3-1 From Table A-20
Sut = 470 MPa (68 kpsi), Sy = 390 MPa (57 kpsi) Ans.
3-2 From Table A-20
Sut = 620 MPa (90 kpsi), Sy = 340 MPa (49.5 kpsi) Ans.
3-3 Comparison of yield strengths:
Sut of G10500 HR is
620
470
= 1.32 times larger than SAE1020 CD Ans.
Syt of SAE1020 CD is
390
340
= 1.15 times larger than G10500 HR Ans.
From Table A-20, the ductilities (reduction in areas) show,
SAE1020 CD is
40
35
= 1.14 times larger than G10500 Ans.
The stiffness values of these materials are identical Ans.
Table A-20 Table A-5
Sut Sy Ductility Stiffness
MPa (kpsi) MPa (kpsi) R% GPa (Mpsi)
SAE1020 CD 470(68) 390 (57) 40 207(30)
UNS10500 HR 620(90) 340(495) 35 207(30)
3-4 From Table A-21
1040 Q&T ¯Sy = 593 (86) MPa (kpsi) at 205◦
C (400◦
F) Ans.
3-5 From Table A-21
1040 Q&T R = 65% at 650◦
C (1200◦
F) Ans.
3-6 Using Table A-5, the specific strengths are:
UNS G10350 HR steel:
Sy
W
=
39.5(103
)
0.282
= 1.40(105
) in Ans.
2024 T4 aluminum:
Sy
W
=
43(103
)
0.098
= 4.39(105
) in Ans.
Ti-6Al-4V titanium:
Sy
W
=
140(103
)
0.16
= 8.75(105
) in Ans.
ASTM 30 gray cast iron has no yield strength. Ans.
Chapter 3
shi20396_ch03.qxd 8/18/03 10:18 AM Page 40
Chapter 3 41
3-7 The specific moduli are:
UNS G10350 HR steel:
E
W
=
30(106
)
0.282
= 1.06(108
) in Ans.
2024 T4 aluminum:
E
W
=
10.3(106
)
0.098
= 1.05(108
) in Ans.
Ti-6Al-4V titanium:
E
W
=
16.5(106
)
0.16
= 1.03(108
) in Ans.
Gray cast iron:
E
W
=
14.5(106
)
0.26
= 5.58(107
) in Ans.
3-8 2G(1 + ν) = E ⇒ ν =
E − 2G
2G
From Table A-5
Steel: ν =
30 − 2(11.5)
2(11.5)
= 0.304 Ans.
Aluminum: ν =
10.4 − 2(3.90)
2(3.90)
= 0.333 Ans.
Beryllium copper: ν =
18 − 2(7)
2(7)
= 0.286 Ans.
Gray cast iron: ν =
14.5 − 2(6)
2(6)
= 0.208 Ans.
3-9
0
10
0 0.002
0.1
0.004
0.2
0.006
0.3
0.008
0.4
0.010
0.5
0.012
0.6
0.014
0.7
0.016
0.8
(Lower curve)
(Upper curve)
20
30
40
50
StressP͞A0kpsi
Strain, ⑀
60
70
80
E
Y
U
Su ϭ 85.5 kpsi Ans.
E ϭ 90͞0.003 ϭ 30 000 kpsi Ans.
Sy ϭ 45.5 kpsi Ans.
R ϭ (100) ϭ 45.8% Ans.
A0 Ϫ AF
A0
ϭ
0.1987 Ϫ 0.1077
0.1987
⑀ ϭ
⌬l
l0
ϭ
l Ϫ l0
l0
l
l0
ϭ Ϫ 1
A
A0
ϭ Ϫ 1
shi20396_ch03.qxd 8/18/03 10:18 AM Page 41
42 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design
3-10 To plot σtrue vs. ε, the following equations are applied to the data.
A0 =
π(0.503)2
4
= 0.1987 in2
Eq. (3-4) ε = ln
l
l0
for 0 ≤ L ≤ 0.0028 in
ε = ln
A0
A
for L > 0.0028 in
σtrue =
P
A
The results are summarized in the table below and plotted on the next page.
The last 5 points of data are used to plot log σ vs log ε
The curve fit gives m = 0.2306
log σ0 = 5.1852 ⇒ σ0 = 153.2 kpsi
Ans.
For 20% cold work, Eq. (3-10) and Eq. (3-13) give,
A = A0(1 − W) = 0.1987(1 − 0.2) = 0.1590 in2
ε = ln
A0
A
= ln
0.1987
0.1590
= 0.2231
Eq. (3-14):
Sy = σ0εm
= 153.2(0.2231)0.2306
= 108.4 kpsi Ans.
Eq. (3-15), with Su = 85.5 kpsi from Prob. 3-9,
Su =
Su
1 − W
=
85.5
1 − 0.2
= 106.9 kpsi Ans.
P L A ε σtrue log ε log σtrue
0 0 0.198713 0 0
1000 0.0004 0.198713 0.0002 5032.388 −3.69901 3.701774
2000 0.0006 0.198713 0.0003 10064.78 −3.52294 4.002804
3000 0.0010 0.198713 0.0005 15097.17 −3.30114 4.178895
4000 0.0013 0.198713 0.00065 20129.55 −3.18723 4.303834
7000 0.0023 0.198713 0.001149 35226.72 −2.93955 4.546872
8400 0.0028 0.198713 0.001399 42272.06 −2.85418 4.626053
8800 0.0036 0.1984 0.001575 44354.84 −2.80261 4.646941
9200 0.0089 0.1978 0.004604 46511.63 −2.33685 4.667562
9100 0.1963 0.012216 46357.62 −1.91305 4.666121
13200 0.1924 0.032284 68607.07 −1.49101 4.836369
15200 0.1875 0.058082 81066.67 −1.23596 4.908842
17000 0.1563 0.240083 108765.2 −0.61964 5.03649
16400 0.1307 0.418956 125478.2 −0.37783 5.098568
14800 0.1077 0.612511 137418.8 −0.21289 5.138046
shi20396_ch03.qxd 8/18/03 10:18 AM Page 42
Chapter 3 43
3-11 Tangent modulus at σ = 0 is
E0 =
σ
ε
.
=
5000 − 0
0.2(10−3) − 0
= 25(106
) psi
At σ = 20 kpsi
E20
.
=
(26 − 19)(103
)
(1.5 − 1)(10−3)
= 14.0(106
) psi Ans.
ε(10−3
) σ (kpsi)
0 0
0.20 5
0.44 10
0.80 16
1.0 19
1.5 26
2.0 32
2.8 40
3.4 46
4.0 49
5.0 54
3-12 From Prob. 2-8, for y = a1x + a2x2
a1 =
y x3
− xy x2
x x3 − ( x2)2
a2 =
x xy − y x2
x x3 − ( x2)2
log ␧
log␴
y ϭ 0.2306x ϩ 5.1852
4.8
4.9
5
5.1
5.2
Ϫ1.6 Ϫ1.4 Ϫ1.2 Ϫ1 Ϫ0.8 Ϫ0.6 Ϫ0.4 Ϫ0.2 0
␧true
␴true(psi)
0
20000
40000
60000
80000
100000
120000
140000
160000
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
␧ (10Ϫ3
)
(Sy)0.001 ϭ˙ 35 kpsi Ans.
␴(kpsi)
0
10
20
30
40
50
60
0 1 2 3 4 5
shi20396_ch03.qxd 8/18/03 10:18 AM Page 43
44 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design
Let x represent ε(10−3
) and y represent σ (kpsi),
x y x2
x3
xy
0 0 0 0 0
0.2 5 0.04 0.008 1.0
0.44 10 0.1936 0.085184 4.4
0.80 16 0.64 0.512 12.8
1.0 19 1.00 1.000 19.0
1.5 26 2.25 3.375 39.0
2.0 32 4.00 8.000 64.0
2.8 40 7.84 21.952 112.0
3.4 46 11.56 39.304 156.4
4.0 49 16.00 64.000 196.0
5.0 54 25.00 125.000 270.0
= 21.14 297 68.5236 263.2362 874.6
Substituting,
a1 =
297(263.2362) − 874.6(68.5236)
21.14(263.2362) − (68.5236)2
= 20.993 67
a2 =
21.14(874.6) − 297(68.5236)
21.14(263.2362) − (68.5236)2
= −2.142 42
The tangent modulus is
dy
dx
=
dσ
dε
= 20.993 67 − 2(2.142 42)x = 20.993 67 − 4.284 83x
At σ = 0, E0 = 20.99 Mpsi Ans.
At σ = 20 kpsi
20 = 20.993 67x − 2.142 42x2
⇒ x = 1.069, 8.73
Taking the first root, ε = 1.069 and the tangent modulus is
E20 = 20.993 67 − 4.284 83(1.069) = 16.41 Mpsi Ans.
Determine the equation for the 0.1 percent offset line
y = 20.99x + b at y = 0, x = 1 ∴ b = −20.99
y = 20.99x − 20.99 = 20.993 67x − 2.142 42x2
2.142 42x2
− 20.99 = 0 ⇒ x = 3.130
(Sy)0.001 = 20.99(3.13) − 2.142(3.13)2
= 44.7 kpsi Ans.
3-13 Since |εo| = |εi |
ln
R + h
R + N
= ln
R
R + N
= −ln
R + N
R
R + h
R + N
=
R + N
R
(R + N)2
= R(R + h)
From which, N2
+ 2RN − Rh = 0
shi20396_ch03.qxd 8/18/03 10:18 AM Page 44
Chapter 3 45
The roots are: N = R −1 ± 1 +
h
R
1/2
The + sign being significant,
N = R 1 +
h
R
1/2
− 1 Ans.
Substitute for N in
εo = ln
R + h
R + N
Gives ε0 = ln





R + h
R + R 1 +
h
R
1/2
− R





= ln 1 +
h
R
1/2
Ans.
These constitute a useful pair of equations in cold-forming situations, allowing the surface
strains to be found so that cold-working strength enhancement can be estimated.
3-14
τ =
16T
πd3
=
16T
π(12.5)3
10−6
(10−3)3
= 2.6076T MPa
γ =
θ◦ π
180
r
L
=
θ◦ π
180
(12.5)
350
= 6.2333(10−4
)θ◦
For G, take the first 10 data points for the linear part of the curve.
θ γ (10−3
) τ (MPa)
T (deg.) γ (10−3
) τ (MPa) x y x2
xy
0 0 0 0 0 0 0 0
7.7 0.38 0.236865 20.07852 0.236865 20.07852 0.056105 4.7559
15.3 0.80 0.498664 39.89628 0.498664 39.89628 0.248666 19.8948
23.0 1.24 0.772929 59.9748 0.772929 59.9748 0.597420 46.3563
30.7 1.64 1.022261 80.05332 1.022261 80.05332 1.045018 81.8354
38.3 2.01 1.252893 99.87108 1.252893 99.87108 1.569742 125.1278
46.0 2.40 1.495992 119.9496 1.495992 119.9496 2.237992 179.4436
53.7 2.85 1.776491 140.0281 1.776491 140.0281 3.155918 248.7586
61.4 3.25 2.025823 160.1066 2.025823 160.1066 4.103957 324.3476
69.0 3.80 2.368654 179.9244 2.368654 179.9244 5.610522 426.1786
76.7 4.50 2.804985 200.0029 = 11.45057 899.8828 18.62534 1456.6986
80.0 5.10 3.178983 208.608
85.0 6.48 4.039178 221.646
90.0 8.01 4.992873 234.684
95.0 9.58 5.971501 247.722
100.0 11.18 6.968829 260.76
shi20396_ch03.qxd 8/18/03 10:18 AM Page 45
46 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design
y = mx + b, τ = y, γ = x where m is the shear modulus G,
m =
N xy − x y
N x2 − ( x)2
= 77.3
MPa
10−3
= 77.3 GPa Ans.
b =
y − m x
N
= 1.462 MPa
From curve Sys
.
= 200 MPa Ans.
Note since τ is not uniform, the offset yield does not apply, so we are using the elastic
limit as an approximation.
3-15
x f f x f x2
38.5 2 77.0 2964.50
39.5 9 355.5 14042.25
40.5 30 1215.0 49207.50
41.5 65 2697.5 111946.30
42.5 101 4292.5 182431.30
43.5 112 4872.0 211932.00
44.5 90 4005.0 178222.50
45.5 54 2457.0 111793.50
46.5 25 1162.5 54056.25
47.5 9 427.5 20306.25
48.5 2 97.0 4704.50
49.5 1 49.5 2 450.25
= 528.0 500 21708.0 944057.00
¯x = 21 708/500 = 43.416, ˆσx =
944 057 − (21 7082/500)
500 − 1
= 1.7808
Cx = 1.7808/43.416 = 0.041 02,
¯y = ln 43.416 − ln(1 + 0.041 022
) = 3.7691
␥ (10Ϫ3
)
␶(MPa)
0
50
100
150
200
250
300
0 1 2 3 4 5 6 7
shi20396_ch03.qxd 8/18/03 10:18 AM Page 46
Chapter 3 47
ˆσy = ln(1 + 0.041 022) = 0.0410,
g(x) =
1
x(0.0410)
√
2π
exp −
1
2
ln x − 3.7691
0.0410
2
x f/(Nw) g(x) x f/(Nw) g(x)
38 0 0.001488 45 0.180 0.142268
38 0.004 0.001488 45 0.108 0.142268
39 0.004 0.009057 46 0.108 0.073814
39 0.018 0.009057 46 0.050 0.073814
40 0.018 0.035793 47 0.050 0.029410
40 0.060 0.035793 47 0.018 0.029410
41 0.060 0.094704 48 0.018 0.009152
41 0.130 0.094704 48 0.004 0.009152
42 0.130 0.172538 49 0.004 0.002259
42 0.202 0.172538 49 0.002 0.002259
43 0.202 0.222074 50 0.002 0.000449
43 0.224 0.222074 50 0 0.000449
44 0.224 0.206748
44 0.180 0.206748
Sy = LN(43.42, 1.781) kpsi Ans.
3-16 From Table A-22
AISI 1212 Sy = 28.0 kpsi, σf = 106 kpsi, Sut = 61.5 kpsi
σ0 = 110 kpsi, m = 0.24, εf = 0.85
From Eq. (3-12) εu = m = 0.24
Eq. (3-10)
A0
Ai
=
1
1 − W
=
1
1 − 0.2
= 1.25
Eq. (3-13) εi = ln 1.25 = 0.2231 ⇒ εi < εu
x
f(x)
0
0.05
0.1
0.15
0.2
0.25
35 40 45 50
Histogram
PDF
shi20396_ch03.qxd 8/18/03 10:18 AM Page 47
48 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design
Eq. (3-14) Sy = σ0εm
i = 110(0.2231)0.24
= 76.7 kpsi Ans.
Eq. (3-15) Su =
Su
1 − W
=
61.5
1 − 0.2
= 76.9 kpsi Ans.
3-17 For HB = 250,
Eq. (3-17) Su = 0.495 (250) = 124 kpsi
= 3.41 (250) = 853 MPa
Ans.
3-18 For the data given,
HB = 2530 H2
B = 640 226
¯HB =
2530
10
= 253 ˆσH B =
640 226 − (2530)2/10
9
= 3.887
Eq. (3-17)
¯Su = 0.495(253) = 125.2 kpsi Ans.
¯σsu = 0.495(3.887) = 1.92 kpsi Ans.
3-19 From Prob. 3-18, ¯HB = 253 and ˆσHB = 3.887
Eq. (3-18)
¯Su = 0.23(253) − 12.5 = 45.7 kpsi Ans.
ˆσsu = 0.23(3.887) = 0.894 kpsi Ans.
3-20
(a) uR
.
=
45.52
2(30)
= 34.5 in · lbf/in3
Ans.
(b)
P L A A0/A − 1 ε σ = P/A0
0 0 0 0
1000 0.0004 0.0002 5032.39
2000 0.0006 0.0003 10064.78
3000 0.0010 0.0005 15097.17
4000 0.0013 0.00065 20129.55
7000 0.0023 0.00115 35226.72
8400 0.0028 0.0014 42272.06
8800 0.0036 0.0018 44285.02
9200 0.0089 0.00445 46297.97
9100 0.1963 0.012291 0.012291 45794.73
13200 0.1924 0.032811 0.032811 66427.53
15200 0.1875 0.059802 0.059802 76492.30
17000 0.1563 0.271355 0.271355 85550.60
16400 0.1307 0.520373 0.520373 82531.17
14800 0.1077 0.845059 0.845059 74479.35
shi20396_ch03.qxd 8/18/03 10:18 AM Page 48
Chapter 3 49
uT
.
=
5
i=1
Ai =
1
2
(43 000)(0.001 5) + 45 000(0.004 45 − 0.001 5)
+
1
2
(45 000 + 76 500)(0.059 8 − 0.004 45)
+81 000(0.4 − 0.059 8) + 80 000(0.845 − 0.4)
.
= 66.7(103
)in · lbf/in3
Ans.
␧
␴
0
20000
10000
30000
40000
50000
60000
70000
80000
90000
0 0.2 0.4 0.6 0.8
A3
A4 A5
Last 6 data points
First 9 data points
␧
␴
0
A1 A215000
10000
5000
20000
25000
30000
35000
40000
45000
50000
0 0.0020.001 0.003 0.004 0.005
␧
␴
0
20000
10000
30000
40000
50000
60000
70000
80000
90000
0 0.2 0.4
All data points
0.6 0.8
shi20396_ch03.qxd 8/18/03 10:18 AM Page 49

Capítulo 03 materiais

  • 1.
    3-1 From TableA-20 Sut = 470 MPa (68 kpsi), Sy = 390 MPa (57 kpsi) Ans. 3-2 From Table A-20 Sut = 620 MPa (90 kpsi), Sy = 340 MPa (49.5 kpsi) Ans. 3-3 Comparison of yield strengths: Sut of G10500 HR is 620 470 = 1.32 times larger than SAE1020 CD Ans. Syt of SAE1020 CD is 390 340 = 1.15 times larger than G10500 HR Ans. From Table A-20, the ductilities (reduction in areas) show, SAE1020 CD is 40 35 = 1.14 times larger than G10500 Ans. The stiffness values of these materials are identical Ans. Table A-20 Table A-5 Sut Sy Ductility Stiffness MPa (kpsi) MPa (kpsi) R% GPa (Mpsi) SAE1020 CD 470(68) 390 (57) 40 207(30) UNS10500 HR 620(90) 340(495) 35 207(30) 3-4 From Table A-21 1040 Q&T ¯Sy = 593 (86) MPa (kpsi) at 205◦ C (400◦ F) Ans. 3-5 From Table A-21 1040 Q&T R = 65% at 650◦ C (1200◦ F) Ans. 3-6 Using Table A-5, the specific strengths are: UNS G10350 HR steel: Sy W = 39.5(103 ) 0.282 = 1.40(105 ) in Ans. 2024 T4 aluminum: Sy W = 43(103 ) 0.098 = 4.39(105 ) in Ans. Ti-6Al-4V titanium: Sy W = 140(103 ) 0.16 = 8.75(105 ) in Ans. ASTM 30 gray cast iron has no yield strength. Ans. Chapter 3 shi20396_ch03.qxd 8/18/03 10:18 AM Page 40
  • 2.
    Chapter 3 41 3-7The specific moduli are: UNS G10350 HR steel: E W = 30(106 ) 0.282 = 1.06(108 ) in Ans. 2024 T4 aluminum: E W = 10.3(106 ) 0.098 = 1.05(108 ) in Ans. Ti-6Al-4V titanium: E W = 16.5(106 ) 0.16 = 1.03(108 ) in Ans. Gray cast iron: E W = 14.5(106 ) 0.26 = 5.58(107 ) in Ans. 3-8 2G(1 + ν) = E ⇒ ν = E − 2G 2G From Table A-5 Steel: ν = 30 − 2(11.5) 2(11.5) = 0.304 Ans. Aluminum: ν = 10.4 − 2(3.90) 2(3.90) = 0.333 Ans. Beryllium copper: ν = 18 − 2(7) 2(7) = 0.286 Ans. Gray cast iron: ν = 14.5 − 2(6) 2(6) = 0.208 Ans. 3-9 0 10 0 0.002 0.1 0.004 0.2 0.006 0.3 0.008 0.4 0.010 0.5 0.012 0.6 0.014 0.7 0.016 0.8 (Lower curve) (Upper curve) 20 30 40 50 StressP͞A0kpsi Strain, ⑀ 60 70 80 E Y U Su ϭ 85.5 kpsi Ans. E ϭ 90͞0.003 ϭ 30 000 kpsi Ans. Sy ϭ 45.5 kpsi Ans. R ϭ (100) ϭ 45.8% Ans. A0 Ϫ AF A0 ϭ 0.1987 Ϫ 0.1077 0.1987 ⑀ ϭ ⌬l l0 ϭ l Ϫ l0 l0 l l0 ϭ Ϫ 1 A A0 ϭ Ϫ 1 shi20396_ch03.qxd 8/18/03 10:18 AM Page 41
  • 3.
    42 Solutions Manual• Instructor’s Solution Manual to Accompany Mechanical Engineering Design 3-10 To plot σtrue vs. ε, the following equations are applied to the data. A0 = π(0.503)2 4 = 0.1987 in2 Eq. (3-4) ε = ln l l0 for 0 ≤ L ≤ 0.0028 in ε = ln A0 A for L > 0.0028 in σtrue = P A The results are summarized in the table below and plotted on the next page. The last 5 points of data are used to plot log σ vs log ε The curve fit gives m = 0.2306 log σ0 = 5.1852 ⇒ σ0 = 153.2 kpsi Ans. For 20% cold work, Eq. (3-10) and Eq. (3-13) give, A = A0(1 − W) = 0.1987(1 − 0.2) = 0.1590 in2 ε = ln A0 A = ln 0.1987 0.1590 = 0.2231 Eq. (3-14): Sy = σ0εm = 153.2(0.2231)0.2306 = 108.4 kpsi Ans. Eq. (3-15), with Su = 85.5 kpsi from Prob. 3-9, Su = Su 1 − W = 85.5 1 − 0.2 = 106.9 kpsi Ans. P L A ε σtrue log ε log σtrue 0 0 0.198713 0 0 1000 0.0004 0.198713 0.0002 5032.388 −3.69901 3.701774 2000 0.0006 0.198713 0.0003 10064.78 −3.52294 4.002804 3000 0.0010 0.198713 0.0005 15097.17 −3.30114 4.178895 4000 0.0013 0.198713 0.00065 20129.55 −3.18723 4.303834 7000 0.0023 0.198713 0.001149 35226.72 −2.93955 4.546872 8400 0.0028 0.198713 0.001399 42272.06 −2.85418 4.626053 8800 0.0036 0.1984 0.001575 44354.84 −2.80261 4.646941 9200 0.0089 0.1978 0.004604 46511.63 −2.33685 4.667562 9100 0.1963 0.012216 46357.62 −1.91305 4.666121 13200 0.1924 0.032284 68607.07 −1.49101 4.836369 15200 0.1875 0.058082 81066.67 −1.23596 4.908842 17000 0.1563 0.240083 108765.2 −0.61964 5.03649 16400 0.1307 0.418956 125478.2 −0.37783 5.098568 14800 0.1077 0.612511 137418.8 −0.21289 5.138046 shi20396_ch03.qxd 8/18/03 10:18 AM Page 42
  • 4.
    Chapter 3 43 3-11Tangent modulus at σ = 0 is E0 = σ ε . = 5000 − 0 0.2(10−3) − 0 = 25(106 ) psi At σ = 20 kpsi E20 . = (26 − 19)(103 ) (1.5 − 1)(10−3) = 14.0(106 ) psi Ans. ε(10−3 ) σ (kpsi) 0 0 0.20 5 0.44 10 0.80 16 1.0 19 1.5 26 2.0 32 2.8 40 3.4 46 4.0 49 5.0 54 3-12 From Prob. 2-8, for y = a1x + a2x2 a1 = y x3 − xy x2 x x3 − ( x2)2 a2 = x xy − y x2 x x3 − ( x2)2 log ␧ log␴ y ϭ 0.2306x ϩ 5.1852 4.8 4.9 5 5.1 5.2 Ϫ1.6 Ϫ1.4 Ϫ1.2 Ϫ1 Ϫ0.8 Ϫ0.6 Ϫ0.4 Ϫ0.2 0 ␧true ␴true(psi) 0 20000 40000 60000 80000 100000 120000 140000 160000 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 ␧ (10Ϫ3 ) (Sy)0.001 ϭ˙ 35 kpsi Ans. ␴(kpsi) 0 10 20 30 40 50 60 0 1 2 3 4 5 shi20396_ch03.qxd 8/18/03 10:18 AM Page 43
  • 5.
    44 Solutions Manual• Instructor’s Solution Manual to Accompany Mechanical Engineering Design Let x represent ε(10−3 ) and y represent σ (kpsi), x y x2 x3 xy 0 0 0 0 0 0.2 5 0.04 0.008 1.0 0.44 10 0.1936 0.085184 4.4 0.80 16 0.64 0.512 12.8 1.0 19 1.00 1.000 19.0 1.5 26 2.25 3.375 39.0 2.0 32 4.00 8.000 64.0 2.8 40 7.84 21.952 112.0 3.4 46 11.56 39.304 156.4 4.0 49 16.00 64.000 196.0 5.0 54 25.00 125.000 270.0 = 21.14 297 68.5236 263.2362 874.6 Substituting, a1 = 297(263.2362) − 874.6(68.5236) 21.14(263.2362) − (68.5236)2 = 20.993 67 a2 = 21.14(874.6) − 297(68.5236) 21.14(263.2362) − (68.5236)2 = −2.142 42 The tangent modulus is dy dx = dσ dε = 20.993 67 − 2(2.142 42)x = 20.993 67 − 4.284 83x At σ = 0, E0 = 20.99 Mpsi Ans. At σ = 20 kpsi 20 = 20.993 67x − 2.142 42x2 ⇒ x = 1.069, 8.73 Taking the first root, ε = 1.069 and the tangent modulus is E20 = 20.993 67 − 4.284 83(1.069) = 16.41 Mpsi Ans. Determine the equation for the 0.1 percent offset line y = 20.99x + b at y = 0, x = 1 ∴ b = −20.99 y = 20.99x − 20.99 = 20.993 67x − 2.142 42x2 2.142 42x2 − 20.99 = 0 ⇒ x = 3.130 (Sy)0.001 = 20.99(3.13) − 2.142(3.13)2 = 44.7 kpsi Ans. 3-13 Since |εo| = |εi | ln R + h R + N = ln R R + N = −ln R + N R R + h R + N = R + N R (R + N)2 = R(R + h) From which, N2 + 2RN − Rh = 0 shi20396_ch03.qxd 8/18/03 10:18 AM Page 44
  • 6.
    Chapter 3 45 Theroots are: N = R −1 ± 1 + h R 1/2 The + sign being significant, N = R 1 + h R 1/2 − 1 Ans. Substitute for N in εo = ln R + h R + N Gives ε0 = ln      R + h R + R 1 + h R 1/2 − R      = ln 1 + h R 1/2 Ans. These constitute a useful pair of equations in cold-forming situations, allowing the surface strains to be found so that cold-working strength enhancement can be estimated. 3-14 τ = 16T πd3 = 16T π(12.5)3 10−6 (10−3)3 = 2.6076T MPa γ = θ◦ π 180 r L = θ◦ π 180 (12.5) 350 = 6.2333(10−4 )θ◦ For G, take the first 10 data points for the linear part of the curve. θ γ (10−3 ) τ (MPa) T (deg.) γ (10−3 ) τ (MPa) x y x2 xy 0 0 0 0 0 0 0 0 7.7 0.38 0.236865 20.07852 0.236865 20.07852 0.056105 4.7559 15.3 0.80 0.498664 39.89628 0.498664 39.89628 0.248666 19.8948 23.0 1.24 0.772929 59.9748 0.772929 59.9748 0.597420 46.3563 30.7 1.64 1.022261 80.05332 1.022261 80.05332 1.045018 81.8354 38.3 2.01 1.252893 99.87108 1.252893 99.87108 1.569742 125.1278 46.0 2.40 1.495992 119.9496 1.495992 119.9496 2.237992 179.4436 53.7 2.85 1.776491 140.0281 1.776491 140.0281 3.155918 248.7586 61.4 3.25 2.025823 160.1066 2.025823 160.1066 4.103957 324.3476 69.0 3.80 2.368654 179.9244 2.368654 179.9244 5.610522 426.1786 76.7 4.50 2.804985 200.0029 = 11.45057 899.8828 18.62534 1456.6986 80.0 5.10 3.178983 208.608 85.0 6.48 4.039178 221.646 90.0 8.01 4.992873 234.684 95.0 9.58 5.971501 247.722 100.0 11.18 6.968829 260.76 shi20396_ch03.qxd 8/18/03 10:18 AM Page 45
  • 7.
    46 Solutions Manual• Instructor’s Solution Manual to Accompany Mechanical Engineering Design y = mx + b, τ = y, γ = x where m is the shear modulus G, m = N xy − x y N x2 − ( x)2 = 77.3 MPa 10−3 = 77.3 GPa Ans. b = y − m x N = 1.462 MPa From curve Sys . = 200 MPa Ans. Note since τ is not uniform, the offset yield does not apply, so we are using the elastic limit as an approximation. 3-15 x f f x f x2 38.5 2 77.0 2964.50 39.5 9 355.5 14042.25 40.5 30 1215.0 49207.50 41.5 65 2697.5 111946.30 42.5 101 4292.5 182431.30 43.5 112 4872.0 211932.00 44.5 90 4005.0 178222.50 45.5 54 2457.0 111793.50 46.5 25 1162.5 54056.25 47.5 9 427.5 20306.25 48.5 2 97.0 4704.50 49.5 1 49.5 2 450.25 = 528.0 500 21708.0 944057.00 ¯x = 21 708/500 = 43.416, ˆσx = 944 057 − (21 7082/500) 500 − 1 = 1.7808 Cx = 1.7808/43.416 = 0.041 02, ¯y = ln 43.416 − ln(1 + 0.041 022 ) = 3.7691 ␥ (10Ϫ3 ) ␶(MPa) 0 50 100 150 200 250 300 0 1 2 3 4 5 6 7 shi20396_ch03.qxd 8/18/03 10:18 AM Page 46
  • 8.
    Chapter 3 47 ˆσy= ln(1 + 0.041 022) = 0.0410, g(x) = 1 x(0.0410) √ 2π exp − 1 2 ln x − 3.7691 0.0410 2 x f/(Nw) g(x) x f/(Nw) g(x) 38 0 0.001488 45 0.180 0.142268 38 0.004 0.001488 45 0.108 0.142268 39 0.004 0.009057 46 0.108 0.073814 39 0.018 0.009057 46 0.050 0.073814 40 0.018 0.035793 47 0.050 0.029410 40 0.060 0.035793 47 0.018 0.029410 41 0.060 0.094704 48 0.018 0.009152 41 0.130 0.094704 48 0.004 0.009152 42 0.130 0.172538 49 0.004 0.002259 42 0.202 0.172538 49 0.002 0.002259 43 0.202 0.222074 50 0.002 0.000449 43 0.224 0.222074 50 0 0.000449 44 0.224 0.206748 44 0.180 0.206748 Sy = LN(43.42, 1.781) kpsi Ans. 3-16 From Table A-22 AISI 1212 Sy = 28.0 kpsi, σf = 106 kpsi, Sut = 61.5 kpsi σ0 = 110 kpsi, m = 0.24, εf = 0.85 From Eq. (3-12) εu = m = 0.24 Eq. (3-10) A0 Ai = 1 1 − W = 1 1 − 0.2 = 1.25 Eq. (3-13) εi = ln 1.25 = 0.2231 ⇒ εi < εu x f(x) 0 0.05 0.1 0.15 0.2 0.25 35 40 45 50 Histogram PDF shi20396_ch03.qxd 8/18/03 10:18 AM Page 47
  • 9.
    48 Solutions Manual• Instructor’s Solution Manual to Accompany Mechanical Engineering Design Eq. (3-14) Sy = σ0εm i = 110(0.2231)0.24 = 76.7 kpsi Ans. Eq. (3-15) Su = Su 1 − W = 61.5 1 − 0.2 = 76.9 kpsi Ans. 3-17 For HB = 250, Eq. (3-17) Su = 0.495 (250) = 124 kpsi = 3.41 (250) = 853 MPa Ans. 3-18 For the data given, HB = 2530 H2 B = 640 226 ¯HB = 2530 10 = 253 ˆσH B = 640 226 − (2530)2/10 9 = 3.887 Eq. (3-17) ¯Su = 0.495(253) = 125.2 kpsi Ans. ¯σsu = 0.495(3.887) = 1.92 kpsi Ans. 3-19 From Prob. 3-18, ¯HB = 253 and ˆσHB = 3.887 Eq. (3-18) ¯Su = 0.23(253) − 12.5 = 45.7 kpsi Ans. ˆσsu = 0.23(3.887) = 0.894 kpsi Ans. 3-20 (a) uR . = 45.52 2(30) = 34.5 in · lbf/in3 Ans. (b) P L A A0/A − 1 ε σ = P/A0 0 0 0 0 1000 0.0004 0.0002 5032.39 2000 0.0006 0.0003 10064.78 3000 0.0010 0.0005 15097.17 4000 0.0013 0.00065 20129.55 7000 0.0023 0.00115 35226.72 8400 0.0028 0.0014 42272.06 8800 0.0036 0.0018 44285.02 9200 0.0089 0.00445 46297.97 9100 0.1963 0.012291 0.012291 45794.73 13200 0.1924 0.032811 0.032811 66427.53 15200 0.1875 0.059802 0.059802 76492.30 17000 0.1563 0.271355 0.271355 85550.60 16400 0.1307 0.520373 0.520373 82531.17 14800 0.1077 0.845059 0.845059 74479.35 shi20396_ch03.qxd 8/18/03 10:18 AM Page 48
  • 10.
    Chapter 3 49 uT . = 5 i=1 Ai= 1 2 (43 000)(0.001 5) + 45 000(0.004 45 − 0.001 5) + 1 2 (45 000 + 76 500)(0.059 8 − 0.004 45) +81 000(0.4 − 0.059 8) + 80 000(0.845 − 0.4) . = 66.7(103 )in · lbf/in3 Ans. ␧ ␴ 0 20000 10000 30000 40000 50000 60000 70000 80000 90000 0 0.2 0.4 0.6 0.8 A3 A4 A5 Last 6 data points First 9 data points ␧ ␴ 0 A1 A215000 10000 5000 20000 25000 30000 35000 40000 45000 50000 0 0.0020.001 0.003 0.004 0.005 ␧ ␴ 0 20000 10000 30000 40000 50000 60000 70000 80000 90000 0 0.2 0.4 All data points 0.6 0.8 shi20396_ch03.qxd 8/18/03 10:18 AM Page 49