Bài 3
Các phân phối xác suất thường gặp
Phân phối nhị thức

  Phép   thử Bernoulli
   Xét một thí nghiệm chỉ có 2 khả năng xảy ra:
   “thành công” hoặc “thất bại”.
   Thành công với xác suất p.
   Thất bại với xác suất 1-p.
   Thí nghiệm như vậy gọi là phép thử Bernoulli,
   ký hiệu B(1,p).
Phân phối nhị thức

 Phép   thử Bernoulli – ví dụ.
  Tung đồng xu: hình / số.
  Mua vé số: trúng / không trúng.
  Trả lời ngẫu nhiên 1 câu trắc nghiệm: đúng / sai.
  Kiểm tra ngẫu nhiên hàng hóa: tốt / xấu.
Phân phối nhị thức

  Phân   phối nhị thức
   Thực hiện phép thử Bernoulli B(1,p) n lần độc
   lập.
   Đặt
   X = “Số lần thành công trong n lần thí nghiệm”
   X = 0, 1, 2, …, n.
   X có phân phối nhị thức với tham số p.
   Ký hiệu: X ~ B(n,p).
Phân phối nhị thức

  Công   thức
   Xét X ~ B(n,p)
                                     n−k
        P ( X = k ) = C p (1 − p )
                        k
                        n
                            k


        k = 0,1, …, n
Phân phối nhị thức

  Ví dụ
   Cho X ~ B(5,0.1)
   Tính P(X=1)
        P(X = 1) = Cnk Pk (1 − P)n− k
                       5!
                  =            (0.1)1(1 − 0.1)5−1
                    1!(5 − 1)!
                  = (5)(0.1)(0.9)4
                  = .32805
Phân phối nhị thức
   Hìnhdạng của phân phối nhị thức sẽ phụ
   thuộc vào p và n.
                        P(x) n = 5 P = 0.1
 Mean                .6
  n                    .4
       = 5 và P = 0.1
                        .2
                         0                              x
                                0   1   2   3   4   5


                        .6
                             P(x)   n = 5 P = 0.5
  n                    .4
       = 5 và P = 0.5   .2
                         0                              x
                                0   1   2   3   4   5
Phân phối nhị thức
 Nếu X ~ B(n,p):
  1) Trung bình      µ = EX = np
  2) Phương sai và độ lệch tiêu chuẩn
                        σ = npq
                           2



                        σ = npq
   - n: số lần thực hiện thí nghiệm
   - p: xác suất thành công ở 1 lần thí nghiệm
   - q = 1- p.
Phân phối nhị thức
             Ví dụ

   Mean = (5)(0.1) = 0.5
   μ = nP
                                  .6
                                       P(x)   n = 5 P = 0.1
                                  .4
σ = nP(1- P) = (5)(0.1)(1− 0.1)   .2
             = 0.6708              0                              x
                                          0   1   2   3   4   5


    μ = nP = (5)(0.5) = 2.5            P(x)   n = 5 P = 0.5
                                  .6
                                  .4
σ = nP(1- P) = (5)(0.5)(1− 0.5)   .2
             = 1.118               0                              x
                                          0   1   2   3   4   5
Phân phối Poisson
  Số   các biến cố xảy ra trong một khoảng
   thời gian cho trước.
  Số các biến cố trung bình trên một đơn
   vị là λ.
  Ví dụ
   Số người xếp hàng tính tiền ở siêu thị,
   số cuộc điện thoại đến bưu điện trong 1
   ngày, số máy tính hư trong 1 ngày ở 1
   khu vực, …
Phân phối Poisson

  Biếnngẫu nhiên X nhận giá trị từ 0, 1, 2,
  … gọi là có phân phối Poisson với tham
  số λ nếu
                        −λ
                       e λ   k
          P( X = k ) =
                        k!
 k = 0, 1, 2, …
Phân phối Poisson

    Trung       bình
                 μ = E(X) = λ
    Phương   sai và độ lệch tiêu chuẩn


                  σ = E[( X − µ ) ] = λ
                     2                    2



                             σ= λ
   Với λ = số biến cố xảy ra trung bình trên 1 đơn vị
Phân phối Poisson

  Vídụ
  Trong một nhà máy dệt, biết số ống sợi
  bị đứt trong 1 giờ có phân phối Poisson
  với trung bình là 4. Tính xác suất trong 1
  giờ có
  a. Đúng 3 ống sợi bị đứt.
  b. Có nhiều hơn 1 ống sợi bị đứt.
Bảng tra phân phối Poisson

                                                  λ

       X     0.10     0.20     0.30     0.40     0.50     0.60     0.70     0.80     0.90



       0    0.9048   0.8187   0.7408   0.6703   0.6065   0.5488   0.4966   0.4493   0.4066
       1    0.0905   0.1637   0.2222   0.2681   0.3033   0.3293   0.3476   0.3595   0.3659
       2    0.0045   0.0164   0.0333   0.0536   0.0758   0.0988   0.1217   0.1438   0.1647
       3    0.0002   0.0011   0.0033   0.0072   0.0126   0.0198   0.0284   0.0383   0.0494
       4    0.0000   0.0001   0.0003   0.0007   0.0016   0.0030   0.0050   0.0077   0.0111
       5    0.0000   0.0000   0.0000   0.0001   0.0002   0.0004   0.0007   0.0012   0.0020
       6    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0001   0.0002   0.0003
       7    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000


   Ví dụ: Tìm P(X = 2) nếu λ = .50

                        e − λ λ k e−0.50 (0.50)2
           P ( X = 2) =          =               = .0758
                           k!            2!
Phân phối xác suất Poisson
                       0.70


                       0.60
  λ = .50
                       0.50
         λ=
                       0.40
  X     0.50    P(x)
                       0.30
  0    0.6065
  1    0.3033          0.20


  2    0.0758          0.10

  3    0.0126          0.00
                              0     1    2   3       4   5   6   7
  4    0.0016
  5    0.0002                                    x

  6    0.0000                     P(X = 2) = .0758
  7    0.0000
Phân phối Poisson

                   Hình    dạng của phân phối Poisson phụ
                       thuộc vào tham số λ :
                       λ =0.50                                                λ =3.00
       0.70                                                0.25


       0.60
                                                           0.20
       0.50

                                                           0.15
       0.40




                                                    P(x)
P(x)




       0.30                                                0.10

       0.20
                                                           0.05
       0.10


       0.00                                                0.00
              0    1    2   3       4   5   6   7                 1   2   3   4   5   6       7   8   9   10   11   12


                                x                                                         x
Định lý Poisson

  Cho   X ~ B(n,p)
                              k −λ
                             λ e
      lim C p q
             k   k   n−k
                           =
                              k!
             n
     n →∞
     p →0
     np →λ


  Dùng  phân phối Poisson để xấp xỉ phân
   phối nhị thức khi n >> p.
Mô hình Poisson
  Mô hình Poisson :
  + Xét n phép thử Bernoulli.
  + Trong đó xác suất thành công là p.
  + Các phép thử độc lập với nhau.
  (Kết quả của phép thử này không ảnh hưởng đến kết
    quả của các phép thử kia)
  + X – số lần xuất hiện thành công trong n phép
  thử.
  + Trong đó n lớn ( n ≥ 100) và p nhỏ (p ≤ 0,01
  và np ≤ 20).
  Khi đó X ~ P(λ).
Mô hình Poisson

  Vídụ
  Trong một đợt tiêm chủng cho 2000 trẻ
  em ở một khu vực. Biết xác suất 1 trẻ bị
  phản ứng với thuốc khi tiêm là 0.001.
  Tính xác suất trong 2000 trẻ có không
  quá 1 trẻ bị phản ứng khi tiêm thuốc.
Phân phối đều
    Tất cả các khả năng có thể xảy ra của biến ngẫu
     nhiên có phân phối đều có xác suất bằng nhau.
    X có phân phối đều trong khoảng [a,b], ký hiệu X ~
     U([a,b]).
      f(x)

                                       Tổng diện tích miền
                                       giới hạn bởi phân phối
                                       đều là 1.0
             xmin             xmax x
Phân phối đều
    Hàm mật độ xác suất của phân phối đều trong đoạn
     [a,b]
                               1
                                   neá a ≤ x ≤ b
                                     u
                              b− a
                 f(x) =
                                0       nôi khaù
                                               c

          với
                f(x) = giá trị hàm mật độ tại điểm x
                a = giá trị nhỏ nhất của x
                b = giá trị lớn nhất của x
Phân phối đều

   Kỳ   vọng
                         a+ b
                µ = EX =
                          2

   Phương      sai
                       (b-a)    2
            σ = VarX =
                2

                         12
Phân phối đều

 Ví dụ: Phân phối đều trên khoảng 2 ≤ x ≤ 6


                     1
            f(x) = 6 - 2 = .25 for 2 ≤ x ≤ 6

f(x)                                 a+b 2+6
                                EX =    =    =4
                                      2   2
.25
                                       ( b − a)         ( 6 − 2)
                                                  2                2
                                                                           16
                                VarX =                =                =      = 1.333
                                           12              12              12
        2               6   x
Phân phối mũ
    Biến ngẫu nhiên T (t>0) gọi là có phân phối mũ nếu có hàm mật
     độ xác suất



                    f(t) = λ e− λ t vôùt > 0
                                      i
     Với
          λ số biến cố xảy ra trung bình trong một đơn vị thời gian.
          t số đơn vị thời gian cho đến biến cố kế tiếp.
          e = 2.71828
    Ký hiệu: T ~ exp(t), T là khoảng thời gian giữa 2 lần xảy ra các
     biến cố.
Phân phối mũ

  Hàm   phân phối xác suất
                    −λt
         F(t) = 1 − e     vôùt>0
                            i

  Kỳ   vọng và phương sai
              1                1
         ET =           VarT = 2
              λ               λ
Phân phối mũ
 Ví dụ: Số khác hàng đến một quầy dịch vụ với tỷ lệ là
 15 người một giờ. Hỏi xác suất thời gian giữa 2 khách
 hàng liên tiếp đến quầy dịch vụ ít hơn 3 phút là bao
 nhiêu.
  Trung bình có 15 khách hàng đến trong 1 giờ, do đó λ
    = 15
    3 phút = 0.05 giờ
    T: thời gian giữa 2 khách hàng liên tiếp đến quầy.
    P(T < .05) = 1 – e- λt = 1 – e-(15)(.05) = 0.5276
    Vậy có khoảng 52,76% khoảng thời gian giữa 2 khách
     hàng liên tiếp đến làm dịch vụ tại quầy ít hơn 3 phút.
Phân phối mũ

 Ví dụ:
   Trong một nhà máy sản xuất linh kiện
   điện tử, biết tuổi thọ của một mạch điện
   là biến ngẫu nhiên có phân phối mũ với
   tuổi thọ trung bình là 6,25 năm. Nếu thời
   gian bảo hành của sản phẩm là 5 năm.
   Hỏi có bao nhiêu % mạch điện của nhà
   máy khi bán ra thị trường phải thay thế
   trước thời gian bảo hành.
Phân phối chuẩn
  Biến ngẫu nhiên X nhận giá trị trong R gọi là
   có phân phối chuẩn với tham số µ và σ2 nếu
   hàm mật độ xác suất
                           ( x−µ ) 2
                  1      −
       f ( x) =      e       2σ 2
                                       , −∞ < x < +∞
                σ 2π
   Với: EX = µ và VarX = σ2.
  Ký hiệu: X ~ N(µ, σ2)
Phân phối chuẩn

 Dạng như một cái chuông
 Có tính đối xứng
                                       f(x)
 Trung bình = Trung vị = Mode
 Vị trí của phân phối được xác định


 bởi kỳ vọng, µ                                   σ
 Độ phân tán được xác định bởi độ                          x
                                               μ
 lệch tiêu chuẩn, σ
 Xác định từ + ∞ to − ∞
                                  Trung bình = Trung vị = Mode
Phân phối chuẩn




  Bằng việc thay đổi các tham số μ và σ, ta nhận
  được nhiều dạng phân phối chuẩn khác nhau
Phân phối chuẩn

  f(x)   Thay đổi μ dịch chuyển phân
         phối qua trái hoặc phải

                           Thay đổi σ làm tăng
                           hoặc giảm độ phân tán.
                      σ



                  μ                    x
Hàm phân phối của phân phối chuẩn

    Xét biến ngẫu nhiên X có phân phối chuẩn với trung
     bình μ và phương sai σ2 , X~N(μ, σ2), hàm phân phối
     của X là

                   F(x 0 ) = P(X ≤ x 0 )

            f(x)

                                        P(X ≤ x 0 )


                             0     x0         x
Xác suất của phân phối chuẩn

 Xác suất X ∈ (a,b) đo bởi diện tích giới
 hạn bởi đường cong chuẩn.

       P(a < X < b) = F(b) − F(a)




              a    μ   b       x
Xác suất của phân phối chuẩn
           F(b) = P(X < b)

                               a   μ   b



           F(a) = P(X < a)

                               a   μ   b


  P(a < X < b) = F(b) − F(a)

                               a   μ   b   x
Phân phối chuẩn hóa
   Xét biến ngẫu nhiên X ~ N(µ, σ 2). Chuẩn hóa X
    bằng cách đặt
                    X −μ
                 Z=
                     σ
   Khi đó EZ = 0 và VarZ = 1. Ta nói Z có phân phối
    chuẩn hóa. Ký hiệu
                 Z ~ N(0 ,1)
    f(Z)

                       1
                               Z
                   0
Phân phối chuẩn hóa
   Nếu X có phân phối chuẩn với trung bình là 100 and
    độ lệch tiêu chuẩn là 50, thì giá trị của Z ứng với X =
    200 is
               X − µ 200 − 100
            Z=      =          = 2.0
                σ       50




                      100      200      X   (μ = 100, σ = 50)
                       0       2.0      Z   (μ = 0, σ = 1)
Phân phối chuẩn hóa
 Hàm   mật độ
                    z2
           1      −
  f ( z) =    e     2
                         = ϕ ( z ) : haø Gauss
                                       m
           2π
 Hàm   phân phối
                                  z0     t2
                            1          −
  F ( z0 ) = P ( Z ≤ z0 ) =
                            2π    ∫e
                                  −∞
                                          2
                                              dt = Φ( z )

  haø Laplace
     m
Tính xác suất

                                     a −μ     b −μ
                   P(a < X < b) = P       <Z<     
                                     σ          σ 
 f(x)                       b −μ  a −μ
                        = F       − F    
                            σ   σ 




        a      µ    b             x
        a −μ       b −μ
               0                  Z
         σ           σ
Tính xác suất

 f(X)   P( − ∞ < Xμ )
                  <       0.5
                          =
                                        P(μ < X < ∞) = 0.5



                        0.5       0.5

                              μ                   X
               P( −∞ < X < ∞ ) = 1.0
Tra bảng chuẩn hóa N(0,1)

  Đểtìm xác xuất P(X<x0); chuẩn hóa đưa
  X về Z: tìm xác suất bằng cách tra bảng
  chuẩn hóa N(0,1).
                F(a) = P(Z < a)=Φ (a)



                        Z
Tra bảng chuẩn hóa N(0,1)

   P(Z<1.04) = Φ(1.04)= 0.8508
Tra bảng chuẩn hóa N(0,1)
                                              .9772
 Ví dụ:
 P(Z < 2.00) =
 Φ (2.00) = .9772                       0   2.00    Z
 Do tính đối xứng             .9772
 Φ(-z) = 1 - Φ(z)                                  .0228

 Ví dụ:                                 0   2.00       Z
 P(Z < -2.00) = Φ(-2.00)= 1                    .9772
 – Φ (2.00) = 1 - 0.9772
            = 0.0228
                                -2.00   0              Z
Ví dụ

  Giả sử X có phân phối chuẩn với trung
   bình là 8.0 và độ lệch tiêu chuẩn 5.0.
   Tìm P(X < 8.6).




                           X
               8.0
                     8.6
Ví dụ

             X − µ 8.6 − 8.0
          Z=      =          = 0.12
              σ       5.0



                   μ=8                            μ=0
                   σ = 10                         σ=1



           8 8.6            X            0 0.12         Z

        P(X < 8.6)                    P(Z < 0.12)
Ví dụ

Tra bảng chuẩn hóa           P(X < 8.6)
                            = P(Z < 0.12)
      z    Φ(z)      Φ(0.12) = 0.5478
    .10   .5398

    .11   .5438

    .12   .5478
                                     Z
                     0.00
    .13   .5517
                        0.12
Ví dụ

  Giả sử X có phân phối chuẩn với trung
   bình 8.0 và độ lệch tiêu chuẩn 5.0.
  Tìm P(X > 8.6)




                               X
                   8.0

                         8.6
Ví dụ
   Tìm    P(X > 8.6)…
   P(X > 8.6) = P(Z > 0.12) = 1.0 - P(Z ≤ 0.12)
                                  = 1.0 - 0.5478 = 0.4522

                                    0.5478
                      1.000                             1.0 - 0.5478
                                                          = 0.4522



                              Z                              Z
           0                                 0
               0.12                              0.12
Xấp xỉ phân phối nhị thức bằng phân
phối chuẩn

   Cho X ~ B(n,p). Khi n lớn và p không
    quá gần 0 và 1.
   Tính P(X < c)?
   Tính P(a < X < b)?

    Dùng phân phối chuẩn.
Xấp xỉ phân phối nhị thức bằng phân
phối chuẩn

   Đặt

    µ = EX = np
    σ2 = VarX = np(1-p)
   Tạo biến ngẫu nhiên Z có phân phối
    chuẩn hóa từ phân phối nhị thức
             X − EX   X − np
          Z=        =
              VarX    np (1 − p )
Xấp xỉ phân phối nhị thức bằng phân
phối chuẩn

                X − np c − np          c − np      c − np 
 P( X < c) = P        <       ÷= P  Z <        ÷= Φ 
                npq      npq ÷           npq ÷     npq ÷  ÷
                                                            

                     a − np     b − np 
 P ( a < X < b) = P         <Z<        ÷
                     npq          npq ÷
                                       
                      b − np      a − np 
                  = Φ        ÷− Φ 
                      npq ÷        npq ÷  ÷
                                         
Xấp xỉ phân phối nhị thức bằng phân
phối chuẩn

   Ví
     dụ
   Trong một cuộc bầu cử ở một thành
   phố, biết rằng 40% người dân ủng hộ
   ứng cử viên A. Chọn ngẫu nhiên 200
   người, hỏi xác suất gặp được từ 76 đến
   80 người ủng hộ ứng cử viên A là bao
   nhiêu?
Ví dụ

         E(X) = µ = nP = 200(0.40) = 80
         Var(X) = σ2 = nP(1 – P) = 200(0.40)(1 – 0.40) = 48



                                 76 − 80             80 − 80        
        P(76 < X < 80) = P 
                            200(0.4)(1 − 0.4) ≤Z≤                   ÷
                                                  200(0.4)(1 − 0.4) ÷
                                                                     
                      = P( − 0.58 < Z < 0)
                     = Φ(0) − Φ( − 0.58)
                     = 0.5000 − 0.2810 = 0.2190

các phân phối xác xuất thường gặp

  • 1.
    Bài 3 Các phânphối xác suất thường gặp
  • 2.
    Phân phối nhịthức  Phép thử Bernoulli Xét một thí nghiệm chỉ có 2 khả năng xảy ra: “thành công” hoặc “thất bại”. Thành công với xác suất p. Thất bại với xác suất 1-p. Thí nghiệm như vậy gọi là phép thử Bernoulli, ký hiệu B(1,p).
  • 3.
    Phân phối nhịthức  Phép thử Bernoulli – ví dụ. Tung đồng xu: hình / số. Mua vé số: trúng / không trúng. Trả lời ngẫu nhiên 1 câu trắc nghiệm: đúng / sai. Kiểm tra ngẫu nhiên hàng hóa: tốt / xấu.
  • 4.
    Phân phối nhịthức  Phân phối nhị thức Thực hiện phép thử Bernoulli B(1,p) n lần độc lập. Đặt X = “Số lần thành công trong n lần thí nghiệm” X = 0, 1, 2, …, n. X có phân phối nhị thức với tham số p. Ký hiệu: X ~ B(n,p).
  • 5.
    Phân phối nhịthức  Công thức Xét X ~ B(n,p) n−k P ( X = k ) = C p (1 − p ) k n k k = 0,1, …, n
  • 6.
    Phân phối nhịthức  Ví dụ Cho X ~ B(5,0.1) Tính P(X=1) P(X = 1) = Cnk Pk (1 − P)n− k 5! = (0.1)1(1 − 0.1)5−1 1!(5 − 1)! = (5)(0.1)(0.9)4 = .32805
  • 7.
    Phân phối nhịthức  Hìnhdạng của phân phối nhị thức sẽ phụ thuộc vào p và n. P(x) n = 5 P = 0.1 Mean .6 n .4 = 5 và P = 0.1 .2 0 x 0 1 2 3 4 5 .6 P(x) n = 5 P = 0.5 n .4 = 5 và P = 0.5 .2 0 x 0 1 2 3 4 5
  • 8.
    Phân phối nhịthức Nếu X ~ B(n,p): 1) Trung bình µ = EX = np 2) Phương sai và độ lệch tiêu chuẩn σ = npq 2 σ = npq - n: số lần thực hiện thí nghiệm - p: xác suất thành công ở 1 lần thí nghiệm - q = 1- p.
  • 9.
    Phân phối nhịthức Ví dụ Mean = (5)(0.1) = 0.5 μ = nP .6 P(x) n = 5 P = 0.1 .4 σ = nP(1- P) = (5)(0.1)(1− 0.1) .2 = 0.6708 0 x 0 1 2 3 4 5 μ = nP = (5)(0.5) = 2.5 P(x) n = 5 P = 0.5 .6 .4 σ = nP(1- P) = (5)(0.5)(1− 0.5) .2 = 1.118 0 x 0 1 2 3 4 5
  • 10.
    Phân phối Poisson  Số các biến cố xảy ra trong một khoảng thời gian cho trước.  Số các biến cố trung bình trên một đơn vị là λ.  Ví dụ Số người xếp hàng tính tiền ở siêu thị, số cuộc điện thoại đến bưu điện trong 1 ngày, số máy tính hư trong 1 ngày ở 1 khu vực, …
  • 11.
    Phân phối Poisson  Biếnngẫu nhiên X nhận giá trị từ 0, 1, 2, … gọi là có phân phối Poisson với tham số λ nếu −λ e λ k P( X = k ) = k! k = 0, 1, 2, …
  • 12.
    Phân phối Poisson  Trung bình μ = E(X) = λ  Phương sai và độ lệch tiêu chuẩn σ = E[( X − µ ) ] = λ 2 2 σ= λ Với λ = số biến cố xảy ra trung bình trên 1 đơn vị
  • 13.
    Phân phối Poisson  Vídụ Trong một nhà máy dệt, biết số ống sợi bị đứt trong 1 giờ có phân phối Poisson với trung bình là 4. Tính xác suất trong 1 giờ có a. Đúng 3 ống sợi bị đứt. b. Có nhiều hơn 1 ống sợi bị đứt.
  • 14.
    Bảng tra phânphối Poisson λ X 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0 0.9048 0.8187 0.7408 0.6703 0.6065 0.5488 0.4966 0.4493 0.4066 1 0.0905 0.1637 0.2222 0.2681 0.3033 0.3293 0.3476 0.3595 0.3659 2 0.0045 0.0164 0.0333 0.0536 0.0758 0.0988 0.1217 0.1438 0.1647 3 0.0002 0.0011 0.0033 0.0072 0.0126 0.0198 0.0284 0.0383 0.0494 4 0.0000 0.0001 0.0003 0.0007 0.0016 0.0030 0.0050 0.0077 0.0111 5 0.0000 0.0000 0.0000 0.0001 0.0002 0.0004 0.0007 0.0012 0.0020 6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0003 7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Ví dụ: Tìm P(X = 2) nếu λ = .50 e − λ λ k e−0.50 (0.50)2 P ( X = 2) = = = .0758 k! 2!
  • 15.
    Phân phối xácsuất Poisson 0.70 0.60 λ = .50 0.50 λ= 0.40 X 0.50 P(x) 0.30 0 0.6065 1 0.3033 0.20 2 0.0758 0.10 3 0.0126 0.00 0 1 2 3 4 5 6 7 4 0.0016 5 0.0002 x 6 0.0000 P(X = 2) = .0758 7 0.0000
  • 16.
    Phân phối Poisson  Hình dạng của phân phối Poisson phụ thuộc vào tham số λ : λ =0.50 λ =3.00 0.70 0.25 0.60 0.20 0.50 0.15 0.40 P(x) P(x) 0.30 0.10 0.20 0.05 0.10 0.00 0.00 0 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 9 10 11 12 x x
  • 17.
    Định lý Poisson  Cho X ~ B(n,p) k −λ λ e lim C p q k k n−k = k! n n →∞ p →0 np →λ  Dùng phân phối Poisson để xấp xỉ phân phối nhị thức khi n >> p.
  • 18.
    Mô hình Poisson Mô hình Poisson : + Xét n phép thử Bernoulli. + Trong đó xác suất thành công là p. + Các phép thử độc lập với nhau. (Kết quả của phép thử này không ảnh hưởng đến kết quả của các phép thử kia) + X – số lần xuất hiện thành công trong n phép thử. + Trong đó n lớn ( n ≥ 100) và p nhỏ (p ≤ 0,01 và np ≤ 20). Khi đó X ~ P(λ).
  • 19.
    Mô hình Poisson  Vídụ Trong một đợt tiêm chủng cho 2000 trẻ em ở một khu vực. Biết xác suất 1 trẻ bị phản ứng với thuốc khi tiêm là 0.001. Tính xác suất trong 2000 trẻ có không quá 1 trẻ bị phản ứng khi tiêm thuốc.
  • 20.
    Phân phối đều  Tất cả các khả năng có thể xảy ra của biến ngẫu nhiên có phân phối đều có xác suất bằng nhau.  X có phân phối đều trong khoảng [a,b], ký hiệu X ~ U([a,b]). f(x) Tổng diện tích miền giới hạn bởi phân phối đều là 1.0 xmin xmax x
  • 21.
    Phân phối đều  Hàm mật độ xác suất của phân phối đều trong đoạn [a,b] 1 neá a ≤ x ≤ b u b− a f(x) = 0 nôi khaù c với f(x) = giá trị hàm mật độ tại điểm x a = giá trị nhỏ nhất của x b = giá trị lớn nhất của x
  • 22.
    Phân phối đều  Kỳ vọng a+ b µ = EX = 2  Phương sai (b-a) 2 σ = VarX = 2 12
  • 23.
    Phân phối đều Ví dụ: Phân phối đều trên khoảng 2 ≤ x ≤ 6 1 f(x) = 6 - 2 = .25 for 2 ≤ x ≤ 6 f(x) a+b 2+6 EX = = =4 2 2 .25 ( b − a) ( 6 − 2) 2 2 16 VarX = = = = 1.333 12 12 12 2 6 x
  • 24.
    Phân phối mũ  Biến ngẫu nhiên T (t>0) gọi là có phân phối mũ nếu có hàm mật độ xác suất f(t) = λ e− λ t vôùt > 0 i Với  λ số biến cố xảy ra trung bình trong một đơn vị thời gian.  t số đơn vị thời gian cho đến biến cố kế tiếp.  e = 2.71828  Ký hiệu: T ~ exp(t), T là khoảng thời gian giữa 2 lần xảy ra các biến cố.
  • 25.
    Phân phối mũ  Hàm phân phối xác suất −λt F(t) = 1 − e vôùt>0 i  Kỳ vọng và phương sai 1 1 ET = VarT = 2 λ λ
  • 26.
    Phân phối mũ Ví dụ: Số khác hàng đến một quầy dịch vụ với tỷ lệ là 15 người một giờ. Hỏi xác suất thời gian giữa 2 khách hàng liên tiếp đến quầy dịch vụ ít hơn 3 phút là bao nhiêu.  Trung bình có 15 khách hàng đến trong 1 giờ, do đó λ = 15  3 phút = 0.05 giờ  T: thời gian giữa 2 khách hàng liên tiếp đến quầy.  P(T < .05) = 1 – e- λt = 1 – e-(15)(.05) = 0.5276  Vậy có khoảng 52,76% khoảng thời gian giữa 2 khách hàng liên tiếp đến làm dịch vụ tại quầy ít hơn 3 phút.
  • 27.
    Phân phối mũ Ví dụ: Trong một nhà máy sản xuất linh kiện điện tử, biết tuổi thọ của một mạch điện là biến ngẫu nhiên có phân phối mũ với tuổi thọ trung bình là 6,25 năm. Nếu thời gian bảo hành của sản phẩm là 5 năm. Hỏi có bao nhiêu % mạch điện của nhà máy khi bán ra thị trường phải thay thế trước thời gian bảo hành.
  • 28.
    Phân phối chuẩn  Biến ngẫu nhiên X nhận giá trị trong R gọi là có phân phối chuẩn với tham số µ và σ2 nếu hàm mật độ xác suất ( x−µ ) 2 1 − f ( x) = e 2σ 2 , −∞ < x < +∞ σ 2π Với: EX = µ và VarX = σ2.  Ký hiệu: X ~ N(µ, σ2)
  • 29.
    Phân phối chuẩn Dạng như một cái chuông  Có tính đối xứng f(x)  Trung bình = Trung vị = Mode  Vị trí của phân phối được xác định bởi kỳ vọng, µ σ  Độ phân tán được xác định bởi độ x μ lệch tiêu chuẩn, σ  Xác định từ + ∞ to − ∞ Trung bình = Trung vị = Mode
  • 30.
    Phân phối chuẩn Bằng việc thay đổi các tham số μ và σ, ta nhận được nhiều dạng phân phối chuẩn khác nhau
  • 31.
    Phân phối chuẩn f(x) Thay đổi μ dịch chuyển phân phối qua trái hoặc phải Thay đổi σ làm tăng hoặc giảm độ phân tán. σ μ x
  • 32.
    Hàm phân phốicủa phân phối chuẩn  Xét biến ngẫu nhiên X có phân phối chuẩn với trung bình μ và phương sai σ2 , X~N(μ, σ2), hàm phân phối của X là F(x 0 ) = P(X ≤ x 0 ) f(x) P(X ≤ x 0 ) 0 x0 x
  • 33.
    Xác suất củaphân phối chuẩn Xác suất X ∈ (a,b) đo bởi diện tích giới hạn bởi đường cong chuẩn. P(a < X < b) = F(b) − F(a) a μ b x
  • 34.
    Xác suất củaphân phối chuẩn F(b) = P(X < b) a μ b F(a) = P(X < a) a μ b P(a < X < b) = F(b) − F(a) a μ b x
  • 35.
    Phân phối chuẩnhóa  Xét biến ngẫu nhiên X ~ N(µ, σ 2). Chuẩn hóa X bằng cách đặt X −μ Z= σ  Khi đó EZ = 0 và VarZ = 1. Ta nói Z có phân phối chuẩn hóa. Ký hiệu Z ~ N(0 ,1) f(Z) 1 Z 0
  • 36.
    Phân phối chuẩnhóa  Nếu X có phân phối chuẩn với trung bình là 100 and độ lệch tiêu chuẩn là 50, thì giá trị của Z ứng với X = 200 is X − µ 200 − 100 Z= = = 2.0 σ 50 100 200 X (μ = 100, σ = 50) 0 2.0 Z (μ = 0, σ = 1)
  • 37.
    Phân phối chuẩnhóa  Hàm mật độ z2 1 − f ( z) = e 2 = ϕ ( z ) : haø Gauss m 2π  Hàm phân phối z0 t2 1 − F ( z0 ) = P ( Z ≤ z0 ) = 2π ∫e −∞ 2 dt = Φ( z ) haø Laplace m
  • 38.
    Tính xác suất  a −μ b −μ P(a < X < b) = P <Z<   σ σ  f(x)  b −μ  a −μ = F  − F   σ   σ  a µ b x a −μ b −μ 0 Z σ σ
  • 39.
    Tính xác suất f(X) P( − ∞ < Xμ ) < 0.5 = P(μ < X < ∞) = 0.5 0.5 0.5 μ X P( −∞ < X < ∞ ) = 1.0
  • 40.
    Tra bảng chuẩnhóa N(0,1)  Đểtìm xác xuất P(X<x0); chuẩn hóa đưa X về Z: tìm xác suất bằng cách tra bảng chuẩn hóa N(0,1). F(a) = P(Z < a)=Φ (a) Z
  • 41.
    Tra bảng chuẩnhóa N(0,1) P(Z<1.04) = Φ(1.04)= 0.8508
  • 42.
    Tra bảng chuẩnhóa N(0,1) .9772 Ví dụ: P(Z < 2.00) = Φ (2.00) = .9772 0 2.00 Z Do tính đối xứng .9772 Φ(-z) = 1 - Φ(z) .0228 Ví dụ: 0 2.00 Z P(Z < -2.00) = Φ(-2.00)= 1 .9772 – Φ (2.00) = 1 - 0.9772 = 0.0228 -2.00 0 Z
  • 43.
    Ví dụ Giả sử X có phân phối chuẩn với trung bình là 8.0 và độ lệch tiêu chuẩn 5.0. Tìm P(X < 8.6). X 8.0 8.6
  • 44.
    Ví dụ X − µ 8.6 − 8.0 Z= = = 0.12 σ 5.0 μ=8 μ=0 σ = 10 σ=1 8 8.6 X 0 0.12 Z P(X < 8.6) P(Z < 0.12)
  • 45.
    Ví dụ Tra bảngchuẩn hóa P(X < 8.6) = P(Z < 0.12) z Φ(z) Φ(0.12) = 0.5478 .10 .5398 .11 .5438 .12 .5478 Z 0.00 .13 .5517 0.12
  • 46.
    Ví dụ Giả sử X có phân phối chuẩn với trung bình 8.0 và độ lệch tiêu chuẩn 5.0.  Tìm P(X > 8.6) X 8.0 8.6
  • 47.
    Ví dụ  Tìm P(X > 8.6)… P(X > 8.6) = P(Z > 0.12) = 1.0 - P(Z ≤ 0.12) = 1.0 - 0.5478 = 0.4522 0.5478 1.000 1.0 - 0.5478 = 0.4522 Z Z 0 0 0.12 0.12
  • 48.
    Xấp xỉ phânphối nhị thức bằng phân phối chuẩn  Cho X ~ B(n,p). Khi n lớn và p không quá gần 0 và 1.  Tính P(X < c)?  Tính P(a < X < b)? Dùng phân phối chuẩn.
  • 49.
    Xấp xỉ phânphối nhị thức bằng phân phối chuẩn  Đặt µ = EX = np σ2 = VarX = np(1-p)  Tạo biến ngẫu nhiên Z có phân phối chuẩn hóa từ phân phối nhị thức X − EX X − np Z= = VarX np (1 − p )
  • 50.
    Xấp xỉ phânphối nhị thức bằng phân phối chuẩn  X − np c − np   c − np   c − np  P( X < c) = P  < ÷= P  Z < ÷= Φ   npq npq ÷  npq ÷  npq ÷ ÷      a − np b − np  P ( a < X < b) = P  <Z< ÷  npq npq ÷    b − np   a − np  = Φ ÷− Φ   npq ÷  npq ÷ ÷    
  • 51.
    Xấp xỉ phânphối nhị thức bằng phân phối chuẩn  Ví dụ Trong một cuộc bầu cử ở một thành phố, biết rằng 40% người dân ủng hộ ứng cử viên A. Chọn ngẫu nhiên 200 người, hỏi xác suất gặp được từ 76 đến 80 người ủng hộ ứng cử viên A là bao nhiêu?
  • 52.
    Ví dụ  E(X) = µ = nP = 200(0.40) = 80  Var(X) = σ2 = nP(1 – P) = 200(0.40)(1 – 0.40) = 48  76 − 80 80 − 80  P(76 < X < 80) = P   200(0.4)(1 − 0.4) ≤Z≤ ÷  200(0.4)(1 − 0.4) ÷  = P( − 0.58 < Z < 0) = Φ(0) − Φ( − 0.58) = 0.5000 − 0.2810 = 0.2190