The CQL3/Cassandra 
Mapping 
John Berryman 
OpenSource Connections 
OpenSource Connections
Outline 
• What Problem does CQL Solve? 
• The Cassandra Data Model 
• Pain Points of “Old” Cassandra 
• Introducing CQL 
• Understanding the CQL/Cassandra Mapping 
• CQL for Sets, Lists, and Maps 
• Putting it All Together 
OpenSource Connections
What Problem does CQL Solve? 
• The Awesomeness that is Cassandra: 
o Distributed columnar data store 
o No single point of failure 
o Optimized for availability (though “Tunably” consistent) 
o Optimized for writes 
o Easily maintainable 
o Almost infinitely scalable 
. 
OpenSource Connections
What Problem does CQL Solve? 
• The Awesomeness that is Cassandra: 
o Distributed columnar data store 
o No single point of failure 
o Optimized for availability (though “Tunably” consistent) 
o Optimized for writes 
o Easily maintainable 
o Almost infinitely scalable 
• Cassandra’s usability challenges 
o NoSQL – “Where are my JOINS? No Schema? De-normalize!?” 
o BigTable – “Tables with millions of columns!?” 
. 
OpenSource Connections
What Problem does CQL Solve? 
• The Awesomeness that is Cassandra: 
o Distributed columnar data store 
o No single point of failure 
o Optimized for availability (though “Tunably” consistent) 
o Optimized for writes 
o Easily maintainable 
o Almost infinitely scalable 
• Cassandra’s usability challenges 
o NoSQL – “Where are my JOINS? No Schema? De-normalize!?” 
o BigTable – “Tables with millions of columns!?” 
• CQL saves the day! 
o A best-practices interface to Cassandra 
o Uses familiar SQL-like language 
OpenSource Connections
C* Data Model 
OpenSource Connections 
Keyspace
C* Data Model 
Keyspace 
Column Family Column Family 
OpenSource Connections
C* Data Model 
Keyspace 
Column Family Column Family 
OpenSource Connections
C* Data Model 
Keyspace 
Column Family Column Family 
OpenSource Connections
C* Data Model 
OpenSource Connections 
Row Key
C* Data Model 
OpenSource Connections 
Row Key 
Column 
Column Name 
Column Value 
(or Tombstone) 
Timestamp 
Time-to-live
C* Data Model 
● Row Key, Column Name, Column 
OpenSource Connections 
Value have types 
● Column Name has comparator 
● RowKey has partitioner 
● Rows can have any number of 
columns - even in same column family 
● Rows can have many columns 
● Column Values can be omitted 
● Time-to-live is useful! 
● Tombstones 
Row Key 
Column 
Column Name 
Column Value 
(or Tombstone) 
Timestamp 
Time-to-live
C* Data Model: Writes 
SSTable 
SSTable 
SSTable 
OpenSource Connections 
Mem 
Table 
CommitLog 
Row 
Cache 
● Insert into 
MemTable 
● Dump to 
CommitLog 
● No read 
● Very Fast! 
● Blocks on CPU 
before O/I! 
Key 
Cache 
SSTable 
Key 
Cache 
Key 
Cache 
Key 
Cache 
Bloom 
Filter
C* Data Model: Writes 
SSTable 
SSTable 
SSTable 
OpenSource Connections 
Mem 
Table 
CommitLog 
Row 
Cache 
● Insert into 
MemTable 
● Dump to 
CommitLog 
● No read 
● Very Fast! 
● Blocks on CPU 
before O/I! 
Key 
Cache 
SSTable 
Key 
Cache 
Key 
Cache 
Key 
Cache 
Bloom 
Filter
C* Data Model: Writes 
SSTable 
SSTable 
SSTable 
OpenSource Connections 
Mem 
Table 
CommitLog 
Row 
Cache 
● Insert into 
MemTable 
● Dump to 
CommitLog 
● No read 
● Very Fast! 
● Blocks on CPU 
before O/I! 
Key 
Cache 
SSTable 
Key 
Cache 
Key 
Cache 
Key 
Cache 
Bloom 
Filter
SSTable 
SSTable 
SSTable 
OpenSource Connections 
Mem 
Table 
CommitLog 
Row 
Cache 
Key 
Cache 
SSTable 
Key 
Cache 
Key 
Cache 
Key 
Cache 
Bloom 
Filter 
● Get values from Memtable 
● Get values from row 
cache if present 
● Otherwise check bloom 
filter to find appropriate 
SSTables 
● Check Key Cache for fast 
SSTable Search 
● Get values from SSTables 
● Repopulate Row Cache 
● Super Fast Col. retrieval 
● Fast row slicing 
C* Data Model: 
Reads
SSTable 
SSTable 
SSTable 
OpenSource Connections 
Mem 
Table 
CommitLog 
Row 
Cache 
Key 
Cache 
SSTable 
Key 
Cache 
Key 
Cache 
Key 
Cache 
Bloom 
Filter 
● Get values from Memtable 
● Get values from row 
cache if present 
● Otherwise check bloom 
filter to find appropriate 
SSTables 
● Check Key Cache for fast 
SSTable Search 
● Get values from SSTables 
● Repopulate Row Cache 
● Super Fast Col. retrieval 
● Fast row slicing 
C* Data Model: 
Reads
SSTable 
SSTable 
SSTable 
OpenSource Connections 
Mem 
Table 
CommitLog 
Row 
Cache 
Key 
Cache 
SSTable 
Key 
Cache 
Key 
Cache 
Key 
Cache 
Bloom 
Filter 
● Get values from Memtable 
● Get values from row 
cache if present 
● Otherwise check bloom 
filter to find appropriate 
SSTables 
● Check Key Cache for fast 
SSTable Search 
● Get values from SSTables 
● Repopulate Row Cache 
● Super Fast Col. retrieval 
● Fast row slicing 
C* Data Model: 
Reads
SSTable 
SSTable 
SSTable 
OpenSource Connections 
Mem 
Table 
CommitLog 
Row 
Cache 
Key 
Cache 
SSTable 
Key 
Cache 
Key 
Cache 
Key 
Cache 
Bloom 
Filter 
● Get values from Memtable 
● Get values from row 
cache if present 
● Otherwise check bloom 
filter to find appropriate 
SSTables 
● Check Key Cache for fast 
SSTable Search 
● Get values from SSTables 
● Repopulate Row Cache 
● Super Fast Col. retrieval 
● Fast row slicing 
C* Data Model: 
Reads
SSTable 
SSTable 
SSTable 
OpenSource Connections 
Mem 
Table 
CommitLog 
Row 
Cache 
Key 
Cache 
SSTable 
Key 
Cache 
Key 
Cache 
Key 
Cache 
Bloom 
Filter 
● Get values from Memtable 
● Get values from row 
cache if present 
● Otherwise check bloom 
filter to find appropriate 
SSTables 
● Check Key Cache for fast 
SSTable Search 
● Get values from SSTables 
● Repopulate Row Cache 
● Super Fast Col. retrieval 
● Fast row slicing 
C* Data Model: 
Reads
SSTable 
SSTable 
SSTable 
OpenSource Connections 
Mem 
Table 
CommitLog 
Row 
Cache 
Key 
Cache 
SSTable 
Key 
Cache 
Key 
Cache 
Key 
Cache 
Bloom 
Filter 
● Get values from Memtable 
● Get values from row 
cache if present 
● Otherwise check bloom 
filter to find appropriate 
SSTables 
● Check Key Cache for fast 
SSTable Search 
● Get values from SSTables 
● Repopulate Row Cache 
● Super Fast Col. retrieval 
● Fast row slicing 
C* Data Model: 
Reads
Cassandra Pain Points 
• Twitter Example 
• My tweets 
o SET tweets[JnBrymn][2013-07-19 T 09:20] = 
“Wonderful morning. This coffee is great.”! 
o SET tweets[JnBrymn][2013-07-19 T 09:21] = 
“Oops, smoke is coming out of the SQL server!”! 
o SET tweets[JnBrymn][2013-07-19 T 09:51] = “Now 
my coffee is cold :-(” 
• Get John’s tweets 
o GET tweets[JnBrymn] (output is as expected) 
OpenSource Connections
Cassandra Pain Points 
• Twitter Example 
• My tweets 
o SET tweets[JnBrymn][2013-07-19 T 09:20] = 
“Wonderful morning. This coffee is great.”! 
o SET tweets[JnBrymn][2013-07-19 T 09:21] = 
“Oops, smoke is coming out of the SQL server!”! 
o SET tweets[JnBrymn][2013-07-19 T 09:51] = “Now 
my coffee is cold :-(” 
• Get John’s tweets 
o GET tweets[JnBrymn] (output is as expected) 
• Pain-point: schema-less means that you have to 
read code to understand data model 
OpenSource Connections
Cassandra Pain Points 
• My timeline (other’s tweets) 
• More complicated – must store corresponding user 
names 
• Bad Option 1: keep multiple column families 
o SET timeline_from[JnBrymn][2013-07-19 T 09:20] 
= “softwaredoug”! 
o SET timeline_text[JnBrymn][2013-07-19 T 09:20] 
= “Hey John I posted on reddit, upvote me!” 
• Get John’s timeline 
o GET timeline_from[JnBrymn]! 
o GET timeline_text[JnBrymn]! 
OpenSource Connections
Cassandra Pain Points 
• My timeline (other’s tweets) 
• More complicated – must store corresponding user 
names 
• Bad Option 1: keep multiple column families 
o SET timeline_from[JnBrymn][2013-07-19 T 09:20] 
= “softwaredoug”! 
o SET timeline_text[JnBrymn][2013-07-19 T 09:20] 
= “Hey John I posted on reddit, upvote me!” 
• Get John’s timeline 
o GET timeline_from[JnBrymn]! 
o GET timeline_text[JnBrymn]! 
• Pain-point: Multiple queries required. 
OpenSource Connections
Cassandra Pain Points 
• My timeline 
• Bad Option 2: shove into single column value 
o SET timeline[JnBrymn][2013-07-19 T 09:20] = 
{from:”softwaredoug”, text: “Hey John I posted 
on reddit, upvote me!” 
• Get John’s timeline 
o GET timeline[JnBrymn] (…not too bad.)! 
OpenSource Connections
Cassandra Pain Points 
• My timeline 
• Bad Option 2: shove into single column value 
o SET timeline[JnBrymn][2013-07-19 T 09:20] = 
{from:”softwaredoug”, text: “Hey John I posted 
on reddit, upvote me!” 
• Get John’s timeline 
o GET timeline[JnBrymn] (…not too bad.)! 
• Pain-point: Updates require a read-then-modify 
OpenSource Connections
Cassandra Pain Points 
• My timeline 
• Best Option: composite column names 
o SET timeline[JnBrymn][2013-07-19 T 09:20|from] 
= ”softwaredoug”! 
o SET timeline[JnBrymn][2013-07-19 T 09:20|text] 
= “Hey John, I posted on reddit, upvote me!” 
• Get John’s timeline 
o GET timeline[JnBrymn] (extract from and text in client) 
• Resolves prior pain points! Scales well!! 
OpenSource Connections
Cassandra Pain Points 
• My timeline 
• Best Option: composite column names 
o SET timeline[JnBrymn][2013-07-19 T 09:20|from] 
= ”softwaredoug”! 
o SET timeline[JnBrymn][2013-07-19 T 09:20|text] 
= “Hey John, I posted on reddit, upvote me!” 
• Get John’s timeline 
o GET timeline[JnBrymn] (extract from and text in client) 
• Resolves prior pain points! Scales well!! 
• Pain-point: Even more code reading to understand 
data model! 
OpenSource Connections
Cassandra Pain Points 
• Justin Bieber’s timeline (e.g. many tweets) 
• Previous solution fails if number of columns > 2Billion 
• Best Option: composite row names 
o SET timeline[bieber|2013-07][19 T 09:20|from] = 
”softwaredoug”! 
o SET timeline[bieber|2013-07][19 T 09:20|text] = 
“Justin Bieber, you complete me.” 
• Get Justin’s timeline 
o GET timeline[bieber|2013-07] (get other months too) 
OpenSource Connections
Cassandra Pain Points 
• Justin Bieber’s timeline (e.g. many tweets) 
• Previous solution fails if number of columns > 2Billion 
• Best Option: composite row names 
o SET timeline[bieber|2013-07][19 T 09:20|from] = 
”softwaredoug”! 
o SET timeline[bieber|2013-07][19 T 09:20|text] = 
“Justin Bieber, you complete me.” 
• Get Justin’s timeline 
o GET timeline[bieber|2013-07] (get other months too) 
• Pain-point: Even more code reading to understand 
data model! 
OpenSource Connections
Introducing CQL 
• CQL is a reintroduction of schema so that you don’t 
have to read code to understand the data model. 
• CQL creates a common language so that details of 
the data model can be easily communicated. 
• CQL is a best-practices Cassandra interface and 
hides the messy details. 
OpenSource Connections
Introducing CQL 
• CQL is a reintroduction of schema so that you don’t 
have to read code to understand the data model. 
• CQL creates a common language so that details of 
the data model can be easily communicated. 
• CQL is a best-practices Cassandra interface and 
hides the messy details. 
OpenSource Connections 
Let’s see it!
Introducing CQL 
CREATE TABLE users ( 
id timeuuid PRIMARY KEY,! 
lastname varchar,! 
firstname varchar,! 
dateOfBirth timestamp );! 
! 
! 
! 
OpenSource Connections
Introducing CQL 
CREATE TABLE users ( 
id timeuuid PRIMARY KEY,! 
lastname varchar,! 
firstname varchar,! 
dateOfBirth timestamp );! 
! 
INSERT INTO users (id,lastname, firstname, dateofbirth) 
VALUES (now(),'Berryman',’John','1975-09-15');! 
!! 
OpenSource Connections
Introducing CQL 
CREATE TABLE users ( 
id timeuuid PRIMARY KEY,! 
lastname varchar,! 
firstname varchar,! 
dateOfBirth timestamp );! 
! 
INSERT INTO users (id,lastname, firstname, dateofbirth) 
VALUES (now(),’Berryman’,’John’,’1975-09-15’);! 
! 
UPDATE users SET firstname = ’John’ 
WHERE id = f74c0b20-0862-11e3-8cf6-b74c10b01fc6;! 
! 
OpenSource Connections
Introducing CQL 
CREATE TABLE users ( 
id timeuuid PRIMARY KEY,! 
lastname varchar,! 
firstname varchar,! 
dateOfBirth timestamp );! 
! 
INSERT INTO users (id,lastname, firstname, dateofbirth) 
VALUES (now(),'Berryman',’John','1975-09-15');! 
! 
UPDATE users SET firstname = 'John’ 
WHERE id = f74c0b20-0862-11e3-8cf6-b74c10b01fc6;! 
! 
SELECT dateofbirth,firstname,lastname FROM users ;! 
! 
dateofbirth | firstname | lastname! 
--------------------------+-----------+----------! 
1975-09-15 00:00:00-0400 | John | Berryman! 
OpenSource Connections
Introducing CQL 
“Hey sweet! It’s exactly the same as MySQL!” 
OpenSource Connections
Introducing CQL 
“Hey sweet! It’s exactly the same as MySQL!” 
Hold your horses. There are some 
important differences. 
OpenSource Connections
Introducing CQL 
“Hey sweet! It’s exactly the same as MySQL!” 
Hold your horses. There are some 
important differences. 
“Wait? What happened to the 
Cassandra’s wide rows?” 
OpenSource Connections
Introducing CQL 
“Hey sweet! It’s exactly the same as MySQL!” 
Hold your horses. There are some 
important differences. 
“Wait? What happened to the 
Cassandra’s wide rows?” 
There’s still there. Understanding 
the mapping is crucial! 
OpenSource Connections
Introducing CQL 
“Hey sweet! It’s exactly the same as MySQL!” 
Hold your horses. There are some 
important differences. 
“Wait? What happened to the 
Cassandra’s wide rows?” 
There’s still there. Understanding 
the mapping is crucial! 
OpenSource Connections 
Remember this: 
• Cassandra finds rows fast 
• Cassandra scans columns fast 
• Cassandra does not scan rows
The CQL/Cassandra Mapping 
CREATE TABLE employees (! 
name text PRIMARY KEY,! 
age int,! 
role text! 
);! 
! 
OpenSource Connections
The CQL/Cassandra Mapping 
CREATE TABLE employees (! 
name text PRIMARY KEY,! 
age int,! 
role text! 
);! 
! 
name | age | role! 
-----+-----+-----! 
john | 37 | dev! 
eric | 38 | ceo! 
! 
OpenSource Connections
The CQL/Cassandra Mapping 
CREATE TABLE employees (! 
name text PRIMARY KEY,! 
age int,! 
role text! 
);! 
! 
name | age | role! 
-----+-----+-----! 
john | 37 | dev! 
eric | 38 | ceo! 
! 
OpenSource Connections 
age! role! 
john! 37! dev! 
age! role! 
eric! 38! ceo!
The CQL/Cassandra Mapping 
CREATE TABLE employees (! 
company text,! 
name text,! 
age int,! 
role text,! 
PRIMARY KEY (company,name)! 
);! 
! 
OpenSource Connections
The CQL/Cassandra Mapping 
CREATE TABLE employees (! 
company text,! 
name text,! 
age int,! 
role text,! 
PRIMARY KEY (company,name)! 
);! 
! 
company | name | age | role! 
--------+------+-----+-----! 
OSC | eric | 38 | ceo! 
OSC | john | 37 | dev! 
RKG | anya | 29 | lead! 
RKG | ben | 27 | dev! 
RKG | chad | 35 | ops! 
OpenSource Connections
The CQL/Cassandra Mapping 
CREATE TABLE employees (! 
company text,! 
name text,! 
age int,! 
role text,! 
PRIMARY KEY (company,name)! 
);! 
! 
company | name | age | role! 
--------+------+-----+-----! 
OSC | eric | 38 | ceo! 
OSC | john | 37 | dev! 
RKG | anya | 29 | lead! 
RKG | ben | 27 | dev! 
RKG | chad | 35 | ops! 
! eric:age! eric:role! john:age! john:role! 
OSC! 38! dev! 37! dev! 
anya:age! anya:role! ben:age! ben:role! chad:age! chad:role! 
RKG! 29! lead! 27! dev! 35! ops! 
OpenSource Connections
The CQL/Cassandra Mapping 
CREATE TABLE example (! 
A text,! 
B text,! 
C text,! 
D text,! 
E text,! 
F text,! 
PRIMARY KEY ((A,B),C,D)! 
);! 
OpenSource Connections
The CQL/Cassandra Mapping 
CREATE TABLE example (! 
A text,! 
B text,! 
C text,! 
D text,! 
E text,! 
F text,! 
PRIMARY KEY ((A,B),C,D)! 
);! 
A | B | C | D | E | F ! 
--+---+---+---+---+---! 
a | b | c | d | e | f! 
a | b | c | g | h | i! 
a | b | j | k | l | m! 
a | n | o | p | q | r! 
s | t | u | v | w | x! 
OpenSource Connections
The CQL/Cassandra Mapping 
CREATE TABLE example (! 
A text,! 
B text,! 
C text,! 
D text,! 
E text,! 
F text,! 
PRIMARY KEY ((A,B),C,D)! 
);! 
A | B | C | D | E | F ! 
--+---+---+---+---+---! 
a | b | c | d | e | f! 
a | b | c | g | h | i! 
a | b | j | k | l | m! 
a | n | o | p | q | r! 
s | t | u | v | w | x! 
! c:d:E! c:d:F! c:g:E! c:g:F! j:k:E! j:k:F! 
a:b! e! f! h! i! l! m! 
OpenSource Connections 
! o:p:E! o:p:F! 
a:n! q! r! 
! u:v:E! u:v:F! 
s:t! w! x!
CQL for Sets, Lists, and Maps 
• Collection Semantics 
o Sets hold list of unique elements 
o Lists hold ordered, possibly repeating elements 
o Maps hold a list of key-value pairs 
• Uses same old Cassandra data structure 
OpenSource Connections
CQL for Sets, Lists, and Maps 
• Collection Semantics 
o Sets hold list of unique elements 
o Lists hold ordered, possibly repeating elements 
o Maps hold a list of key-value pairs 
• Uses same old Cassandra data structure 
• Declaring 
OpenSource Connections 
CREATE TABLE mytable(! 
X text,! 
Y text,! 
myset set<text>,! 
mylist list<int>,! 
mymap map<text, text>,! 
PRIMARY KEY (X,Y)! 
);!
CQL for Sets, Lists, and Maps 
• Collection Semantics 
o Sets hold list of unique elements 
o Lists hold ordered, possibly repeating elements 
o Maps hold a list of key-value pairs 
• Uses same old Cassandra data structure 
• Declaring 
OpenSource Connections 
CREATE TABLE mytable(! 
X text,! 
Y text,! 
myset set<text>,! 
mylist list<int>,! 
mymap map<text, text>,! 
PRIMARY KEY (X,Y)! 
);! 
Collection fields 
can not be used 
in primary keys
CQL for Sets, Lists, and Maps 
• Inserting 
! 
INSERT INTO mytable (row, myset) 
VALUES (123, { ‘apple’, ‘banana’}); 
OpenSource Connections
CQL for Sets, Lists, and Maps 
• Inserting 
! 
INSERT INTO mytable (row, myset) 
VALUES (123, { ‘apple’, ‘banana’}); 
INSERT INTO mytable (row, mylist) 
VALUES (123, [‘apple’,’banana’,’apple’]); 
OpenSource Connections
CQL for Sets, Lists, and Maps 
• Inserting 
! 
INSERT INTO mytable (row, myset) 
VALUES (123, { ‘apple’, ‘banana’}); 
INSERT INTO mytable (row, mylist) 
VALUES (123, [‘apple’,’banana’,’apple’]); 
INSERT INTO mytable (row, mymap) 
VALUES (123, {1:’apple’,2:’banana’}) 
OpenSource Connections
CQL for Sets, Lists, and Maps 
• Updating 
UPDATE mytable SET myset = myset + {‘apple’,‘banana’} 
WHERE row = 123; 
UPDATE mytable SET myset = myset - { ‘apple’ } 
WHERE row = 123;! 
OpenSource Connections
CQL for Sets, Lists, and Maps 
• Updating 
UPDATE mytable SET myset = myset + {‘apple’,‘banana’} 
WHERE row = 123; 
UPDATE mytable SET myset = myset - { ‘apple’ } 
WHERE row = 123;! 
UPDATE mytable SET mylist = mylist + [‘apple’,‘banana’] 
WHERE row = 123; 
UPDATE mytable SET mylist = [‘banana’] + mylist 
WHERE row = 123;! 
OpenSource Connections
CQL for Sets, Lists, and Maps 
• Updating 
UPDATE mytable SET myset = myset + {‘apple’,‘banana’} 
WHERE row = 123; 
UPDATE mytable SET myset = myset - { ‘apple’ } 
WHERE row = 123;! 
UPDATE mytable SET mylist = mylist + [‘apple’,‘banana’] 
WHERE row = 123; 
UPDATE mytable SET mylist = [‘banana’] + mylist 
WHERE row = 123;! 
UPDATE mytable SET mymap[‘fruit’] = ‘apple’ 
WHERE row = 123 
UPDATE mytable SET mymap = mymap + { ‘fruit’:‘apple’} 
WHERE row = 123! 
OpenSource Connections
CQL for Sets, Lists, and Maps 
SETS 
! 
CREATE TABLE mytable(! 
X text,! 
Y text,! 
myset set<int>,! 
PRIMARY KEY (X,Y)! 
);! 
! 
OpenSource Connections
CQL for Sets, Lists, and Maps 
SETS 
! 
CREATE TABLE mytable(! 
X text,! 
Y text,! 
myset set<int>,! 
PRIMARY KEY (X,Y)! 
);! 
! 
X | Y | myset ! 
---+---+------------! 
a | b | {1,2}! 
a | c | {3,4,5}! 
OpenSource Connections
CQL for Sets, Lists, and Maps 
SETS 
! 
CREATE TABLE mytable(! 
X text,! 
Y text,! 
myset set<int>,! 
PRIMARY KEY (X,Y)! 
);! 
! 
X | Y | myset ! 
---+---+------------! 
a | b | {1,2}! 
a | c | {3,4,5}! 
! b:myset:1! b:myset:2! c:myset:3! c:myset:4! c:myset:5! 
a! 
OpenSource Connections
CQL for Sets, Lists, and Maps 
OpenSource Connections 
LISTS 
! 
CREATE TABLE mytable(! 
X text,! 
Y text,! 
mylist list<int>,! 
PRIMARY KEY (X,Y)! 
);! 
!
CQL for Sets, Lists, and Maps 
X | Y | mylist ! 
---+---+------------! 
a | b | [1,2]! 
OpenSource Connections 
LISTS 
! 
CREATE TABLE mytable(! 
X text,! 
Y text,! 
mylist list<int>,! 
PRIMARY KEY (X,Y)! 
);! 
!
CQL for Sets, Lists, and Maps 
X | Y | mylist ! 
---+---+------------! 
a | b | [1,2]! 
! b:mylist:f7e5450039..8d! b:mylist:f7e5450139..8d! 
a! 1! 2! 
OpenSource Connections 
LISTS 
! 
CREATE TABLE mytable(! 
X text,! 
Y text,! 
mylist list<int>,! 
PRIMARY KEY (X,Y)! 
);! 
!
CQL for Sets, Lists, and Maps 
X | Y | mylist ! 
---+---+------------! 
a | b | [1,2]! 
! b:mylist:f7e5450039..8d! b:mylist:f7e5450139..8d! 
a! 1! 2! 
OpenSource Connections 
LISTS 
! 
CREATE TABLE mytable(! 
X text,! 
Y text,! 
mylist list<int>,! 
PRIMARY KEY (X,Y)! 
);! 
!
CQL for Sets, Lists, and Maps 
MAPS 
! 
CREATE TABLE mytable(! 
X text,! 
Y text,! 
mymap map<text,int>,! 
PRIMARY KEY (X,Y)! 
);! 
! 
OpenSource Connections
CQL for Sets, Lists, and Maps 
MAPS 
! 
CREATE TABLE mytable(! 
X text,! 
Y text,! 
mymap map<text,int>,! 
PRIMARY KEY (X,Y)! 
);! 
! 
X | Y | mymap ! 
---+---+------------! 
a | b | {m:1,n:2}! 
a | c |{n:3,p:4,q:5}! 
OpenSource Connections
CQL for Sets, Lists, and Maps 
MAPS 
! 
CREATE TABLE mytable(! 
X text,! 
Y text,! 
mymap map<text,int>,! 
PRIMARY KEY (X,Y)! 
);! 
! 
X | Y | mymap ! 
---+---+------------! 
a | b | {m:1,n:2}! 
a | c |{n:3,p:4,q:5}! 
! b:mymap:m! b:mymap:n! c:mymap:n! c:mymap:p! c:mymap:q! 
a! 1! 2! 3! 4! 5! 
OpenSource Connections
Peek Behind the Scenes! Do it! 
(in cqlsh) 
CREATE KEYSPACE test WITH replication = ! 
{'class': 'SimpleStrategy', 'replication_factor': 1};! 
USE test;! 
CREATE TABLE stuff ( a int, b int, myset set<int>,! 
mylist list<int>, mymap map<int,int>, PRIMARY KEY (a,b));! 
UPDATE stuff SET myset = {1,2}, mylist = [3,4,5], mymap = 
{6:7,8:9} WHERE a = 0 AND b = 1;! 
SELECT * FROM stuff;! 
! 
(in cassandra-cli) 
use test;! 
list stuff ;! 
! 
(in cqlsh) 
SELECT key_aliases,column_aliases from 
system.schema_columnfamilies WHERE keyspace_name = 'test' AND 
columnfamily_name = 'stuff';! 
OpenSource Connections
Putting it All Together 
…you already know 
• CQL is a reintroduction of schema 
• CQL creates a common data modeling language 
• CQL is a best-practices Cassandra interface 
. 
OpenSource Connections
Putting it All Together 
…you already know 
• CQL is a reintroduction of schema 
• CQL creates a common data modeling language 
• CQL is a best-practices Cassandra interface 
…now you know 
• CQL let’s you take advantage of the C* Data structure 
. 
OpenSource Connections
Putting it All Together 
…you already know 
• CQL is a reintroduction of schema 
• CQL creates a common data modeling language 
• CQL is a best-practices Cassandra interface 
…now you know 
• CQL let’s you take advantage of the C* Data structure 
…but also 
• CQL protocol is binary and therefore interoperable with 
any language 
• CQL is asynchronous and fast (Thrift transport layer is 
synchronous) 
• CQL allows the possibility for prepared statements 
OpenSource Connections
Thanks! 
Follow me on Twitter @JnBrymn 
Check out the OpenSource Connection Blog 
http://www.opensourceconnections.com/blog/ 
OpenSource Connections

Cassandra Summit 2014: Understanding CQL3 Inside and Out

  • 1.
    The CQL3/Cassandra Mapping John Berryman OpenSource Connections OpenSource Connections
  • 2.
    Outline • WhatProblem does CQL Solve? • The Cassandra Data Model • Pain Points of “Old” Cassandra • Introducing CQL • Understanding the CQL/Cassandra Mapping • CQL for Sets, Lists, and Maps • Putting it All Together OpenSource Connections
  • 3.
    What Problem doesCQL Solve? • The Awesomeness that is Cassandra: o Distributed columnar data store o No single point of failure o Optimized for availability (though “Tunably” consistent) o Optimized for writes o Easily maintainable o Almost infinitely scalable . OpenSource Connections
  • 4.
    What Problem doesCQL Solve? • The Awesomeness that is Cassandra: o Distributed columnar data store o No single point of failure o Optimized for availability (though “Tunably” consistent) o Optimized for writes o Easily maintainable o Almost infinitely scalable • Cassandra’s usability challenges o NoSQL – “Where are my JOINS? No Schema? De-normalize!?” o BigTable – “Tables with millions of columns!?” . OpenSource Connections
  • 5.
    What Problem doesCQL Solve? • The Awesomeness that is Cassandra: o Distributed columnar data store o No single point of failure o Optimized for availability (though “Tunably” consistent) o Optimized for writes o Easily maintainable o Almost infinitely scalable • Cassandra’s usability challenges o NoSQL – “Where are my JOINS? No Schema? De-normalize!?” o BigTable – “Tables with millions of columns!?” • CQL saves the day! o A best-practices interface to Cassandra o Uses familiar SQL-like language OpenSource Connections
  • 6.
    C* Data Model OpenSource Connections Keyspace
  • 7.
    C* Data Model Keyspace Column Family Column Family OpenSource Connections
  • 8.
    C* Data Model Keyspace Column Family Column Family OpenSource Connections
  • 9.
    C* Data Model Keyspace Column Family Column Family OpenSource Connections
  • 10.
    C* Data Model OpenSource Connections Row Key
  • 11.
    C* Data Model OpenSource Connections Row Key Column Column Name Column Value (or Tombstone) Timestamp Time-to-live
  • 12.
    C* Data Model ● Row Key, Column Name, Column OpenSource Connections Value have types ● Column Name has comparator ● RowKey has partitioner ● Rows can have any number of columns - even in same column family ● Rows can have many columns ● Column Values can be omitted ● Time-to-live is useful! ● Tombstones Row Key Column Column Name Column Value (or Tombstone) Timestamp Time-to-live
  • 13.
    C* Data Model:Writes SSTable SSTable SSTable OpenSource Connections Mem Table CommitLog Row Cache ● Insert into MemTable ● Dump to CommitLog ● No read ● Very Fast! ● Blocks on CPU before O/I! Key Cache SSTable Key Cache Key Cache Key Cache Bloom Filter
  • 14.
    C* Data Model:Writes SSTable SSTable SSTable OpenSource Connections Mem Table CommitLog Row Cache ● Insert into MemTable ● Dump to CommitLog ● No read ● Very Fast! ● Blocks on CPU before O/I! Key Cache SSTable Key Cache Key Cache Key Cache Bloom Filter
  • 15.
    C* Data Model:Writes SSTable SSTable SSTable OpenSource Connections Mem Table CommitLog Row Cache ● Insert into MemTable ● Dump to CommitLog ● No read ● Very Fast! ● Blocks on CPU before O/I! Key Cache SSTable Key Cache Key Cache Key Cache Bloom Filter
  • 16.
    SSTable SSTable SSTable OpenSource Connections Mem Table CommitLog Row Cache Key Cache SSTable Key Cache Key Cache Key Cache Bloom Filter ● Get values from Memtable ● Get values from row cache if present ● Otherwise check bloom filter to find appropriate SSTables ● Check Key Cache for fast SSTable Search ● Get values from SSTables ● Repopulate Row Cache ● Super Fast Col. retrieval ● Fast row slicing C* Data Model: Reads
  • 17.
    SSTable SSTable SSTable OpenSource Connections Mem Table CommitLog Row Cache Key Cache SSTable Key Cache Key Cache Key Cache Bloom Filter ● Get values from Memtable ● Get values from row cache if present ● Otherwise check bloom filter to find appropriate SSTables ● Check Key Cache for fast SSTable Search ● Get values from SSTables ● Repopulate Row Cache ● Super Fast Col. retrieval ● Fast row slicing C* Data Model: Reads
  • 18.
    SSTable SSTable SSTable OpenSource Connections Mem Table CommitLog Row Cache Key Cache SSTable Key Cache Key Cache Key Cache Bloom Filter ● Get values from Memtable ● Get values from row cache if present ● Otherwise check bloom filter to find appropriate SSTables ● Check Key Cache for fast SSTable Search ● Get values from SSTables ● Repopulate Row Cache ● Super Fast Col. retrieval ● Fast row slicing C* Data Model: Reads
  • 19.
    SSTable SSTable SSTable OpenSource Connections Mem Table CommitLog Row Cache Key Cache SSTable Key Cache Key Cache Key Cache Bloom Filter ● Get values from Memtable ● Get values from row cache if present ● Otherwise check bloom filter to find appropriate SSTables ● Check Key Cache for fast SSTable Search ● Get values from SSTables ● Repopulate Row Cache ● Super Fast Col. retrieval ● Fast row slicing C* Data Model: Reads
  • 20.
    SSTable SSTable SSTable OpenSource Connections Mem Table CommitLog Row Cache Key Cache SSTable Key Cache Key Cache Key Cache Bloom Filter ● Get values from Memtable ● Get values from row cache if present ● Otherwise check bloom filter to find appropriate SSTables ● Check Key Cache for fast SSTable Search ● Get values from SSTables ● Repopulate Row Cache ● Super Fast Col. retrieval ● Fast row slicing C* Data Model: Reads
  • 21.
    SSTable SSTable SSTable OpenSource Connections Mem Table CommitLog Row Cache Key Cache SSTable Key Cache Key Cache Key Cache Bloom Filter ● Get values from Memtable ● Get values from row cache if present ● Otherwise check bloom filter to find appropriate SSTables ● Check Key Cache for fast SSTable Search ● Get values from SSTables ● Repopulate Row Cache ● Super Fast Col. retrieval ● Fast row slicing C* Data Model: Reads
  • 22.
    Cassandra Pain Points • Twitter Example • My tweets o SET tweets[JnBrymn][2013-07-19 T 09:20] = “Wonderful morning. This coffee is great.”! o SET tweets[JnBrymn][2013-07-19 T 09:21] = “Oops, smoke is coming out of the SQL server!”! o SET tweets[JnBrymn][2013-07-19 T 09:51] = “Now my coffee is cold :-(” • Get John’s tweets o GET tweets[JnBrymn] (output is as expected) OpenSource Connections
  • 23.
    Cassandra Pain Points • Twitter Example • My tweets o SET tweets[JnBrymn][2013-07-19 T 09:20] = “Wonderful morning. This coffee is great.”! o SET tweets[JnBrymn][2013-07-19 T 09:21] = “Oops, smoke is coming out of the SQL server!”! o SET tweets[JnBrymn][2013-07-19 T 09:51] = “Now my coffee is cold :-(” • Get John’s tweets o GET tweets[JnBrymn] (output is as expected) • Pain-point: schema-less means that you have to read code to understand data model OpenSource Connections
  • 24.
    Cassandra Pain Points • My timeline (other’s tweets) • More complicated – must store corresponding user names • Bad Option 1: keep multiple column families o SET timeline_from[JnBrymn][2013-07-19 T 09:20] = “softwaredoug”! o SET timeline_text[JnBrymn][2013-07-19 T 09:20] = “Hey John I posted on reddit, upvote me!” • Get John’s timeline o GET timeline_from[JnBrymn]! o GET timeline_text[JnBrymn]! OpenSource Connections
  • 25.
    Cassandra Pain Points • My timeline (other’s tweets) • More complicated – must store corresponding user names • Bad Option 1: keep multiple column families o SET timeline_from[JnBrymn][2013-07-19 T 09:20] = “softwaredoug”! o SET timeline_text[JnBrymn][2013-07-19 T 09:20] = “Hey John I posted on reddit, upvote me!” • Get John’s timeline o GET timeline_from[JnBrymn]! o GET timeline_text[JnBrymn]! • Pain-point: Multiple queries required. OpenSource Connections
  • 26.
    Cassandra Pain Points • My timeline • Bad Option 2: shove into single column value o SET timeline[JnBrymn][2013-07-19 T 09:20] = {from:”softwaredoug”, text: “Hey John I posted on reddit, upvote me!” • Get John’s timeline o GET timeline[JnBrymn] (…not too bad.)! OpenSource Connections
  • 27.
    Cassandra Pain Points • My timeline • Bad Option 2: shove into single column value o SET timeline[JnBrymn][2013-07-19 T 09:20] = {from:”softwaredoug”, text: “Hey John I posted on reddit, upvote me!” • Get John’s timeline o GET timeline[JnBrymn] (…not too bad.)! • Pain-point: Updates require a read-then-modify OpenSource Connections
  • 28.
    Cassandra Pain Points • My timeline • Best Option: composite column names o SET timeline[JnBrymn][2013-07-19 T 09:20|from] = ”softwaredoug”! o SET timeline[JnBrymn][2013-07-19 T 09:20|text] = “Hey John, I posted on reddit, upvote me!” • Get John’s timeline o GET timeline[JnBrymn] (extract from and text in client) • Resolves prior pain points! Scales well!! OpenSource Connections
  • 29.
    Cassandra Pain Points • My timeline • Best Option: composite column names o SET timeline[JnBrymn][2013-07-19 T 09:20|from] = ”softwaredoug”! o SET timeline[JnBrymn][2013-07-19 T 09:20|text] = “Hey John, I posted on reddit, upvote me!” • Get John’s timeline o GET timeline[JnBrymn] (extract from and text in client) • Resolves prior pain points! Scales well!! • Pain-point: Even more code reading to understand data model! OpenSource Connections
  • 30.
    Cassandra Pain Points • Justin Bieber’s timeline (e.g. many tweets) • Previous solution fails if number of columns > 2Billion • Best Option: composite row names o SET timeline[bieber|2013-07][19 T 09:20|from] = ”softwaredoug”! o SET timeline[bieber|2013-07][19 T 09:20|text] = “Justin Bieber, you complete me.” • Get Justin’s timeline o GET timeline[bieber|2013-07] (get other months too) OpenSource Connections
  • 31.
    Cassandra Pain Points • Justin Bieber’s timeline (e.g. many tweets) • Previous solution fails if number of columns > 2Billion • Best Option: composite row names o SET timeline[bieber|2013-07][19 T 09:20|from] = ”softwaredoug”! o SET timeline[bieber|2013-07][19 T 09:20|text] = “Justin Bieber, you complete me.” • Get Justin’s timeline o GET timeline[bieber|2013-07] (get other months too) • Pain-point: Even more code reading to understand data model! OpenSource Connections
  • 32.
    Introducing CQL •CQL is a reintroduction of schema so that you don’t have to read code to understand the data model. • CQL creates a common language so that details of the data model can be easily communicated. • CQL is a best-practices Cassandra interface and hides the messy details. OpenSource Connections
  • 33.
    Introducing CQL •CQL is a reintroduction of schema so that you don’t have to read code to understand the data model. • CQL creates a common language so that details of the data model can be easily communicated. • CQL is a best-practices Cassandra interface and hides the messy details. OpenSource Connections Let’s see it!
  • 34.
    Introducing CQL CREATETABLE users ( id timeuuid PRIMARY KEY,! lastname varchar,! firstname varchar,! dateOfBirth timestamp );! ! ! ! OpenSource Connections
  • 35.
    Introducing CQL CREATETABLE users ( id timeuuid PRIMARY KEY,! lastname varchar,! firstname varchar,! dateOfBirth timestamp );! ! INSERT INTO users (id,lastname, firstname, dateofbirth) VALUES (now(),'Berryman',’John','1975-09-15');! !! OpenSource Connections
  • 36.
    Introducing CQL CREATETABLE users ( id timeuuid PRIMARY KEY,! lastname varchar,! firstname varchar,! dateOfBirth timestamp );! ! INSERT INTO users (id,lastname, firstname, dateofbirth) VALUES (now(),’Berryman’,’John’,’1975-09-15’);! ! UPDATE users SET firstname = ’John’ WHERE id = f74c0b20-0862-11e3-8cf6-b74c10b01fc6;! ! OpenSource Connections
  • 37.
    Introducing CQL CREATETABLE users ( id timeuuid PRIMARY KEY,! lastname varchar,! firstname varchar,! dateOfBirth timestamp );! ! INSERT INTO users (id,lastname, firstname, dateofbirth) VALUES (now(),'Berryman',’John','1975-09-15');! ! UPDATE users SET firstname = 'John’ WHERE id = f74c0b20-0862-11e3-8cf6-b74c10b01fc6;! ! SELECT dateofbirth,firstname,lastname FROM users ;! ! dateofbirth | firstname | lastname! --------------------------+-----------+----------! 1975-09-15 00:00:00-0400 | John | Berryman! OpenSource Connections
  • 38.
    Introducing CQL “Heysweet! It’s exactly the same as MySQL!” OpenSource Connections
  • 39.
    Introducing CQL “Heysweet! It’s exactly the same as MySQL!” Hold your horses. There are some important differences. OpenSource Connections
  • 40.
    Introducing CQL “Heysweet! It’s exactly the same as MySQL!” Hold your horses. There are some important differences. “Wait? What happened to the Cassandra’s wide rows?” OpenSource Connections
  • 41.
    Introducing CQL “Heysweet! It’s exactly the same as MySQL!” Hold your horses. There are some important differences. “Wait? What happened to the Cassandra’s wide rows?” There’s still there. Understanding the mapping is crucial! OpenSource Connections
  • 42.
    Introducing CQL “Heysweet! It’s exactly the same as MySQL!” Hold your horses. There are some important differences. “Wait? What happened to the Cassandra’s wide rows?” There’s still there. Understanding the mapping is crucial! OpenSource Connections Remember this: • Cassandra finds rows fast • Cassandra scans columns fast • Cassandra does not scan rows
  • 43.
    The CQL/Cassandra Mapping CREATE TABLE employees (! name text PRIMARY KEY,! age int,! role text! );! ! OpenSource Connections
  • 44.
    The CQL/Cassandra Mapping CREATE TABLE employees (! name text PRIMARY KEY,! age int,! role text! );! ! name | age | role! -----+-----+-----! john | 37 | dev! eric | 38 | ceo! ! OpenSource Connections
  • 45.
    The CQL/Cassandra Mapping CREATE TABLE employees (! name text PRIMARY KEY,! age int,! role text! );! ! name | age | role! -----+-----+-----! john | 37 | dev! eric | 38 | ceo! ! OpenSource Connections age! role! john! 37! dev! age! role! eric! 38! ceo!
  • 46.
    The CQL/Cassandra Mapping CREATE TABLE employees (! company text,! name text,! age int,! role text,! PRIMARY KEY (company,name)! );! ! OpenSource Connections
  • 47.
    The CQL/Cassandra Mapping CREATE TABLE employees (! company text,! name text,! age int,! role text,! PRIMARY KEY (company,name)! );! ! company | name | age | role! --------+------+-----+-----! OSC | eric | 38 | ceo! OSC | john | 37 | dev! RKG | anya | 29 | lead! RKG | ben | 27 | dev! RKG | chad | 35 | ops! OpenSource Connections
  • 48.
    The CQL/Cassandra Mapping CREATE TABLE employees (! company text,! name text,! age int,! role text,! PRIMARY KEY (company,name)! );! ! company | name | age | role! --------+------+-----+-----! OSC | eric | 38 | ceo! OSC | john | 37 | dev! RKG | anya | 29 | lead! RKG | ben | 27 | dev! RKG | chad | 35 | ops! ! eric:age! eric:role! john:age! john:role! OSC! 38! dev! 37! dev! anya:age! anya:role! ben:age! ben:role! chad:age! chad:role! RKG! 29! lead! 27! dev! 35! ops! OpenSource Connections
  • 49.
    The CQL/Cassandra Mapping CREATE TABLE example (! A text,! B text,! C text,! D text,! E text,! F text,! PRIMARY KEY ((A,B),C,D)! );! OpenSource Connections
  • 50.
    The CQL/Cassandra Mapping CREATE TABLE example (! A text,! B text,! C text,! D text,! E text,! F text,! PRIMARY KEY ((A,B),C,D)! );! A | B | C | D | E | F ! --+---+---+---+---+---! a | b | c | d | e | f! a | b | c | g | h | i! a | b | j | k | l | m! a | n | o | p | q | r! s | t | u | v | w | x! OpenSource Connections
  • 51.
    The CQL/Cassandra Mapping CREATE TABLE example (! A text,! B text,! C text,! D text,! E text,! F text,! PRIMARY KEY ((A,B),C,D)! );! A | B | C | D | E | F ! --+---+---+---+---+---! a | b | c | d | e | f! a | b | c | g | h | i! a | b | j | k | l | m! a | n | o | p | q | r! s | t | u | v | w | x! ! c:d:E! c:d:F! c:g:E! c:g:F! j:k:E! j:k:F! a:b! e! f! h! i! l! m! OpenSource Connections ! o:p:E! o:p:F! a:n! q! r! ! u:v:E! u:v:F! s:t! w! x!
  • 52.
    CQL for Sets,Lists, and Maps • Collection Semantics o Sets hold list of unique elements o Lists hold ordered, possibly repeating elements o Maps hold a list of key-value pairs • Uses same old Cassandra data structure OpenSource Connections
  • 53.
    CQL for Sets,Lists, and Maps • Collection Semantics o Sets hold list of unique elements o Lists hold ordered, possibly repeating elements o Maps hold a list of key-value pairs • Uses same old Cassandra data structure • Declaring OpenSource Connections CREATE TABLE mytable(! X text,! Y text,! myset set<text>,! mylist list<int>,! mymap map<text, text>,! PRIMARY KEY (X,Y)! );!
  • 54.
    CQL for Sets,Lists, and Maps • Collection Semantics o Sets hold list of unique elements o Lists hold ordered, possibly repeating elements o Maps hold a list of key-value pairs • Uses same old Cassandra data structure • Declaring OpenSource Connections CREATE TABLE mytable(! X text,! Y text,! myset set<text>,! mylist list<int>,! mymap map<text, text>,! PRIMARY KEY (X,Y)! );! Collection fields can not be used in primary keys
  • 55.
    CQL for Sets,Lists, and Maps • Inserting ! INSERT INTO mytable (row, myset) VALUES (123, { ‘apple’, ‘banana’}); OpenSource Connections
  • 56.
    CQL for Sets,Lists, and Maps • Inserting ! INSERT INTO mytable (row, myset) VALUES (123, { ‘apple’, ‘banana’}); INSERT INTO mytable (row, mylist) VALUES (123, [‘apple’,’banana’,’apple’]); OpenSource Connections
  • 57.
    CQL for Sets,Lists, and Maps • Inserting ! INSERT INTO mytable (row, myset) VALUES (123, { ‘apple’, ‘banana’}); INSERT INTO mytable (row, mylist) VALUES (123, [‘apple’,’banana’,’apple’]); INSERT INTO mytable (row, mymap) VALUES (123, {1:’apple’,2:’banana’}) OpenSource Connections
  • 58.
    CQL for Sets,Lists, and Maps • Updating UPDATE mytable SET myset = myset + {‘apple’,‘banana’} WHERE row = 123; UPDATE mytable SET myset = myset - { ‘apple’ } WHERE row = 123;! OpenSource Connections
  • 59.
    CQL for Sets,Lists, and Maps • Updating UPDATE mytable SET myset = myset + {‘apple’,‘banana’} WHERE row = 123; UPDATE mytable SET myset = myset - { ‘apple’ } WHERE row = 123;! UPDATE mytable SET mylist = mylist + [‘apple’,‘banana’] WHERE row = 123; UPDATE mytable SET mylist = [‘banana’] + mylist WHERE row = 123;! OpenSource Connections
  • 60.
    CQL for Sets,Lists, and Maps • Updating UPDATE mytable SET myset = myset + {‘apple’,‘banana’} WHERE row = 123; UPDATE mytable SET myset = myset - { ‘apple’ } WHERE row = 123;! UPDATE mytable SET mylist = mylist + [‘apple’,‘banana’] WHERE row = 123; UPDATE mytable SET mylist = [‘banana’] + mylist WHERE row = 123;! UPDATE mytable SET mymap[‘fruit’] = ‘apple’ WHERE row = 123 UPDATE mytable SET mymap = mymap + { ‘fruit’:‘apple’} WHERE row = 123! OpenSource Connections
  • 61.
    CQL for Sets,Lists, and Maps SETS ! CREATE TABLE mytable(! X text,! Y text,! myset set<int>,! PRIMARY KEY (X,Y)! );! ! OpenSource Connections
  • 62.
    CQL for Sets,Lists, and Maps SETS ! CREATE TABLE mytable(! X text,! Y text,! myset set<int>,! PRIMARY KEY (X,Y)! );! ! X | Y | myset ! ---+---+------------! a | b | {1,2}! a | c | {3,4,5}! OpenSource Connections
  • 63.
    CQL for Sets,Lists, and Maps SETS ! CREATE TABLE mytable(! X text,! Y text,! myset set<int>,! PRIMARY KEY (X,Y)! );! ! X | Y | myset ! ---+---+------------! a | b | {1,2}! a | c | {3,4,5}! ! b:myset:1! b:myset:2! c:myset:3! c:myset:4! c:myset:5! a! OpenSource Connections
  • 64.
    CQL for Sets,Lists, and Maps OpenSource Connections LISTS ! CREATE TABLE mytable(! X text,! Y text,! mylist list<int>,! PRIMARY KEY (X,Y)! );! !
  • 65.
    CQL for Sets,Lists, and Maps X | Y | mylist ! ---+---+------------! a | b | [1,2]! OpenSource Connections LISTS ! CREATE TABLE mytable(! X text,! Y text,! mylist list<int>,! PRIMARY KEY (X,Y)! );! !
  • 66.
    CQL for Sets,Lists, and Maps X | Y | mylist ! ---+---+------------! a | b | [1,2]! ! b:mylist:f7e5450039..8d! b:mylist:f7e5450139..8d! a! 1! 2! OpenSource Connections LISTS ! CREATE TABLE mytable(! X text,! Y text,! mylist list<int>,! PRIMARY KEY (X,Y)! );! !
  • 67.
    CQL for Sets,Lists, and Maps X | Y | mylist ! ---+---+------------! a | b | [1,2]! ! b:mylist:f7e5450039..8d! b:mylist:f7e5450139..8d! a! 1! 2! OpenSource Connections LISTS ! CREATE TABLE mytable(! X text,! Y text,! mylist list<int>,! PRIMARY KEY (X,Y)! );! !
  • 68.
    CQL for Sets,Lists, and Maps MAPS ! CREATE TABLE mytable(! X text,! Y text,! mymap map<text,int>,! PRIMARY KEY (X,Y)! );! ! OpenSource Connections
  • 69.
    CQL for Sets,Lists, and Maps MAPS ! CREATE TABLE mytable(! X text,! Y text,! mymap map<text,int>,! PRIMARY KEY (X,Y)! );! ! X | Y | mymap ! ---+---+------------! a | b | {m:1,n:2}! a | c |{n:3,p:4,q:5}! OpenSource Connections
  • 70.
    CQL for Sets,Lists, and Maps MAPS ! CREATE TABLE mytable(! X text,! Y text,! mymap map<text,int>,! PRIMARY KEY (X,Y)! );! ! X | Y | mymap ! ---+---+------------! a | b | {m:1,n:2}! a | c |{n:3,p:4,q:5}! ! b:mymap:m! b:mymap:n! c:mymap:n! c:mymap:p! c:mymap:q! a! 1! 2! 3! 4! 5! OpenSource Connections
  • 71.
    Peek Behind theScenes! Do it! (in cqlsh) CREATE KEYSPACE test WITH replication = ! {'class': 'SimpleStrategy', 'replication_factor': 1};! USE test;! CREATE TABLE stuff ( a int, b int, myset set<int>,! mylist list<int>, mymap map<int,int>, PRIMARY KEY (a,b));! UPDATE stuff SET myset = {1,2}, mylist = [3,4,5], mymap = {6:7,8:9} WHERE a = 0 AND b = 1;! SELECT * FROM stuff;! ! (in cassandra-cli) use test;! list stuff ;! ! (in cqlsh) SELECT key_aliases,column_aliases from system.schema_columnfamilies WHERE keyspace_name = 'test' AND columnfamily_name = 'stuff';! OpenSource Connections
  • 72.
    Putting it AllTogether …you already know • CQL is a reintroduction of schema • CQL creates a common data modeling language • CQL is a best-practices Cassandra interface . OpenSource Connections
  • 73.
    Putting it AllTogether …you already know • CQL is a reintroduction of schema • CQL creates a common data modeling language • CQL is a best-practices Cassandra interface …now you know • CQL let’s you take advantage of the C* Data structure . OpenSource Connections
  • 74.
    Putting it AllTogether …you already know • CQL is a reintroduction of schema • CQL creates a common data modeling language • CQL is a best-practices Cassandra interface …now you know • CQL let’s you take advantage of the C* Data structure …but also • CQL protocol is binary and therefore interoperable with any language • CQL is asynchronous and fast (Thrift transport layer is synchronous) • CQL allows the possibility for prepared statements OpenSource Connections
  • 75.
    Thanks! Follow meon Twitter @JnBrymn Check out the OpenSource Connection Blog http://www.opensourceconnections.com/blog/ OpenSource Connections