI
1 0.5 0
0.5 2 0.5
0 0.5 1
Δ1
Δ2
Δ3
=
−20
−24.45
−71.11
Δ1 + 0.5 Δ2 = -20
0.5 Δ1 + 2 Δ2 + 0.5 Δ3 = -24.45
0.5Δ2 + Δ3 = -71.11
−
27.035
𝐸𝐼
Δ1 = 𝜃 𝑏 =
14.07
𝐸𝐼
Δ2 = 𝜃𝑐 =
−
78.145
𝐸𝐼
Δ3 = 𝜃 𝑑 =
• Step 8:
– Final Moments
𝑀 𝑎𝑏 = ̶ 80 kN-m
𝑀 𝑏𝑐 = 𝑀 𝐹
𝑏𝑐 +
2𝐸𝐼
𝐿 𝑏𝑐
2𝜃 𝑏 + 𝜃𝑐 −
3𝐸𝐼∆
𝐿 𝑏𝑐
= -60+
2𝐸(2𝐼)
8
(
2×(−27.035)
𝐸𝐼
+
(14.07)
𝐸𝐼
) = -80 kN-m
18
𝑀𝑐𝑏 = 𝑀 𝐹
𝑐𝑏 +
2𝐸𝐼
𝐿 𝑏𝑐
2𝜃𝑐 + 𝜃 𝑏 −
3𝐸𝐼∆
𝐿 𝑏𝑐
= 60+
2𝐸(2𝐼)
8
(
2×(14.07)
𝐸𝐼
+
(−27.035
𝐸𝐼
) = 60.55kN-m
𝑀𝑐𝑑 = 𝑀 𝐹
𝑐𝑑 +
2𝐸𝐼
𝐿 𝑐𝑑
2𝜃𝑐 + 𝜃 𝑑 −
3𝐸𝐼∆
𝐿 𝑐𝑑
= -35.55+
2𝐸(1.5𝐼)
6
(
2×(14.07)
𝐸𝐼
+
(−78.145)
𝐸𝐼
) = -60.55 kN-m
𝑀 𝑑𝑐 = 𝑀 𝐹
𝑑𝑐 +
2𝐸𝐼
𝐿 𝑐𝑑
2𝜃 𝑑 + 𝜃𝑐 −
3𝐸𝐼∆
𝐿 𝑐𝑑
= 71.11+
2𝐸(1.5𝐼)
6
(
2×(−78.145)
𝐸𝐼
+
(14.07)
𝐸𝐼
) = 0
19
20
40 kN 60 kN 80 kN
A B C
D
2m 4m 2m4m 4m
2 I 1.5 I
80 kN-m
60.55 kN-m
120 kN-m
106.66kN-m
• Assessment question:
• Analyze the continuous beam shown in figure using stiffness
matrix method.
21
70kN
A
B C
6m3m 5m
80kN/
m
100kN
2m
D
2 I 1.5 I I
THANK YOU
22

More Related Content

PDF
Unit 4 stiffness-anujajape
PDF
Stiffness matrix method for beam , examples ce525
PDF
Contents-Adv Structural Analysis-AKJ
PDF
Determinate structures
PDF
Analysis of sway type portal frame using direct stiffness method
PDF
Three moment theorem
PPTX
ANALYSIS OF FRAMES USING SLOPE DEFLECTION METHOD
PDF
Three.hinged.arch
Unit 4 stiffness-anujajape
Stiffness matrix method for beam , examples ce525
Contents-Adv Structural Analysis-AKJ
Determinate structures
Analysis of sway type portal frame using direct stiffness method
Three moment theorem
ANALYSIS OF FRAMES USING SLOPE DEFLECTION METHOD
Three.hinged.arch

What's hot (20)

PPTX
Analysis of portal frame by direct stiffness method
PPTX
Principle of virtual work and unit load method
PPTX
Singly reinforced beam design
PPSX
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
PPTX
Static and Kinematic Indeterminacy of Structure.
PPT
SINGLY REINFORCED BEAM
PDF
Structural Design
PDF
Design of steel beams
PDF
Redistribution of moments-Part-1
PPTX
Consolidation settlement
PPTX
Compression member
PPTX
Seismic Analysis
PPTX
analysis of simple portal frame with sway
PDF
5 plastic analysis
PDF
Problems on piles and deep footing
PPSX
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
PDF
Consolidation nec
PDF
Module1 1 introduction-tomatrixms - rajesh sir
PPTX
Slope Deflection Method
Analysis of portal frame by direct stiffness method
Principle of virtual work and unit load method
Singly reinforced beam design
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
Static and Kinematic Indeterminacy of Structure.
SINGLY REINFORCED BEAM
Structural Design
Design of steel beams
Redistribution of moments-Part-1
Consolidation settlement
Compression member
Seismic Analysis
analysis of simple portal frame with sway
5 plastic analysis
Problems on piles and deep footing
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
Consolidation nec
Module1 1 introduction-tomatrixms - rajesh sir
Slope Deflection Method
Ad

Similar to ANALYSIS OF CONTINUOUS BEAM USING STIFFNESS METHOD (20)

PPTX
analysisofnonswayportalframeusingstiffness-200504074206.pptx
PDF
solution for 2D truss1
PPT
Advanced Structural Analysis.ppt
PDF
Lecture 4.pdf
PDF
Module2 stiffness- rajesh sir
PDF
Module2 stiffness- rajesh sir
PDF
Análisis de-porticos-por-el-método-de-matriz-de-rigidez
PPTX
Lec 4 DSM Steps & Numerical Problems.pptx
PDF
Module 6.pdf
PDF
Structural engineering & softwatre application ce406
PDF
BazzucchiCampolmi
PDF
easy step on how to solve slope deflection
PDF
Question Paper Nov-Dec-2018.pdf
PPTX
Stiffness Matrix
PDF
direct stiffness ramchandra yadav.pdf
PPTX
MATRIX POWER POITN PRESENTATION NEW.pptx
PPTX
solving statically indeterminate stucture using stiffnes method
PPTX
solving statically indeterminate stucture by stiffnes method
PPT
Mba admission in india
PPT
Beambdieik2hrbe 3b3j3iiiw9w9wiehb4hue.ppt
analysisofnonswayportalframeusingstiffness-200504074206.pptx
solution for 2D truss1
Advanced Structural Analysis.ppt
Lecture 4.pdf
Module2 stiffness- rajesh sir
Module2 stiffness- rajesh sir
Análisis de-porticos-por-el-método-de-matriz-de-rigidez
Lec 4 DSM Steps & Numerical Problems.pptx
Module 6.pdf
Structural engineering & softwatre application ce406
BazzucchiCampolmi
easy step on how to solve slope deflection
Question Paper Nov-Dec-2018.pdf
Stiffness Matrix
direct stiffness ramchandra yadav.pdf
MATRIX POWER POITN PRESENTATION NEW.pptx
solving statically indeterminate stucture using stiffnes method
solving statically indeterminate stucture by stiffnes method
Mba admission in india
Beambdieik2hrbe 3b3j3iiiw9w9wiehb4hue.ppt
Ad

Recently uploaded (20)

PDF
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
PPTX
Fundamentals of Mechanical Engineering.pptx
PDF
COURSE DESCRIPTOR OF SURVEYING R24 SYLLABUS
PDF
August 2025 - Top 10 Read Articles in Network Security & Its Applications
PPTX
Feature types and data preprocessing steps
PDF
Influence of Green Infrastructure on Residents’ Endorsement of the New Ecolog...
PPTX
"Array and Linked List in Data Structures with Types, Operations, Implementat...
PDF
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
PPTX
Management Information system : MIS-e-Business Systems.pptx
PDF
Design Guidelines and solutions for Plastics parts
PDF
BIO-INSPIRED HORMONAL MODULATION AND ADAPTIVE ORCHESTRATION IN S-AI-GPT
PPTX
Information Storage and Retrieval Techniques Unit III
PDF
Soil Improvement Techniques Note - Rabbi
PDF
Visual Aids for Exploratory Data Analysis.pdf
PPTX
Artificial Intelligence
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PDF
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
PDF
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
PDF
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
PDF
SMART SIGNAL TIMING FOR URBAN INTERSECTIONS USING REAL-TIME VEHICLE DETECTI...
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
Fundamentals of Mechanical Engineering.pptx
COURSE DESCRIPTOR OF SURVEYING R24 SYLLABUS
August 2025 - Top 10 Read Articles in Network Security & Its Applications
Feature types and data preprocessing steps
Influence of Green Infrastructure on Residents’ Endorsement of the New Ecolog...
"Array and Linked List in Data Structures with Types, Operations, Implementat...
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
Management Information system : MIS-e-Business Systems.pptx
Design Guidelines and solutions for Plastics parts
BIO-INSPIRED HORMONAL MODULATION AND ADAPTIVE ORCHESTRATION IN S-AI-GPT
Information Storage and Retrieval Techniques Unit III
Soil Improvement Techniques Note - Rabbi
Visual Aids for Exploratory Data Analysis.pdf
Artificial Intelligence
Automation-in-Manufacturing-Chapter-Introduction.pdf
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
SMART SIGNAL TIMING FOR URBAN INTERSECTIONS USING REAL-TIME VEHICLE DETECTI...

ANALYSIS OF CONTINUOUS BEAM USING STIFFNESS METHOD

  • 1. Stiffness Method Problem Dr. Kasi Rekha B.Tech., M.Tech., Ph.D., MIE 1 Presented by
  • 2. • Analyze the continuous beam shown in figure using Stiffness method. 2 40 kN 60 kN 80 kN A B C D 2m 4m 2m4m 4m 2 I 1.5 I 60 kN 80 kN B C D 4m 2m4m 4m 2 I 1.5 I 80 kN-m
  • 3. • Step1: – Degree of Freedom or Kinematic Indeterminacy : 3 3 B C D 4m 2m4m 4m 2 I 1.5 I θb θc θd
  • 4. 4 • Step 2: – Assign Coordinate Numbers in the direction of degrees of Freedom B C D 4m 2m4m 4m 2 I 1.5 I 1 2 3
  • 5. 5 • Step 3: – Restrain the structure at all coordinates B C D 4m 2m4m 4m 2 I 1.5 I 1 2 3
  • 6. 6 • Step 4: – Determination of Fixed End Moments 60 kN 80 kN B C D 4m 2m4m 4m 2 I 1.5 I
  • 7. • 𝑀 𝐹 𝑏𝑐 = − 𝑤𝑎𝑏2 𝑙2 = − 60×4×42 82 = −60 𝑘𝑁 − 𝑚 • 𝑀 𝐹 𝑐𝑏 = 𝑤𝑎2 𝑏 𝑙2 = 60×4×42 82 = 60 𝑘𝑁 − 𝑚 • 𝑀 𝐹 𝑐𝑑 = − 𝑤𝑎𝑏2 𝑙2 = − 80×4×22 62 = −35.55 𝑘𝑁 − 𝑚 • 𝑀 𝐹 𝑑𝑐 = 𝑤𝑎2 𝑏 𝑙2 = 80×22×4 62 = 71.11𝑘𝑁 − 𝑚 7
  • 8. • Step 5: – Calculation of forces in co ordinate numbers 𝑃1𝑙 = 𝑀 𝐹 𝑏𝑐 = - 60 kN-m 𝑃2𝑙 = 𝑀 𝐹 𝑐𝑏 + 𝑀 𝐹 𝑐𝑑 = 60-35.55= 24.45 kN-m 𝑃3𝑙 = 𝑀 𝐹 𝑑𝑐 = 71.11 kN-m 8 B C D 4m 2m4m 4m 2 I 1.5 I 1 2 3
  • 9. • Step 6: – Assembly of Stiffness Matrix i. Applying Unit Rotation in co ordinate direction 1 9 B C D 4m 2m4m 4m 2 I 1.5 I 1 2 3 θb = 1 θc = 0 θd = 0
  • 10. 10 𝐾11 = 𝐾𝑏𝑐 = 2𝐸𝐼 𝐿 [2𝜃 𝑏 + 𝜃𝑐] = 2𝐸(2𝐼) 8 2 × 1 + 0 =EI 𝐾21 = 𝐾𝑐𝑏 = 2𝐸𝐼 𝐿 [2𝜃𝑐 + 𝜃 𝑏] = 2𝐸(2𝐼) 8 2 × 0 + 1 = 0.5 EI 𝐾31 = 0
  • 11. 11 • Step 6: – Assembly of Stiffness Matrix ii. Applying Unit Rotation in co ordinate direction 2 8m 6m θb = 0 1 2 3 2 I 1.5 I θc = 1 θd = 0
  • 12. 12 𝐾12 = 𝐾𝑏𝑐 = 2𝐸𝐼 𝐿 [2𝜃 𝑏 + 𝜃𝑐] = 2𝐸(2𝐼) 8 2 × 0 + 1 = 0.5EI 3𝐾22 = 𝐾𝑐𝑏 + 𝐾𝑐𝑑 = 2𝐸𝐼 𝐿 𝑐𝑏 [2𝜃𝑐 + 𝜃 𝑏] + 2𝐸𝐼 𝐿 𝑐𝑑 2𝜃𝑐 + 𝜃 𝑑 0 = 2𝐸(2𝐼) 8 2 × 1 + 0 + 2𝐸(1.5𝐼) 6 2 × 1 + 0 = 2𝐸𝐼 𝐾32 = 𝐾 𝑑𝑐 = 2𝐸𝐼 𝐿 𝑏𝑐 [2𝜃 𝑑 + 𝜃𝑐] = 2𝐸(1.5𝐼) 6 2 × 0 + 1 = 0.5EI
  • 13. 13 • Step 6: – Assembly of Stiffness Matrix iii. Applying Unit Rotation in co ordinate direction 3 2 I 1.5 I 8m 6m 1 2 3 θb = 0 θc = 0 θd = 1
  • 14. 14 0𝐾13 = 𝐾𝑏𝑐 = 0 3𝐾23 = 𝐾𝑐𝑑 = 2𝐸𝐼 𝐿 𝑏𝑐 2𝜃𝑐 + 𝜃 𝑑 0 = 2𝐸(1.5𝐼) 6 2 × 0 + 1 = 0.5𝐸𝐼 𝐾33 = 𝐾 𝑑𝑐 = 2𝐸𝐼 𝐿 𝑏𝑐 [2𝜃 𝑑 + 𝜃𝑐] = 2𝐸(1.5𝐼) 6 2 × 1 + 0 = EI
  • 15. • GLOBAL STIFFNESS MATRIX 𝐾 = 𝐾11 𝐾12 𝐾13 𝐾21 𝐾22 𝐾23 𝐾31 𝐾32 𝐾33 = EI 1 0.5 0 0.5 2 0.5 0 0.5 1 15
  • 16. • STEP7: – Calculation of Actual Forces 𝑃 − 𝑃𝐿 = 𝑃1 − 𝑃1𝐿 𝑃2 − 𝑃2𝐿 𝑃3 − 𝑃3𝐿 = −80 − (−60) 0 − 24.45 0 − 71.11 = −20 −24.45 −71.11 16
  • 17. 17 • GLOBAL STIFFNESS MATRIX K Δ = P-𝑃𝐿 EI 1 0.5 0 0.5 2 0.5 0 0.5 1 Δ1 Δ2 Δ3 = −20 −24.45 −71.11 Δ1 + 0.5 Δ2 = -20 0.5 Δ1 + 2 Δ2 + 0.5 Δ3 = -24.45 0.5Δ2 + Δ3 = -71.11 − 27.035 𝐸𝐼 Δ1 = 𝜃 𝑏 = 14.07 𝐸𝐼 Δ2 = 𝜃𝑐 = − 78.145 𝐸𝐼 Δ3 = 𝜃 𝑑 =
  • 18. • Step 8: – Final Moments 𝑀 𝑎𝑏 = ̶ 80 kN-m 𝑀 𝑏𝑐 = 𝑀 𝐹 𝑏𝑐 + 2𝐸𝐼 𝐿 𝑏𝑐 2𝜃 𝑏 + 𝜃𝑐 − 3𝐸𝐼∆ 𝐿 𝑏𝑐 = -60+ 2𝐸(2𝐼) 8 ( 2×(−27.035) 𝐸𝐼 + (14.07) 𝐸𝐼 ) = -80 kN-m 18
  • 19. 𝑀𝑐𝑏 = 𝑀 𝐹 𝑐𝑏 + 2𝐸𝐼 𝐿 𝑏𝑐 2𝜃𝑐 + 𝜃 𝑏 − 3𝐸𝐼∆ 𝐿 𝑏𝑐 = 60+ 2𝐸(2𝐼) 8 ( 2×(14.07) 𝐸𝐼 + (−27.035 𝐸𝐼 ) = 60.55kN-m 𝑀𝑐𝑑 = 𝑀 𝐹 𝑐𝑑 + 2𝐸𝐼 𝐿 𝑐𝑑 2𝜃𝑐 + 𝜃 𝑑 − 3𝐸𝐼∆ 𝐿 𝑐𝑑 = -35.55+ 2𝐸(1.5𝐼) 6 ( 2×(14.07) 𝐸𝐼 + (−78.145) 𝐸𝐼 ) = -60.55 kN-m 𝑀 𝑑𝑐 = 𝑀 𝐹 𝑑𝑐 + 2𝐸𝐼 𝐿 𝑐𝑑 2𝜃 𝑑 + 𝜃𝑐 − 3𝐸𝐼∆ 𝐿 𝑐𝑑 = 71.11+ 2𝐸(1.5𝐼) 6 ( 2×(−78.145) 𝐸𝐼 + (14.07) 𝐸𝐼 ) = 0 19
  • 20. 20 40 kN 60 kN 80 kN A B C D 2m 4m 2m4m 4m 2 I 1.5 I 80 kN-m 60.55 kN-m 120 kN-m 106.66kN-m
  • 21. • Assessment question: • Analyze the continuous beam shown in figure using stiffness matrix method. 21 70kN A B C 6m3m 5m 80kN/ m 100kN 2m D 2 I 1.5 I I