SlideShare a Scribd company logo
Technical Account Manager Lead, MongoDB Inc
@antoinegirbal
Antoine Girbal
JavaOne 2013
Building a scalable inbox
system with MongoDB and
Java
Single Table En
Agenda
• Problem Overview
• Schema and queries
• Java Development
• Design Options
– Fan out on Read
– Fan out on Write
– Bucketed Fan out on Write
– Cached Inbox
• Discussion
Problem Overview
Let‟s get
Social
Sending Messages
?
Reading my Inbox
?
Schema and Queries
Basic CRUD
• Save your first document:
> db.test.insert({firstName: "Antoine", lastName: "Girbal" } )
• Find the document:
> db.test.find({firstName: "Antoine" } )
{ _id: ObjectId("524495105889411fab0cdfa3"),firstName: "Antoine", lastName: "Girbal"
}
• Update the document:
> db.test.update({_id: ObjectId("524495105889411fab0cdfa3")}, { x: 1, y: 2 } )
• Remove the document:
> db.test.remove({_id: ObjectId("524495105889411fab0cdfa3")})
• No schema definition or other declaration, it's easy!
The User Document
{ "_id": ObjectId("519c12d53004030e5a6316d2"),
"address": {
"streetAddress": "2600 Rafe Lane",
"city": "Jackson",
"state": "MS",
"zip": 39201,
"country": "US" },
"birthday": "IDODate("1980-12-26T00:00:00.000Z"),
"company": "Parade of Shoes",
"domain": "SanFranciscoAgency.com",
"email": "AnthonyJDacosta@pookmail.com",
"firstName": "Anthony",
"gender": "male",
"lastName": "Dacosta",
"location": [ -90.183518, 32.368619 ],
…
}
The User Collection
The collection statistics:
> db.users.stats()
{
"ns": "edges.users",
"count": 1000000, // number of documents
"size": 637864480, // size of all documents
"avgObjSize": 637.86448,
"storageSize": 845197312,
"numExtents": 16,
"nindexes": 2,
"lastExtentSize": 227786752,
"paddingFactor": 1.0000000000260925, // padding after documents
"systemFlags": 1,
"userFlags": 0,
"totalIndexSize": 66070256,
"indexSizes": { "_id_": 29212848, "uid_1": 36857408 },
"ok": 1
}
Queries on Users
Finding a user by email address…
> db.users.find({ "email": "AnthonyJDacosta@pookmail.com" }).pretty()
{ "_id": ObjectId("519c12d53004030e5a6316d2"),
…
By default will use a slow table scan…
> db.users.find({ "email": "AnthonyJDacosta@pookmail.com" } ).explain()
{ "cursor": "BasicCursor",
"nscannedObjects": 1000000, // 1m objects scanned
"nscanned": 1000000,
…
Use an index for fast performance…
> db.users.ensureIndex({ "email": 1 } ) // does not do anything if index is there
> db.users.find({ "email": "AnthonyJDacosta@pookmail.com" }).explain()
{ "cursor": "BtreeCursor email_1", // Btree, sweet!
"nscannedObjects": 1, // document is found almost right away
"nscanned": 1,
…
Users Relationships
• Here the follower / followee relationships are of
"many-to-many" type. It can be either stored as:
1. a list of followers in user
2. a list of followees in user
3. a relationship collection: "followees"
4. two relationship collections: "followees" and "followers".
• Ideal solutions:
– a few million users and a 1000 followee limit: Solution #2
– no boundaries and relative scaling: Solution #3
– no boundaries and max scaling: Solution #4
Relationship Data
Let's look at a sample document:
> use edges
switched to db edges
> db.followees.findOne()
{ "_id": ObjectId(),
"user": "17052001”,
"followee": "31554261”
}
And the statistics:
> db.followees.stats()
{
"ns": "edges.followees",
"count": 1000000,
"size": 64000048,
"avgObjSize": 64.000048,
"storageSize": 86310912,
"numExtents": 10,
"nindexes": 2,
"lastExtentSize": 27869184,
"paddingFactor": 1,
"systemFlags": 1,
"userFlags": 0,
"totalIndexSize": 85561840,
"indexSizes": {
"_id_": 32458720,
"user_1_followee_1": 53103120 },
"ok": 1
}
Relationship Queries
To find all the users that a user follows:
> db.followees.ensureIndex({ user: 1, followee: 1 }) // why not just index on user? We shall see
> db.followees.find({user: "11622712"})
{ "_id" : ObjectId("51641c02e4b0ef6827a34569"), "user" : "11622712", "followee" : "30432718" }
…
> db.followees.find({user: "11622712"}).explain()
{
"cursor" : "BtreeCursor user_1_followee_1",
"n" : 66,
"indexOnly" : false,
"millis" : 0, // this is fast
Even faster if using a “covered” index:
> db.followees.find({user: "11622712"}, {followee: 1, _id: 0}).explain()
{
"cursor" : "BtreeCursor user_1_followee_1",
"n" : 66,
"nscannedObjects" : 0,
"nscanned" : 66,
"indexOnly" : true, // this means covered
To find all the followers of a user, we just need the opposite index::
> db.followees.ensureIndex({followee: 1, user: 1})
> db.followees.find({followee: "30313973"}, {user: 1, _id: 0})
Message Document
The message document:
> db.messages.findOne()
{
"_id": "ObjectId("519d4858e4b079162fe7eb12"),
"uid": "48268973", // the author id
"username": "Abiall", // why store the username?
"text": "Lorem ipsum dolor sit amet, consectetur ...",
"created": ISODate(2013-05-22T22:36:08.663Z"),
"location": [ -95.470188, 37.366044 ],
"tags": [ "gadgets" ]
}
Collection statistics:
> db.messages.stats()
{
"ns": "msg.messages",
"count": 21440518,
"size": 14184598000,
"avgObjSize": 661.5790719235422,
"storageSize": 15749418944,
"numExtents": 27,
"nindexes": 2,
"lastExtentSize": 2146426864,
"paddingFactor": 1,
"systemFlags": 1,
"userFlags": 0,
"totalIndexSize": 1454289648,
"indexSizes": {
"_id_": 695646784,
"uid_1_created_1": 758642864 },
"ok": 1
}
Implementing the Outbox
The query is on "uid" and needs to be sorted by descending "created" time:
> db.messages.ensureIndex({ "uid": 1, "created": 1 } ) // use a compound index
> db.messages.find({ "uid": "31837072" } ).sort({ "created": -1 } ).limit(100)
{ "_id": ObjectId("519d626ae4b07916312e15b1") }, "uid": "31837072", "username": "Roya
"text": "Lorem ipsum dolor sit amet, consectetur adipisicing elit , sed do eiusmod tempor …",
"created": ISODate("2013-05-23T00:27:22.369Z"),
"location": [ "-118.296138", "33.772832" ],
"tags": [ "Art" ] }
…
> db.messages.find({ "uid": "31837072" }).sort({ "created": -1 }).limit(100).explain()
{
"cursor": "BtreeCursor uid_1_created_1 reverse",
"n": 18,
"nscannedObjects": 18,
"nscanned": 18,
"scanAndOrder": false,
"millis": 0
…
Java Development
Java support
• Java driver is open source, available on github
and Maven.
• mongo.jar is the driver, bson.jar is a subset with
BSON library only.
• Java driver is probably the most used MongoDB
driver
• It receives active development by MongoDB Inc
and the community
Driver Features
• CRUD
• Support for replica sets
• Connection pooling
• Distributed reads to slave servers
• BSON serializer/deserializer (lazy option)
• JSON serializer/deserializer
• GridFS
Message Store
public class MessageStoreDAO implements MessageStore {
private Morphia morphia;
private Datastore ds;
public MessageStoreDAO( MongoClient mongo ) {
this.morphia = new Morphia();
this.morphia.map(DBMessage.class);
this.ds = morphia.createDatastore(mongo, "messages");
this.ds.getCollection(DBMessage.class).
ensureIndex(new BasicDBObject("sender",1).append("sentAt",1) );
}
// get a message
public Message get(String user_id, String msg_id) {
return (Message) this.ds.find(DBMessage.class)
.filter("sender", user_id)
.filter("_id", new ObjectId(msg_id))
.get();
}
Message Store
// save a message
public Message save(String user_id, String message, Date date) {
Message msg = new DBMessage( user_id, message, date );
ds.save( msg );
return msg;
}
// find message by author sorted by descending time
public List<Message> sentBy(String user_id) {
return (List) this.ds.find(DBMessage.class)
.filter("sender",user_id).order("-sentAt").limit(50).asList();
}
// find message by several authors sorted by descending time
public List<Message> sentBy(List<String> user_ids) {
return (List) this.ds.find(DBMessage.class)
.field("sender").in(user_ids).order("-sentAt").limit(50).asList();
}
Graph Store
Below uses Solution #4: both a follower and followee list
public class GraphStoreDAO implements GraphStore {
private DBCollection friends;
private DBCollection followers;
public GraphStoreDAO(MongoClient mongo) {
this.followers = mongo.getDB("edges").getCollection("followers");
this.friends = mongo.getDB("edges").getCollection("friends");
followers.ensureIndex( new BasicDBObject("u",1).append("o",1), new BasicDBObject("unique", true));
friends.ensureIndex( new BasicDBObject("u",1).append("o",1), new BasicDBObject("unique",true));
}
// find users that are followed
public List<String> friendsOf(String user_id) {
List<String> theFriends = new ArrayList<String>();
DBCursor cursor = friends.find( new BasicDBObject("u",user_id), new
BasicDBObject("_id",0).append("o",1));
while(cursor.hasNext())
theFriends.add( (String) cursor.next().get("o"));
return theFriends;
}
Graph Store
// find followers of a user
public List<String> followersOf(String user_id) {
List<String> theFollowers = new ArrayList<String>();
DBCursor cursor = followers.find( new BasicDBObject("u",user_id),
new BasicDBObject("_id",0).append("o",1));
while(cursor.hasNext())
theFollowers.add( (String) cursor.next().get("o"));
return theFollowers;
}
public void follow(String user_id, String toFollow) {
friends.save( new BasicDBObject("u",user_id).append("o",toFollow));
followers.save( new BasicDBObject("u",toFollow).append("o",user_id));
}
public void unfollow(String user_id, String toUnFollow) {
friends.remove(new BasicDBObject("u", user_id).append("o", toUnFollow));
followers.remove(new BasicDBObject("u", toUnFollow).append("o", user_id));
}
Design Options
4 Approaches (there are
more)
• Fan out on Read
• Fan out on Write
• Bucketed Fan out on Write
• Inbox Caches
Fan out on read
• Generally, not the right approach
• 1 document per message sent
• Reading an inbox is finding all messages sent by
the list of people users follow
• Requires scatter-gather on sharded cluster
• Then a lot of random IO on a shard to find
everything
Fan out on Read
Put the followees ids in a list:
> var fees = []
> db.followees.find({user: "11622712"})
.forEach( function(doc) { fees.push( doc.followee ) } )
Use $in and sort() and limit() to gather the inbox:
> db.messages.find({ uid: { $in: fees } }).sort({ created: -1 }).limit(100)
{ "_id": ObjectId("519d627ce4b07916312f0a09"), "uid": "34660390", "username": "Dingdowas"
{ "_id": ObjectId("519d627ce4b07916312f0a10"), "uid": "34661390", "username": "John" } …
{ "_id": ObjectId("519d627ce4b07916312f0a11"), "uid": "34662390", "username": "Brenda" } …
…
Fan out on read – Send
Message
Shard 1 Shard 2 Shard 3
Send
Message
Fan out on read – Inbox Read
Shard 1 Shard 2 Shard 3
Read
Inbox
Fan out on read
> db.messages.find({ uid: { $in: fees } } ).sort({ created: -1 } ).limit(100).explain()
{
"cursor": "BtreeCursor uid_1_created_1 multi",
"isMultiKey": false,
"n": 100,
"nscannedObjects": 1319,
"nscanned": 1384,
"nscannedObjectsAllPlans": 1425,
"nscannedAllPlans": 1490,
"scanAndOrder": true, // it is sorting in RAM??
"indexOnly": false,
"nYields": 0,
"nChunkSkips": 0,
"millis": 31 // takes about 30ms
}
Fan out on read - sort
Fan out on write
• Tends to scale better than fan out on read
• 1 document per recipient
• Reading my inbox is just finding all of the
messages with me as the recipient
• Can shard on recipient, so inbox reads hit one
shard
• But still lots of random IO on the shard
Fan out on Write
// Shard on “recipient” and “sent”
db.shardCollection(”myapp.inbox”, { ”recipient”: 1, ”sent”: 1 } )
msg = { from: "Joe”, sent: new Date(), message: ”Hi!” }
// Send a message, write one message per follower
for( follower in followersOf( msg.from) ) {
msg.recipient = recipient
db.inbox.save(msg);
}
// Read my inbox, super easy
db.inbox.find({ recipient: ”Joe” }).sort({ sent: -1 })
Fan out on write – Send
Message
Shard 1 Shard 2 Shard 3
Send
Message
Fan out on write– Read Inbox
Shard 1 Shard 2 Shard 3
Read
Inbox
Bucketed Fan out on write
• Each “inbox” document is an array of messages
• Append a message onto “inbox” of recipient
• Bucket inbox documents so there‟s not too many
per document
• Can shard on recipient, so inbox reads hit one
shard
• 1 or 2 documents to read the whole inbox
Bucketed Fan out on Write
// Shard on “owner / sequence”
db.shardCollection(”myapp.buckets”, { ”owner”: 1, ”sequence”: 1 } )
db.shardCollection(”myapp.users”, { ”user_name”: 1 } )
msg = { from: "Joe”, sent: new Date(), message: ”Hi!” }
// Send a message, have to find the right sequence document
for( follower in followersOf( msg.from) ) {
sequence = db.users.findAndModify({
query: { user_name: recipient},
update: { '$inc': { ‟msg_count': 1 }},
upsert: true,
new: true }).msg_count / 50;
db.buckets.update({ owner: recipient, sequence: sequence},
{ $push: { „messages‟: msg } },
{ upsert: true });
}
// Read my inbox
db.buckets.find({ owner: ”Joe” }).sort({ sequence: -1 }).limit(2)
Bucketed fan out on write -
Send
Shard 1 Shard 2 Shard 3
Send
Message
Bucketed fan out on write -
Read
Shard 1 Shard 2 Shard 3
Read
Inbox
Cached inbox
• Recent messages are fast, but older messages
are slower
• Store a cache of last N messages per user
• Used capped array to age out older messages
• Create cache lazily when user accesses inbox
• Only write the message if cache exists.
• Use TTL collection to time out caches for inactive
users
Cached Inbox
// Shard on “owner"
db.shardCollection(”myapp.caches”, { ”owner”: 1 } )
// Send a message, add it to the existing caches of followers
for( follower in followersOf( msg.from) ) {
db.caches.update({ owner: recipient }, { $push: { messages: {
$each: [ msg ],
$sort: { „sent‟: 1 },
$slice: -50 } } } );
// Read my inbox
If( msgs = db.caches.find({ owner: ”Joe” }) ) {
// cache document exists
return msgs;
} else {
// fall back to "fan out on read" and cache it
db.caches.save({owner:‟joe‟, messages:[]});
msgs = db.outbox.find({sender: { $in: [ followersOf( msg.from ) ] }}).sort({sent:-1}).limit(50);
db.caches.update({user:‟joe‟}, {$push: msgs });
}
Cached Inbox – Send
Shard 1 Shard 2 Shard 3
Send
Message
Cached Inbox- Read
Shard 1 Shard 2 Shard 3
Read
Inbox
1
2
Cache Hit
Cache Miss
Discussion
Tradeoffs
Fan out on
Read
Fan out on
Write
Bucketed Fan
out on Write
Inbox Cache
Send
Message
Performance
Best
Single shard
Single write
Good
Shard per
recipient
Multiple writes
Worst
Shard per recipient
Appends (grows)
Mixed
Depends on how
many users are in
cache
Read Inbox
Performance
Worst
Broadcast all
shards
Random reads
Good
Single shard
Random reads
Best
Single shard
Single read
Mixed
Recent
messages fast
Older messages
are slow
Data Size Best
Message stored
once
Worst
Copy per
recipient
Worst
Copy per recipient
Good
Same as FoR +
size of cache
Things to consider
• Lots of recipients
• Fan out on write might become prohibitive
• Consider introducing a “Group”
• Make fan out asynchronous
• Very large message size
• Multiple copies of messages can be a burden
• Consider single copy of message with a “pointer” per inbox
• More writes than reads
• Fan out on read might be okay
Summary
• Multiple ways to model status updates
• Think about characteristics of your network
– Number of users
– Number of edges
– Publish frequency
– Access patterns
• Try to minimize random IO
Technical Account Manager Lead, MongoDB Inc
Antoine Girbal
JavaOne 2013
Thank You

More Related Content

Similar to Building a Scalable Inbox System with MongoDB and Java (20)

MongoDB Schema Design: Four Real-World Examples
MongoDB Schema Design: Four Real-World ExamplesMongoDB Schema Design: Four Real-World Examples
MongoDB Schema Design: Four Real-World Examples
Lewis Lin 🦊
 
Webinar: Data Modeling Examples in the Real World
Webinar: Data Modeling Examples in the Real WorldWebinar: Data Modeling Examples in the Real World
Webinar: Data Modeling Examples in the Real World
MongoDB
 
Socialite, the Open Source Status Feed Part 2: Managing the Social Graph
Socialite, the Open Source Status Feed Part 2: Managing the Social GraphSocialite, the Open Source Status Feed Part 2: Managing the Social Graph
Socialite, the Open Source Status Feed Part 2: Managing the Social Graph
MongoDB
 
Data Modeling Examples from the Real World
Data Modeling Examples from the Real WorldData Modeling Examples from the Real World
Data Modeling Examples from the Real World
MongoDB
 
Data Modeling for the Real World
Data Modeling for the Real WorldData Modeling for the Real World
Data Modeling for the Real World
Mike Friedman
 
MongoDB London 2013: Data Modeling Examples from the Real World presented by ...
MongoDB London 2013: Data Modeling Examples from the Real World presented by ...MongoDB London 2013: Data Modeling Examples from the Real World presented by ...
MongoDB London 2013: Data Modeling Examples from the Real World presented by ...
MongoDB
 
Socialite, the Open Source Status Feed
Socialite, the Open Source Status FeedSocialite, the Open Source Status Feed
Socialite, the Open Source Status Feed
MongoDB
 
Choosing a Shard key
Choosing a Shard keyChoosing a Shard key
Choosing a Shard key
MongoDB
 
MongoDB San Francisco 2013: Data Modeling Examples From the Real World presen...
MongoDB San Francisco 2013: Data Modeling Examples From the Real World presen...MongoDB San Francisco 2013: Data Modeling Examples From the Real World presen...
MongoDB San Francisco 2013: Data Modeling Examples From the Real World presen...
MongoDB
 
Data Modeling Deep Dive
Data Modeling Deep DiveData Modeling Deep Dive
Data Modeling Deep Dive
MongoDB
 
MongoDB and Schema Design
MongoDB and Schema DesignMongoDB and Schema Design
MongoDB and Schema Design
Matias Cascallares
 
San Francisco Java User Group
San Francisco Java User GroupSan Francisco Java User Group
San Francisco Java User Group
kchodorow
 
Schema Design - Real world use case
Schema Design - Real world use caseSchema Design - Real world use case
Schema Design - Real world use case
Matias Cascallares
 
Back to Basics Webinar 3 - Thinking in Documents
Back to Basics Webinar 3 - Thinking in DocumentsBack to Basics Webinar 3 - Thinking in Documents
Back to Basics Webinar 3 - Thinking in Documents
Joe Drumgoole
 
Back to Basics Webinar 3: Schema Design Thinking in Documents
 Back to Basics Webinar 3: Schema Design Thinking in Documents Back to Basics Webinar 3: Schema Design Thinking in Documents
Back to Basics Webinar 3: Schema Design Thinking in Documents
MongoDB
 
The Fine Art of Schema Design in MongoDB: Dos and Don'ts
The Fine Art of Schema Design in MongoDB: Dos and Don'tsThe Fine Art of Schema Design in MongoDB: Dos and Don'ts
The Fine Art of Schema Design in MongoDB: Dos and Don'ts
Matias Cascallares
 
Mongodb in-anger-boston-rb-2011
Mongodb in-anger-boston-rb-2011Mongodb in-anger-boston-rb-2011
Mongodb in-anger-boston-rb-2011
bostonrb
 
Building your first app with MongoDB
Building your first app with MongoDBBuilding your first app with MongoDB
Building your first app with MongoDB
Norberto Leite
 
Managing Social Content with MongoDB
Managing Social Content with MongoDBManaging Social Content with MongoDB
Managing Social Content with MongoDB
MongoDB
 
Building Your First MongoDB App ~ Metadata Catalog
Building Your First MongoDB App ~ Metadata CatalogBuilding Your First MongoDB App ~ Metadata Catalog
Building Your First MongoDB App ~ Metadata Catalog
hungarianhc
 
MongoDB Schema Design: Four Real-World Examples
MongoDB Schema Design: Four Real-World ExamplesMongoDB Schema Design: Four Real-World Examples
MongoDB Schema Design: Four Real-World Examples
Lewis Lin 🦊
 
Webinar: Data Modeling Examples in the Real World
Webinar: Data Modeling Examples in the Real WorldWebinar: Data Modeling Examples in the Real World
Webinar: Data Modeling Examples in the Real World
MongoDB
 
Socialite, the Open Source Status Feed Part 2: Managing the Social Graph
Socialite, the Open Source Status Feed Part 2: Managing the Social GraphSocialite, the Open Source Status Feed Part 2: Managing the Social Graph
Socialite, the Open Source Status Feed Part 2: Managing the Social Graph
MongoDB
 
Data Modeling Examples from the Real World
Data Modeling Examples from the Real WorldData Modeling Examples from the Real World
Data Modeling Examples from the Real World
MongoDB
 
Data Modeling for the Real World
Data Modeling for the Real WorldData Modeling for the Real World
Data Modeling for the Real World
Mike Friedman
 
MongoDB London 2013: Data Modeling Examples from the Real World presented by ...
MongoDB London 2013: Data Modeling Examples from the Real World presented by ...MongoDB London 2013: Data Modeling Examples from the Real World presented by ...
MongoDB London 2013: Data Modeling Examples from the Real World presented by ...
MongoDB
 
Socialite, the Open Source Status Feed
Socialite, the Open Source Status FeedSocialite, the Open Source Status Feed
Socialite, the Open Source Status Feed
MongoDB
 
Choosing a Shard key
Choosing a Shard keyChoosing a Shard key
Choosing a Shard key
MongoDB
 
MongoDB San Francisco 2013: Data Modeling Examples From the Real World presen...
MongoDB San Francisco 2013: Data Modeling Examples From the Real World presen...MongoDB San Francisco 2013: Data Modeling Examples From the Real World presen...
MongoDB San Francisco 2013: Data Modeling Examples From the Real World presen...
MongoDB
 
Data Modeling Deep Dive
Data Modeling Deep DiveData Modeling Deep Dive
Data Modeling Deep Dive
MongoDB
 
San Francisco Java User Group
San Francisco Java User GroupSan Francisco Java User Group
San Francisco Java User Group
kchodorow
 
Schema Design - Real world use case
Schema Design - Real world use caseSchema Design - Real world use case
Schema Design - Real world use case
Matias Cascallares
 
Back to Basics Webinar 3 - Thinking in Documents
Back to Basics Webinar 3 - Thinking in DocumentsBack to Basics Webinar 3 - Thinking in Documents
Back to Basics Webinar 3 - Thinking in Documents
Joe Drumgoole
 
Back to Basics Webinar 3: Schema Design Thinking in Documents
 Back to Basics Webinar 3: Schema Design Thinking in Documents Back to Basics Webinar 3: Schema Design Thinking in Documents
Back to Basics Webinar 3: Schema Design Thinking in Documents
MongoDB
 
The Fine Art of Schema Design in MongoDB: Dos and Don'ts
The Fine Art of Schema Design in MongoDB: Dos and Don'tsThe Fine Art of Schema Design in MongoDB: Dos and Don'ts
The Fine Art of Schema Design in MongoDB: Dos and Don'ts
Matias Cascallares
 
Mongodb in-anger-boston-rb-2011
Mongodb in-anger-boston-rb-2011Mongodb in-anger-boston-rb-2011
Mongodb in-anger-boston-rb-2011
bostonrb
 
Building your first app with MongoDB
Building your first app with MongoDBBuilding your first app with MongoDB
Building your first app with MongoDB
Norberto Leite
 
Managing Social Content with MongoDB
Managing Social Content with MongoDBManaging Social Content with MongoDB
Managing Social Content with MongoDB
MongoDB
 
Building Your First MongoDB App ~ Metadata Catalog
Building Your First MongoDB App ~ Metadata CatalogBuilding Your First MongoDB App ~ Metadata Catalog
Building Your First MongoDB App ~ Metadata Catalog
hungarianhc
 

Recently uploaded (20)

Dr Jimmy Schwarzkopf presentation on the SUMMIT 2025 A
Dr Jimmy Schwarzkopf presentation on the SUMMIT 2025 ADr Jimmy Schwarzkopf presentation on the SUMMIT 2025 A
Dr Jimmy Schwarzkopf presentation on the SUMMIT 2025 A
Dr. Jimmy Schwarzkopf
 
Cognitive Chasms - A Typology of GenAI Failure Failure Modes
Cognitive Chasms - A Typology of GenAI Failure Failure ModesCognitive Chasms - A Typology of GenAI Failure Failure Modes
Cognitive Chasms - A Typology of GenAI Failure Failure Modes
Dr. Tathagat Varma
 
Palo Alto Networks Cybersecurity Foundation
Palo Alto Networks Cybersecurity FoundationPalo Alto Networks Cybersecurity Foundation
Palo Alto Networks Cybersecurity Foundation
VICTOR MAESTRE RAMIREZ
 
Co-Constructing Explanations for AI Systems using Provenance
Co-Constructing Explanations for AI Systems using ProvenanceCo-Constructing Explanations for AI Systems using Provenance
Co-Constructing Explanations for AI Systems using Provenance
Paul Groth
 
End-to-end Assurance for SD-WAN & SASE with ThousandEyes
End-to-end Assurance for SD-WAN & SASE with ThousandEyesEnd-to-end Assurance for SD-WAN & SASE with ThousandEyes
End-to-end Assurance for SD-WAN & SASE with ThousandEyes
ThousandEyes
 
Fortinet Certified Associate in Cybersecurity
Fortinet Certified Associate in CybersecurityFortinet Certified Associate in Cybersecurity
Fortinet Certified Associate in Cybersecurity
VICTOR MAESTRE RAMIREZ
 
Introducing the OSA 3200 SP and OSA 3250 ePRC
Introducing the OSA 3200 SP and OSA 3250 ePRCIntroducing the OSA 3200 SP and OSA 3250 ePRC
Introducing the OSA 3200 SP and OSA 3250 ePRC
Adtran
 
Supercharge Your AI Development with Local LLMs
Supercharge Your AI Development with Local LLMsSupercharge Your AI Development with Local LLMs
Supercharge Your AI Development with Local LLMs
Francesco Corti
 
Cybersecurity Fundamentals: Apprentice - Palo Alto Certificate
Cybersecurity Fundamentals: Apprentice - Palo Alto CertificateCybersecurity Fundamentals: Apprentice - Palo Alto Certificate
Cybersecurity Fundamentals: Apprentice - Palo Alto Certificate
VICTOR MAESTRE RAMIREZ
 
UiPath Community Berlin: Studio Tips & Tricks and UiPath Insights
UiPath Community Berlin: Studio Tips & Tricks and UiPath InsightsUiPath Community Berlin: Studio Tips & Tricks and UiPath Insights
UiPath Community Berlin: Studio Tips & Tricks and UiPath Insights
UiPathCommunity
 
STKI Israel Market Study 2025 final v1 version
STKI Israel Market Study 2025 final v1 versionSTKI Israel Market Study 2025 final v1 version
STKI Israel Market Study 2025 final v1 version
Dr. Jimmy Schwarzkopf
 
European Accessibility Act & Integrated Accessibility Testing
European Accessibility Act & Integrated Accessibility TestingEuropean Accessibility Act & Integrated Accessibility Testing
European Accessibility Act & Integrated Accessibility Testing
Julia Undeutsch
 
SDG 9000 Series: Unleashing multigigabit everywhere
SDG 9000 Series: Unleashing multigigabit everywhereSDG 9000 Series: Unleashing multigigabit everywhere
SDG 9000 Series: Unleashing multigigabit everywhere
Adtran
 
Multistream in SIP and NoSIP @ OpenSIPS Summit 2025
Multistream in SIP and NoSIP @ OpenSIPS Summit 2025Multistream in SIP and NoSIP @ OpenSIPS Summit 2025
Multistream in SIP and NoSIP @ OpenSIPS Summit 2025
Lorenzo Miniero
 
Nix(OS) for Python Developers - PyCon 25 (Bologna, Italia)
Nix(OS) for Python Developers - PyCon 25 (Bologna, Italia)Nix(OS) for Python Developers - PyCon 25 (Bologna, Italia)
Nix(OS) for Python Developers - PyCon 25 (Bologna, Italia)
Peter Bittner
 
6th Power Grid Model Meetup - 21 May 2025
6th Power Grid Model Meetup - 21 May 20256th Power Grid Model Meetup - 21 May 2025
6th Power Grid Model Meetup - 21 May 2025
DanBrown980551
 
Grannie’s Journey to Using Healthcare AI Experiences
Grannie’s Journey to Using Healthcare AI ExperiencesGrannie’s Journey to Using Healthcare AI Experiences
Grannie’s Journey to Using Healthcare AI Experiences
Lauren Parr
 
Contributing to WordPress With & Without Code.pptx
Contributing to WordPress With & Without Code.pptxContributing to WordPress With & Without Code.pptx
Contributing to WordPress With & Without Code.pptx
Patrick Lumumba
 
TrustArc Webinar: Mastering Privacy Contracting
TrustArc Webinar: Mastering Privacy ContractingTrustArc Webinar: Mastering Privacy Contracting
TrustArc Webinar: Mastering Privacy Contracting
TrustArc
 
Create Your First AI Agent with UiPath Agent Builder
Create Your First AI Agent with UiPath Agent BuilderCreate Your First AI Agent with UiPath Agent Builder
Create Your First AI Agent with UiPath Agent Builder
DianaGray10
 
Dr Jimmy Schwarzkopf presentation on the SUMMIT 2025 A
Dr Jimmy Schwarzkopf presentation on the SUMMIT 2025 ADr Jimmy Schwarzkopf presentation on the SUMMIT 2025 A
Dr Jimmy Schwarzkopf presentation on the SUMMIT 2025 A
Dr. Jimmy Schwarzkopf
 
Cognitive Chasms - A Typology of GenAI Failure Failure Modes
Cognitive Chasms - A Typology of GenAI Failure Failure ModesCognitive Chasms - A Typology of GenAI Failure Failure Modes
Cognitive Chasms - A Typology of GenAI Failure Failure Modes
Dr. Tathagat Varma
 
Palo Alto Networks Cybersecurity Foundation
Palo Alto Networks Cybersecurity FoundationPalo Alto Networks Cybersecurity Foundation
Palo Alto Networks Cybersecurity Foundation
VICTOR MAESTRE RAMIREZ
 
Co-Constructing Explanations for AI Systems using Provenance
Co-Constructing Explanations for AI Systems using ProvenanceCo-Constructing Explanations for AI Systems using Provenance
Co-Constructing Explanations for AI Systems using Provenance
Paul Groth
 
End-to-end Assurance for SD-WAN & SASE with ThousandEyes
End-to-end Assurance for SD-WAN & SASE with ThousandEyesEnd-to-end Assurance for SD-WAN & SASE with ThousandEyes
End-to-end Assurance for SD-WAN & SASE with ThousandEyes
ThousandEyes
 
Fortinet Certified Associate in Cybersecurity
Fortinet Certified Associate in CybersecurityFortinet Certified Associate in Cybersecurity
Fortinet Certified Associate in Cybersecurity
VICTOR MAESTRE RAMIREZ
 
Introducing the OSA 3200 SP and OSA 3250 ePRC
Introducing the OSA 3200 SP and OSA 3250 ePRCIntroducing the OSA 3200 SP and OSA 3250 ePRC
Introducing the OSA 3200 SP and OSA 3250 ePRC
Adtran
 
Supercharge Your AI Development with Local LLMs
Supercharge Your AI Development with Local LLMsSupercharge Your AI Development with Local LLMs
Supercharge Your AI Development with Local LLMs
Francesco Corti
 
Cybersecurity Fundamentals: Apprentice - Palo Alto Certificate
Cybersecurity Fundamentals: Apprentice - Palo Alto CertificateCybersecurity Fundamentals: Apprentice - Palo Alto Certificate
Cybersecurity Fundamentals: Apprentice - Palo Alto Certificate
VICTOR MAESTRE RAMIREZ
 
UiPath Community Berlin: Studio Tips & Tricks and UiPath Insights
UiPath Community Berlin: Studio Tips & Tricks and UiPath InsightsUiPath Community Berlin: Studio Tips & Tricks and UiPath Insights
UiPath Community Berlin: Studio Tips & Tricks and UiPath Insights
UiPathCommunity
 
STKI Israel Market Study 2025 final v1 version
STKI Israel Market Study 2025 final v1 versionSTKI Israel Market Study 2025 final v1 version
STKI Israel Market Study 2025 final v1 version
Dr. Jimmy Schwarzkopf
 
European Accessibility Act & Integrated Accessibility Testing
European Accessibility Act & Integrated Accessibility TestingEuropean Accessibility Act & Integrated Accessibility Testing
European Accessibility Act & Integrated Accessibility Testing
Julia Undeutsch
 
SDG 9000 Series: Unleashing multigigabit everywhere
SDG 9000 Series: Unleashing multigigabit everywhereSDG 9000 Series: Unleashing multigigabit everywhere
SDG 9000 Series: Unleashing multigigabit everywhere
Adtran
 
Multistream in SIP and NoSIP @ OpenSIPS Summit 2025
Multistream in SIP and NoSIP @ OpenSIPS Summit 2025Multistream in SIP and NoSIP @ OpenSIPS Summit 2025
Multistream in SIP and NoSIP @ OpenSIPS Summit 2025
Lorenzo Miniero
 
Nix(OS) for Python Developers - PyCon 25 (Bologna, Italia)
Nix(OS) for Python Developers - PyCon 25 (Bologna, Italia)Nix(OS) for Python Developers - PyCon 25 (Bologna, Italia)
Nix(OS) for Python Developers - PyCon 25 (Bologna, Italia)
Peter Bittner
 
6th Power Grid Model Meetup - 21 May 2025
6th Power Grid Model Meetup - 21 May 20256th Power Grid Model Meetup - 21 May 2025
6th Power Grid Model Meetup - 21 May 2025
DanBrown980551
 
Grannie’s Journey to Using Healthcare AI Experiences
Grannie’s Journey to Using Healthcare AI ExperiencesGrannie’s Journey to Using Healthcare AI Experiences
Grannie’s Journey to Using Healthcare AI Experiences
Lauren Parr
 
Contributing to WordPress With & Without Code.pptx
Contributing to WordPress With & Without Code.pptxContributing to WordPress With & Without Code.pptx
Contributing to WordPress With & Without Code.pptx
Patrick Lumumba
 
TrustArc Webinar: Mastering Privacy Contracting
TrustArc Webinar: Mastering Privacy ContractingTrustArc Webinar: Mastering Privacy Contracting
TrustArc Webinar: Mastering Privacy Contracting
TrustArc
 
Create Your First AI Agent with UiPath Agent Builder
Create Your First AI Agent with UiPath Agent BuilderCreate Your First AI Agent with UiPath Agent Builder
Create Your First AI Agent with UiPath Agent Builder
DianaGray10
 
Ad

Building a Scalable Inbox System with MongoDB and Java

  • 1. Technical Account Manager Lead, MongoDB Inc @antoinegirbal Antoine Girbal JavaOne 2013 Building a scalable inbox system with MongoDB and Java
  • 2. Single Table En Agenda • Problem Overview • Schema and queries • Java Development • Design Options – Fan out on Read – Fan out on Write – Bucketed Fan out on Write – Cached Inbox • Discussion
  • 8. Basic CRUD • Save your first document: > db.test.insert({firstName: "Antoine", lastName: "Girbal" } ) • Find the document: > db.test.find({firstName: "Antoine" } ) { _id: ObjectId("524495105889411fab0cdfa3"),firstName: "Antoine", lastName: "Girbal" } • Update the document: > db.test.update({_id: ObjectId("524495105889411fab0cdfa3")}, { x: 1, y: 2 } ) • Remove the document: > db.test.remove({_id: ObjectId("524495105889411fab0cdfa3")}) • No schema definition or other declaration, it's easy!
  • 9. The User Document { "_id": ObjectId("519c12d53004030e5a6316d2"), "address": { "streetAddress": "2600 Rafe Lane", "city": "Jackson", "state": "MS", "zip": 39201, "country": "US" }, "birthday": "IDODate("1980-12-26T00:00:00.000Z"), "company": "Parade of Shoes", "domain": "SanFranciscoAgency.com", "email": "[email protected]", "firstName": "Anthony", "gender": "male", "lastName": "Dacosta", "location": [ -90.183518, 32.368619 ], … }
  • 10. The User Collection The collection statistics: > db.users.stats() { "ns": "edges.users", "count": 1000000, // number of documents "size": 637864480, // size of all documents "avgObjSize": 637.86448, "storageSize": 845197312, "numExtents": 16, "nindexes": 2, "lastExtentSize": 227786752, "paddingFactor": 1.0000000000260925, // padding after documents "systemFlags": 1, "userFlags": 0, "totalIndexSize": 66070256, "indexSizes": { "_id_": 29212848, "uid_1": 36857408 }, "ok": 1 }
  • 11. Queries on Users Finding a user by email address… > db.users.find({ "email": "[email protected]" }).pretty() { "_id": ObjectId("519c12d53004030e5a6316d2"), … By default will use a slow table scan… > db.users.find({ "email": "[email protected]" } ).explain() { "cursor": "BasicCursor", "nscannedObjects": 1000000, // 1m objects scanned "nscanned": 1000000, … Use an index for fast performance… > db.users.ensureIndex({ "email": 1 } ) // does not do anything if index is there > db.users.find({ "email": "[email protected]" }).explain() { "cursor": "BtreeCursor email_1", // Btree, sweet! "nscannedObjects": 1, // document is found almost right away "nscanned": 1, …
  • 12. Users Relationships • Here the follower / followee relationships are of "many-to-many" type. It can be either stored as: 1. a list of followers in user 2. a list of followees in user 3. a relationship collection: "followees" 4. two relationship collections: "followees" and "followers". • Ideal solutions: – a few million users and a 1000 followee limit: Solution #2 – no boundaries and relative scaling: Solution #3 – no boundaries and max scaling: Solution #4
  • 13. Relationship Data Let's look at a sample document: > use edges switched to db edges > db.followees.findOne() { "_id": ObjectId(), "user": "17052001”, "followee": "31554261” } And the statistics: > db.followees.stats() { "ns": "edges.followees", "count": 1000000, "size": 64000048, "avgObjSize": 64.000048, "storageSize": 86310912, "numExtents": 10, "nindexes": 2, "lastExtentSize": 27869184, "paddingFactor": 1, "systemFlags": 1, "userFlags": 0, "totalIndexSize": 85561840, "indexSizes": { "_id_": 32458720, "user_1_followee_1": 53103120 }, "ok": 1 }
  • 14. Relationship Queries To find all the users that a user follows: > db.followees.ensureIndex({ user: 1, followee: 1 }) // why not just index on user? We shall see > db.followees.find({user: "11622712"}) { "_id" : ObjectId("51641c02e4b0ef6827a34569"), "user" : "11622712", "followee" : "30432718" } … > db.followees.find({user: "11622712"}).explain() { "cursor" : "BtreeCursor user_1_followee_1", "n" : 66, "indexOnly" : false, "millis" : 0, // this is fast Even faster if using a “covered” index: > db.followees.find({user: "11622712"}, {followee: 1, _id: 0}).explain() { "cursor" : "BtreeCursor user_1_followee_1", "n" : 66, "nscannedObjects" : 0, "nscanned" : 66, "indexOnly" : true, // this means covered To find all the followers of a user, we just need the opposite index:: > db.followees.ensureIndex({followee: 1, user: 1}) > db.followees.find({followee: "30313973"}, {user: 1, _id: 0})
  • 15. Message Document The message document: > db.messages.findOne() { "_id": "ObjectId("519d4858e4b079162fe7eb12"), "uid": "48268973", // the author id "username": "Abiall", // why store the username? "text": "Lorem ipsum dolor sit amet, consectetur ...", "created": ISODate(2013-05-22T22:36:08.663Z"), "location": [ -95.470188, 37.366044 ], "tags": [ "gadgets" ] } Collection statistics: > db.messages.stats() { "ns": "msg.messages", "count": 21440518, "size": 14184598000, "avgObjSize": 661.5790719235422, "storageSize": 15749418944, "numExtents": 27, "nindexes": 2, "lastExtentSize": 2146426864, "paddingFactor": 1, "systemFlags": 1, "userFlags": 0, "totalIndexSize": 1454289648, "indexSizes": { "_id_": 695646784, "uid_1_created_1": 758642864 }, "ok": 1 }
  • 16. Implementing the Outbox The query is on "uid" and needs to be sorted by descending "created" time: > db.messages.ensureIndex({ "uid": 1, "created": 1 } ) // use a compound index > db.messages.find({ "uid": "31837072" } ).sort({ "created": -1 } ).limit(100) { "_id": ObjectId("519d626ae4b07916312e15b1") }, "uid": "31837072", "username": "Roya "text": "Lorem ipsum dolor sit amet, consectetur adipisicing elit , sed do eiusmod tempor …", "created": ISODate("2013-05-23T00:27:22.369Z"), "location": [ "-118.296138", "33.772832" ], "tags": [ "Art" ] } … > db.messages.find({ "uid": "31837072" }).sort({ "created": -1 }).limit(100).explain() { "cursor": "BtreeCursor uid_1_created_1 reverse", "n": 18, "nscannedObjects": 18, "nscanned": 18, "scanAndOrder": false, "millis": 0 …
  • 18. Java support • Java driver is open source, available on github and Maven. • mongo.jar is the driver, bson.jar is a subset with BSON library only. • Java driver is probably the most used MongoDB driver • It receives active development by MongoDB Inc and the community
  • 19. Driver Features • CRUD • Support for replica sets • Connection pooling • Distributed reads to slave servers • BSON serializer/deserializer (lazy option) • JSON serializer/deserializer • GridFS
  • 20. Message Store public class MessageStoreDAO implements MessageStore { private Morphia morphia; private Datastore ds; public MessageStoreDAO( MongoClient mongo ) { this.morphia = new Morphia(); this.morphia.map(DBMessage.class); this.ds = morphia.createDatastore(mongo, "messages"); this.ds.getCollection(DBMessage.class). ensureIndex(new BasicDBObject("sender",1).append("sentAt",1) ); } // get a message public Message get(String user_id, String msg_id) { return (Message) this.ds.find(DBMessage.class) .filter("sender", user_id) .filter("_id", new ObjectId(msg_id)) .get(); }
  • 21. Message Store // save a message public Message save(String user_id, String message, Date date) { Message msg = new DBMessage( user_id, message, date ); ds.save( msg ); return msg; } // find message by author sorted by descending time public List<Message> sentBy(String user_id) { return (List) this.ds.find(DBMessage.class) .filter("sender",user_id).order("-sentAt").limit(50).asList(); } // find message by several authors sorted by descending time public List<Message> sentBy(List<String> user_ids) { return (List) this.ds.find(DBMessage.class) .field("sender").in(user_ids).order("-sentAt").limit(50).asList(); }
  • 22. Graph Store Below uses Solution #4: both a follower and followee list public class GraphStoreDAO implements GraphStore { private DBCollection friends; private DBCollection followers; public GraphStoreDAO(MongoClient mongo) { this.followers = mongo.getDB("edges").getCollection("followers"); this.friends = mongo.getDB("edges").getCollection("friends"); followers.ensureIndex( new BasicDBObject("u",1).append("o",1), new BasicDBObject("unique", true)); friends.ensureIndex( new BasicDBObject("u",1).append("o",1), new BasicDBObject("unique",true)); } // find users that are followed public List<String> friendsOf(String user_id) { List<String> theFriends = new ArrayList<String>(); DBCursor cursor = friends.find( new BasicDBObject("u",user_id), new BasicDBObject("_id",0).append("o",1)); while(cursor.hasNext()) theFriends.add( (String) cursor.next().get("o")); return theFriends; }
  • 23. Graph Store // find followers of a user public List<String> followersOf(String user_id) { List<String> theFollowers = new ArrayList<String>(); DBCursor cursor = followers.find( new BasicDBObject("u",user_id), new BasicDBObject("_id",0).append("o",1)); while(cursor.hasNext()) theFollowers.add( (String) cursor.next().get("o")); return theFollowers; } public void follow(String user_id, String toFollow) { friends.save( new BasicDBObject("u",user_id).append("o",toFollow)); followers.save( new BasicDBObject("u",toFollow).append("o",user_id)); } public void unfollow(String user_id, String toUnFollow) { friends.remove(new BasicDBObject("u", user_id).append("o", toUnFollow)); followers.remove(new BasicDBObject("u", toUnFollow).append("o", user_id)); }
  • 25. 4 Approaches (there are more) • Fan out on Read • Fan out on Write • Bucketed Fan out on Write • Inbox Caches
  • 26. Fan out on read • Generally, not the right approach • 1 document per message sent • Reading an inbox is finding all messages sent by the list of people users follow • Requires scatter-gather on sharded cluster • Then a lot of random IO on a shard to find everything
  • 27. Fan out on Read Put the followees ids in a list: > var fees = [] > db.followees.find({user: "11622712"}) .forEach( function(doc) { fees.push( doc.followee ) } ) Use $in and sort() and limit() to gather the inbox: > db.messages.find({ uid: { $in: fees } }).sort({ created: -1 }).limit(100) { "_id": ObjectId("519d627ce4b07916312f0a09"), "uid": "34660390", "username": "Dingdowas" { "_id": ObjectId("519d627ce4b07916312f0a10"), "uid": "34661390", "username": "John" } … { "_id": ObjectId("519d627ce4b07916312f0a11"), "uid": "34662390", "username": "Brenda" } … …
  • 28. Fan out on read – Send Message Shard 1 Shard 2 Shard 3 Send Message
  • 29. Fan out on read – Inbox Read Shard 1 Shard 2 Shard 3 Read Inbox
  • 30. Fan out on read > db.messages.find({ uid: { $in: fees } } ).sort({ created: -1 } ).limit(100).explain() { "cursor": "BtreeCursor uid_1_created_1 multi", "isMultiKey": false, "n": 100, "nscannedObjects": 1319, "nscanned": 1384, "nscannedObjectsAllPlans": 1425, "nscannedAllPlans": 1490, "scanAndOrder": true, // it is sorting in RAM?? "indexOnly": false, "nYields": 0, "nChunkSkips": 0, "millis": 31 // takes about 30ms }
  • 31. Fan out on read - sort
  • 32. Fan out on write • Tends to scale better than fan out on read • 1 document per recipient • Reading my inbox is just finding all of the messages with me as the recipient • Can shard on recipient, so inbox reads hit one shard • But still lots of random IO on the shard
  • 33. Fan out on Write // Shard on “recipient” and “sent” db.shardCollection(”myapp.inbox”, { ”recipient”: 1, ”sent”: 1 } ) msg = { from: "Joe”, sent: new Date(), message: ”Hi!” } // Send a message, write one message per follower for( follower in followersOf( msg.from) ) { msg.recipient = recipient db.inbox.save(msg); } // Read my inbox, super easy db.inbox.find({ recipient: ”Joe” }).sort({ sent: -1 })
  • 34. Fan out on write – Send Message Shard 1 Shard 2 Shard 3 Send Message
  • 35. Fan out on write– Read Inbox Shard 1 Shard 2 Shard 3 Read Inbox
  • 36. Bucketed Fan out on write • Each “inbox” document is an array of messages • Append a message onto “inbox” of recipient • Bucket inbox documents so there‟s not too many per document • Can shard on recipient, so inbox reads hit one shard • 1 or 2 documents to read the whole inbox
  • 37. Bucketed Fan out on Write // Shard on “owner / sequence” db.shardCollection(”myapp.buckets”, { ”owner”: 1, ”sequence”: 1 } ) db.shardCollection(”myapp.users”, { ”user_name”: 1 } ) msg = { from: "Joe”, sent: new Date(), message: ”Hi!” } // Send a message, have to find the right sequence document for( follower in followersOf( msg.from) ) { sequence = db.users.findAndModify({ query: { user_name: recipient}, update: { '$inc': { ‟msg_count': 1 }}, upsert: true, new: true }).msg_count / 50; db.buckets.update({ owner: recipient, sequence: sequence}, { $push: { „messages‟: msg } }, { upsert: true }); } // Read my inbox db.buckets.find({ owner: ”Joe” }).sort({ sequence: -1 }).limit(2)
  • 38. Bucketed fan out on write - Send Shard 1 Shard 2 Shard 3 Send Message
  • 39. Bucketed fan out on write - Read Shard 1 Shard 2 Shard 3 Read Inbox
  • 40. Cached inbox • Recent messages are fast, but older messages are slower • Store a cache of last N messages per user • Used capped array to age out older messages • Create cache lazily when user accesses inbox • Only write the message if cache exists. • Use TTL collection to time out caches for inactive users
  • 41. Cached Inbox // Shard on “owner" db.shardCollection(”myapp.caches”, { ”owner”: 1 } ) // Send a message, add it to the existing caches of followers for( follower in followersOf( msg.from) ) { db.caches.update({ owner: recipient }, { $push: { messages: { $each: [ msg ], $sort: { „sent‟: 1 }, $slice: -50 } } } ); // Read my inbox If( msgs = db.caches.find({ owner: ”Joe” }) ) { // cache document exists return msgs; } else { // fall back to "fan out on read" and cache it db.caches.save({owner:‟joe‟, messages:[]}); msgs = db.outbox.find({sender: { $in: [ followersOf( msg.from ) ] }}).sort({sent:-1}).limit(50); db.caches.update({user:‟joe‟}, {$push: msgs }); }
  • 42. Cached Inbox – Send Shard 1 Shard 2 Shard 3 Send Message
  • 43. Cached Inbox- Read Shard 1 Shard 2 Shard 3 Read Inbox 1 2 Cache Hit Cache Miss
  • 45. Tradeoffs Fan out on Read Fan out on Write Bucketed Fan out on Write Inbox Cache Send Message Performance Best Single shard Single write Good Shard per recipient Multiple writes Worst Shard per recipient Appends (grows) Mixed Depends on how many users are in cache Read Inbox Performance Worst Broadcast all shards Random reads Good Single shard Random reads Best Single shard Single read Mixed Recent messages fast Older messages are slow Data Size Best Message stored once Worst Copy per recipient Worst Copy per recipient Good Same as FoR + size of cache
  • 46. Things to consider • Lots of recipients • Fan out on write might become prohibitive • Consider introducing a “Group” • Make fan out asynchronous • Very large message size • Multiple copies of messages can be a burden • Consider single copy of message with a “pointer” per inbox • More writes than reads • Fan out on read might be okay
  • 47. Summary • Multiple ways to model status updates • Think about characteristics of your network – Number of users – Number of edges – Publish frequency – Access patterns • Try to minimize random IO
  • 48. Technical Account Manager Lead, MongoDB Inc Antoine Girbal JavaOne 2013 Thank You