Machine Learning with Microsoft Azure
Dmitry Petukhov,
ML/DS Preacher, Coffee Addicted &&
Machine Intelligence Researcher @ OpenWay
Storage
Resource
Management
ML Framework
Execution
Engine
Local OS
Local Disc
RRuntime
YetAnotherRuntime
ML packages
HDFS
YARN
MapReduce
Mahout
HDFS / S3
YARN /
Apache
Mesos
Apache Spark
MLlib
HDFS / S3
YARN /
Apache
Mesos
PySpark /
SparkR
Apache Spark
Local PC Hybrid Model Cluster (on-premises/on-demand)
Low HighCost of deployment/ownership
Distributed
FS
Dark Magic…
ML as a Service
DS Tools
Infrastructure for Data Scientists
ML Packages
ML runtime as a Service
• Feb 2015: Azure ML
• Apr 2015: Amazon ML
• Oct 2015: Google Cloud ML Engine
Deep Learning algorithms in Open Source
• Dec 2015: The Microsoft Cognitive Toolkit (CNTK)
• Nov 2015: Microsoft Distributed Machine Learning Toolkit
• Nov 2015: TensorFlow (Google)
• May 2016: Amazon DSSTNE
Deep Learning models as a Services
• Microsoft Cognitive Services
• Amazon Rekognition
• Google APIs: Natural Language, Speech API, Translation
API, etc.
GPU on demand
• Sep 2016: private preview in Azure
• Oct 2017: Amazon update its GPU-instances
• March 2017: Google GPU features
2015 2016 2017
Machine Learning Tools Evolution in Cloud
Source: https://blogs.technet.microsoft.com/
Data
Azure
Machine Learning
Consumers
Cloud storage
Business problem Modeling Business valueDeployment
Model REST API
Manage
Local storage
REST API
Reference: Microsoft Data Amp 2017
ML Studio
Web IDE + ML runtime
ML Web Services
ML-model publication
Azure Marketplace
Cortana Gallery
Data
Model
Bitcoin Secret Demo
library(Quandl)
library(dplyr)
library(forecast)
dt <- Quandl("BCHARTS/BITBAYUSD", api_key = ****** ) %>%
select(Date, Close)
dt.train <- dt %>% filter(Date < max(Date) - months(2))
dt.test <- dt %>% filter(Date > max(dt.train$Date))
timeseries <- ts(dt.train$Close, frequency = 1)
model <- ets(timeseries)
Restrictions
Legislative Restrictions
International & local
Azure Platform Limits
Max storage volume per account, etc.
Azure ML Service Limits
Black box
No debug
No Scala, or C++, or C#
No your own “right” algorithms
No Deep Learning
See also
Service Tiers Limitations
Azure Machine Learning: Limits
© 2017, Dmitry Petukhov. CC BY-SA 4.0 license. Microsoft and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
Thank you!
Q&A
Now or later (use contacts below)
Ping me
Habr: @codezombie
All contacts: http://0xCode.in/author

Azure Machine Learning

  • 1.
    Machine Learning withMicrosoft Azure Dmitry Petukhov, ML/DS Preacher, Coffee Addicted && Machine Intelligence Researcher @ OpenWay
  • 2.
    Storage Resource Management ML Framework Execution Engine Local OS LocalDisc RRuntime YetAnotherRuntime ML packages HDFS YARN MapReduce Mahout HDFS / S3 YARN / Apache Mesos Apache Spark MLlib HDFS / S3 YARN / Apache Mesos PySpark / SparkR Apache Spark Local PC Hybrid Model Cluster (on-premises/on-demand) Low HighCost of deployment/ownership Distributed FS Dark Magic… ML as a Service DS Tools Infrastructure for Data Scientists ML Packages
  • 3.
    ML runtime asa Service • Feb 2015: Azure ML • Apr 2015: Amazon ML • Oct 2015: Google Cloud ML Engine Deep Learning algorithms in Open Source • Dec 2015: The Microsoft Cognitive Toolkit (CNTK) • Nov 2015: Microsoft Distributed Machine Learning Toolkit • Nov 2015: TensorFlow (Google) • May 2016: Amazon DSSTNE Deep Learning models as a Services • Microsoft Cognitive Services • Amazon Rekognition • Google APIs: Natural Language, Speech API, Translation API, etc. GPU on demand • Sep 2016: private preview in Azure • Oct 2017: Amazon update its GPU-instances • March 2017: Google GPU features 2015 2016 2017 Machine Learning Tools Evolution in Cloud
  • 4.
  • 5.
    Data Azure Machine Learning Consumers Cloud storage Businessproblem Modeling Business valueDeployment Model REST API Manage Local storage REST API Reference: Microsoft Data Amp 2017 ML Studio Web IDE + ML runtime ML Web Services ML-model publication Azure Marketplace Cortana Gallery Data Model
  • 6.
    Bitcoin Secret Demo library(Quandl) library(dplyr) library(forecast) dt<- Quandl("BCHARTS/BITBAYUSD", api_key = ****** ) %>% select(Date, Close) dt.train <- dt %>% filter(Date < max(Date) - months(2)) dt.test <- dt %>% filter(Date > max(dt.train$Date)) timeseries <- ts(dt.train$Close, frequency = 1) model <- ets(timeseries)
  • 7.
    Restrictions Legislative Restrictions International &local Azure Platform Limits Max storage volume per account, etc. Azure ML Service Limits Black box No debug No Scala, or C++, or C# No your own “right” algorithms No Deep Learning See also Service Tiers Limitations Azure Machine Learning: Limits
  • 8.
    © 2017, DmitryPetukhov. CC BY-SA 4.0 license. Microsoft and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. Thank you!
  • 9.
    Q&A Now or later(use contacts below) Ping me Habr: @codezombie All contacts: http://0xCode.in/author

Editor's Notes

  • #4 Cutting Edge 2015: ML Runtime as a Service Feb 2015: Azure ML Apr 2016: Amazon ML Oct 2015: Google Cloud ML Engine 2015-2016: Deep Learning algorithms in Open Source Dec 2015: The Microsoft Cognitive Toolkit (CNTK) Nov 2015: Microsoft Distributed Machine Learning Toolkit http://www.dmtk.io Nov 2015: TensorFlow https://github.com/tensorflow/tensorflow/ May 2016: Amazon DSSTNE https://github.com/amznlabs/amazon-dsstne 2016: Cognitive Services Microsoft Cognitive Services Amazon Rekognition Google APIs: Natural Language, Speech API, Translation API, etc. 2016-2017: GPU on demand Sep 2016: private preview in Azure Oct 2017: Amazon update its GPU-instances March 2017: Google
  • #5 Source: https://blogs.technet.microsoft.com/dataplatforminsider/2017/04/19/delivering-ai-with-data-the-next-generation-of-microsofts-data-platform/
  • #9 (c) 2017, Dmitry Petukhov. CC BY-SA 4.0 license.