Class XII Chapter 8 – Application of Integrals Maths
Page 1 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
Exercise 8.1
Question 1:
Find the area of the region bounded by the curve y2
= x and the lines x = 1, x = 4 and
the x-axis.
Answer
The area of the region bounded by the curve, y2
= x, the lines, x = 1 and x = 4, and the
x-axis is the area ABCD.
Class XII Chapter 8 – Application of Integrals Maths
Page 2 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
Question 2:
Find the area of the region bounded by y2
= 9x, x = 2, x = 4 and the x-axis in the first
quadrant.
Answer
The area of the region bounded by the curve, y2
= 9x, x = 2, and x = 4, and the x-axis
is the area ABCD.
Class XII Chapter 8 – Application of Integrals Maths
Page 3 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
Question 3:
Find the area of the region bounded by x2
= 4y, y = 2, y = 4 and the y-axis in the first
quadrant.
Answer
The area of the region bounded by the curve, x2
= 4y, y = 2, and y = 4, and the y-axis
is the area ABCD.
Class XII Chapter 8 – Application of Integrals Maths
Page 4 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
Question 4:
Find the area of the region bounded by the ellipse
Answer
The given equation of the ellipse, , can be represented as
It can be observed that the ellipse is symmetrical about x-axis and y-axis.
∴ Area bounded by ellipse = 4 × Area of OAB
Class XII Chapter 8 – Application of Integrals Maths
Page 5 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
Therefore, area bounded by the ellipse = 4 × 3π = 12π units
Question 5:
Find the area of the region bounded by the ellipse
Answer
The given equation of the ellipse can be represented as
It can be observed that the ellipse is symmetrical about x-axis and y-axis.
∴ Area bounded by ellipse = 4 × Area OAB
Class XII Chapter 8 – Application of Integrals Maths
Page 6 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
Therefore, area bounded by the ellipse =
Question 6:
Find the area of the region in the first quadrant enclosed by x-axis, line and the
circle
Answer
The area of the region bounded by the circle, , and the x-axis is the
area OAB.
Class XII Chapter 8 – Application of Integrals Maths
Page 7 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
The point of intersection of the line and the circle in the first quadrant is .
Area OAB = Area ∆OCA + Area ACB
Area of OAC
Area of ABC
Therefore, area enclosed by x-axis, the line , and the circle in the first
quadrant =
Question 7:
Find the area of the smaller part of the circle x2
+ y2
= a2
cut off by the line
Answer
Class XII Chapter 8 – Application of Integrals Maths
Page 8 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
The area of the smaller part of the circle, x2
+ y2
= a2
, cut off by the line, , is the
area ABCDA.
It can be observed that the area ABCD is symmetrical about x-axis.
∴ Area ABCD = 2 × Area ABC
Class XII Chapter 8 – Application of Integrals Maths
Page 9 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
Therefore, the area of smaller part of the circle, x2
+ y2
= a2
, cut off by the line, ,
is units.
Question 8:
The area between x = y2
and x = 4 is divided into two equal parts by the line x = a, find
the value of a.
Answer
The line, x = a, divides the area bounded by the parabola and x = 4 into two equal
parts.
Class XII Chapter 8 – Application of Integrals Maths
Page 10 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
∴ Area OAD = Area ABCD
It can be observed that the given area is symmetrical about x-axis.
⇒ Area OED = Area EFCD
Class XII Chapter 8 – Application of Integrals Maths
Page 11 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
From (1) and (2), we obtain
Therefore, the value of a is .
Question 9:
Find the area of the region bounded by the parabola y = x2
and
Answer
The area bounded by the parabola, x2
= y,and the line, , can be represented as
Class XII Chapter 8 – Application of Integrals Maths
Page 12 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
The given area is symmetrical about y-axis.
∴ Area OACO = Area ODBO
The point of intersection of parabola, x2
= y, and line, y = x, is A (1, 1).
Area of OACO = Area ∆OAB – Area OBACO
⇒ Area of OACO = Area of ∆OAB – Area of OBACO
Therefore, required area = units
Class XII Chapter 8 – Application of Integrals Maths
Page 13 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
Question 10:
Find the area bounded by the curve x2
= 4y and the line x = 4y – 2
Answer
The area bounded by the curve, x2
= 4y, and line, x = 4y – 2, is represented by the
shaded area OBAO.
Let A and B be the points of intersection of the line and parabola.
Coordinates of point .
Coordinates of point B are (2, 1).
We draw AL and BM perpendicular to x-axis.
It can be observed that,
Area OBAO = Area OBCO + Area OACO … (1)
Then, Area OBCO = Area OMBC – Area OMBO
Class XII Chapter 8 – Application of Integrals Maths
Page 14 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
Similarly, Area OACO = Area OLAC – Area OLAO
Therefore, required area =
Question 11:
Find the area of the region bounded by the curve y2
= 4x and the line x = 3
Answer
The region bounded by the parabola, y2
= 4x, and the line, x = 3, is the area OACO.
Class XII Chapter 8 – Application of Integrals Maths
Page 15 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
The area OACO is symmetrical about x-axis.
∴ Area of OACO = 2 (Area of OAB)
Therefore, the required area is units.
Question 12:
Area lying in the first quadrant and bounded by the circle x2
+ y2
= 4 and the lines x = 0
and x = 2 is
Class XII Chapter 8 – Application of Integrals Maths
Page 16 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
A. π
B.
C.
D.
Answer
The area bounded by the circle and the lines, x = 0 and x = 2, in the first quadrant is
represented as
Thus, the correct answer is A.
Class XII Chapter 8 – Application of Integrals Maths
Page 17 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
Question 13:
Area of the region bounded by the curve y2
= 4x, y-axis and the line y = 3 is
A. 2
B.
C.
D.
Answer
The area bounded by the curve, y2
= 4x, y-axis, and y = 3 is represented as
Thus, the correct answer is B.
Class XII Chapter 8 – Application of Integrals Maths
Page 18 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
Exercise 8.2
Question 1:
Find the area of the circle 4x2
+ 4y2
= 9 which is interior to the parabola x2
= 4y
Answer
The required area is represented by the shaded area OBCDO.
Solving the given equation of circle, 4x2
+ 4y2
= 9, and parabola, x2
= 4y, we obtain the
point of intersection as .
It can be observed that the required area is symmetrical about y-axis.
∴ Area OBCDO = 2 × Area OBCO
We draw BM perpendicular to OA.
Therefore, the coordinates of M are .
Therefore, Area OBCO = Area OMBCO – Area OMBO
Class XII Chapter 8 – Application of Integrals Maths
Page 19 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
Therefore, the required area OBCDO is
units
Question 2:
Find the area bounded by curves (x – 1)2
+ y2
= 1 and x2
+ y 2
= 1
Answer
The area bounded by the curves, (x – 1)2
+ y2
= 1 and x2
+ y 2
= 1, is represented by
the shaded area as
Class XII Chapter 8 – Application of Integrals Maths
Page 20 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
On solving the equations, (x – 1)2
+ y2
= 1 and x2
+ y 2
= 1, we obtain the point of
intersection as A and B .
It can be observed that the required area is symmetrical about x-axis.
∴ Area OBCAO = 2 × Area OCAO
We join AB, which intersects OC at M, such that AM is perpendicular to OC.
The coordinates of M are .
Class XII Chapter 8 – Application of Integrals Maths
Page 21 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
Therefore, required area OBCAO = units
Question 3:
Find the area of the region bounded by the curves y = x2
+ 2, y = x, x = 0 and x = 3
Answer
The area bounded by the curves, y = x2
+ 2, y = x, x = 0, and x = 3, is represented by
the shaded area OCBAO as
Class XII Chapter 8 – Application of Integrals Maths
Page 22 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
Then, Area OCBAO = Area ODBAO – Area ODCO
Question 4:
Using integration finds the area of the region bounded by the triangle whose vertices are
(–1, 0), (1, 3) and (3, 2).
Answer
BL and CM are drawn perpendicular to x-axis.
It can be observed in the following figure that,
Area (∆ACB) = Area (ALBA) + Area (BLMCB) – Area (AMCA) … (1)
Class XII Chapter 8 – Application of Integrals Maths
Page 23 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
Equation of line segment AB is
Equation of line segment BC is
Equation of line segment AC is
Therefore, from equation (1), we obtain
Class XII Chapter 8 – Application of Integrals Maths
Page 24 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
Area (∆ABC) = (3 + 5 – 4) = 4 units
Question 5:
Using integration find the area of the triangular region whose sides have the equations y
= 2x +1, y = 3x + 1 and x = 4.
Answer
The equations of sides of the triangle are y = 2x +1, y = 3x + 1, and x = 4.
On solving these equations, we obtain the vertices of triangle as A(0, 1), B(4, 13), and C
(4, 9).
It can be observed that,
Area (∆ACB) = Area (OLBAO) –Area (OLCAO)
Question 6:
Smaller area enclosed by the circle x2
+ y2
= 4 and the line x + y = 2 is
A. 2 (π – 2)
Class XII Chapter 8 – Application of Integrals Maths
Page 25 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
B. π – 2
C. 2π – 1
D. 2 (π + 2)
Answer
The smaller area enclosed by the circle, x2
+ y2
= 4, and the line, x + y = 2, is
represented by the shaded area ACBA as
It can be observed that,
Area ACBA = Area OACBO – Area (∆OAB)
Thus, the correct answer is B.
Question 7:
Area lying between the curve y2
= 4x and y = 2x is
A.
Class XII Chapter 8 – Application of Integrals Maths
Page 26 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
B.
C.
D.
Answer
The area lying between the curve, y2
= 4x and y = 2x, is represented by the shaded
area OBAO as
The points of intersection of these curves are O (0, 0) and A (1, 2).
We draw AC perpendicular to x-axis such that the coordinates of C are (1, 0).
∴ Area OBAO = Area (∆OCA) – Area (OCABO)
Class XII Chapter 8 – Application of Integrals Maths
Page 27 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
Thus, the correct answer is B.
Class XII Chapter 8 – Application of Integrals Maths
Page 28 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
Miscellaneous Solutions
Question 1:
Find the area under the given curves and given lines:
(i) y = x2
, x = 1, x = 2 and x-axis
(ii) y = x4
, x = 1, x = 5 and x –axis
Answer
i. The required area is represented by the shaded area ADCBA as
ii. The required area is represented by the shaded area ADCBA as
Class XII Chapter 8 – Application of Integrals Maths
Page 29 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
Question 2:
Find the area between the curves y = x and y = x2
Answer
The required area is represented by the shaded area OBAO as
Class XII Chapter 8 – Application of Integrals Maths
Page 30 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
The points of intersection of the curves, y = x and y = x2
, is A (1, 1).
We draw AC perpendicular to x-axis.
∴ Area (OBAO) = Area (∆OCA) – Area (OCABO) … (1)
Question 3:
Find the area of the region lying in the first quadrant and bounded by y = 4x2
, x = 0, y
= 1 and y = 4
Class XII Chapter 8 – Application of Integrals Maths
Page 31 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
Answer
The area in the first quadrant bounded by y = 4x2
, x = 0, y = 1, and y = 4 is
represented by the shaded area ABCDA as
Question 4:
Sketch the graph of and evaluate
Answer
Class XII Chapter 8 – Application of Integrals Maths
Page 32 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
The given equation is
The corresponding values of x and y are given in the following table.
x – 6 – 5 – 4 – 3 – 2 – 1 0
y 3 2 1 0 1 2 3
On plotting these points, we obtain the graph of as follows.
It is known that,
Class XII Chapter 8 – Application of Integrals Maths
Page 33 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
Question 5:
Find the area bounded by the curve y = sin x between x = 0 and x = 2π
Answer
The graph of y = sin x can be drawn as
∴ Required area = Area OABO + Area BCDB
Question 6:
Find the area enclosed between the parabola y2
= 4ax and the line y = mx
Answer
The area enclosed between the parabola, y2
= 4ax, and the line, y = mx, is represented
by the shaded area OABO as
Class XII Chapter 8 – Application of Integrals Maths
Page 34 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
The points of intersection of both the curves are (0, 0) and .
We draw AC perpendicular to x-axis.
∴ Area OABO = Area OCABO – Area (∆OCA)
Class XII Chapter 8 – Application of Integrals Maths
Page 35 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
Question 7:
Find the area enclosed by the parabola 4y = 3x2
and the line 2y = 3x + 12
Answer
The area enclosed between the parabola, 4y = 3x2
, and the line, 2y = 3x + 12, is
represented by the shaded area OBAO as
The points of intersection of the given curves are A (–2, 3) and (4, 12).
We draw AC and BD perpendicular to x-axis.
∴ Area OBAO = Area CDBA – (Area ODBO + Area OACO)
Class XII Chapter 8 – Application of Integrals Maths
Page 36 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
Question 8:
Find the area of the smaller region bounded by the ellipse and the line
Answer
The area of the smaller region bounded by the ellipse, , and the line,
, is represented by the shaded region BCAB as
Class XII Chapter 8 – Application of Integrals Maths
Page 37 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
∴ Area BCAB = Area (OBCAO) – Area (OBAO)
Class XII Chapter 8 – Application of Integrals Maths
Page 38 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
Question 9:
Find the area of the smaller region bounded by the ellipse and the line
Answer
The area of the smaller region bounded by the ellipse, , and the line,
, is represented by the shaded region BCAB as
∴ Area BCAB = Area (OBCAO) – Area (OBAO)
Class XII Chapter 8 – Application of Integrals Maths
Page 39 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
Question 10:
Find the area of the region enclosed by the parabola x2
= y, the line y = x + 2 and x-
axis
Answer
The area of the region enclosed by the parabola, x2
= y, the line, y = x + 2, and x-axis
is represented by the shaded region OABCO as
Class XII Chapter 8 – Application of Integrals Maths
Page 40 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
The point of intersection of the parabola, x2
= y, and the line, y = x + 2, is A (–1, 1).
∴ Area OABCO = Area (BCA) + Area COAC
Class XII Chapter 8 – Application of Integrals Maths
Page 41 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
Question 11:
Using the method of integration find the area bounded by the curve
[Hint: the required region is bounded by lines x + y = 1, x – y = 1, – x + y = 1 and – x
– y = 11]
Answer
The area bounded by the curve, , is represented by the shaded region ADCB
as
The curve intersects the axes at points A (0, 1), B (1, 0), C (0, –1), and D (–1, 0).
It can be observed that the given curve is symmetrical about x-axis and y-axis.
∴ Area ADCB = 4 × Area OBAO
Class XII Chapter 8 – Application of Integrals Maths
Page 42 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
Question 12:
Find the area bounded by curves
Answer
The area bounded by the curves, , is represented by the
shaded region as
It can be observed that the required area is symmetrical about y-axis.
Question 13:
Using the method of integration find the area of the triangle ABC, coordinates of whose
vertices are A (2, 0), B (4, 5) and C (6, 3)
Class XII Chapter 8 – Application of Integrals Maths
Page 43 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
Answer
The vertices of ∆ABC are A (2, 0), B (4, 5), and C (6, 3).
Equation of line segment AB is
Equation of line segment BC is
Equation of line segment CA is
Class XII Chapter 8 – Application of Integrals Maths
Page 44 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
Area (∆ABC) = Area (ABLA) + Area (BLMCB) – Area (ACMA)
Question 14:
Using the method of integration find the area of the region bounded by lines:
2x + y = 4, 3x – 2y = 6 and x – 3y + 5 = 0
Answer
The given equations of lines are
2x + y = 4 … (1)
3x – 2y = 6 … (2)
And, x – 3y + 5 = 0 … (3)
Class XII Chapter 8 – Application of Integrals Maths
Page 45 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
The area of the region bounded by the lines is the area of ∆ABC. AL and CM are the
perpendiculars on x-axis.
Area (∆ABC) = Area (ALMCA) – Area (ALB) – Area (CMB)
Question 15:
Find the area of the region
Answer
The area bounded by the curves, , is represented as
Class XII Chapter 8 – Application of Integrals Maths
Page 46 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
The points of intersection of both the curves are .
The required area is given by OABCO.
It can be observed that area OABCO is symmetrical about x-axis.
∴ Area OABCO = 2 × Area OBC
Area OBCO = Area OMC + Area MBC
Question 16:
Area bounded by the curve y = x3
, the x-axis and the ordinates x = –2 and x = 1 is
A. – 9
B.
Class XII Chapter 8 – Application of Integrals Maths
Page 47 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
C.
D.
Answer
Thus, the correct answer is B.
Question 17:
The area bounded by the curve , x-axis and the ordinates x = –1 and x = 1 is
given by
[Hint: y = x2
if x > 0 and y = –x2
if x < 0]
Class XII Chapter 8 – Application of Integrals Maths
Page 48 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
A. 0
B.
C.
D.
Answer
Thus, the correct answer is C.
Class XII Chapter 8 – Application of Integrals Maths
Page 49 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
Question 18:
The area of the circle x2
+ y2
= 16 exterior to the parabola y2
= 6x is
A.
B.
C.
D.
Answer
The given equations are
x2
+ y2
= 16 … (1)
y2
= 6x … (2)
Area bounded by the circle and parabola
Class XII Chapter 8 – Application of Integrals Maths
Page 50 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
Area of circle = π (r)2
= π (4)2
= 16π units
Thus, the correct answer is C.
Class XII Chapter 8 – Application of Integrals Maths
Page 51 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
Question 19:
The area bounded by the y-axis, y = cos x and y = sin x when
A.
B.
C.
D.
Answer
The given equations are
y = cos x … (1)
And, y = sin x … (2)
Required area = Area (ABLA) + area (OBLO)
Integrating by parts, we obtain
Class XII Chapter 8 – Application of Integrals Maths
Page 52 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
Thus, the correct answer is B.
Class XII Chapter 8 – Application of Integrals Maths
Page 53 of 53
Website: www.vidhyarjan.com Email: contact@vidhyarjan.com Mobile: 9999 249717
Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051
(One Km from ‘Welcome’ Metro Station)
Therefore, the required area is units

Chapter 8 application_of_integrals

  • 1.
    Class XII Chapter8 – Application of Integrals Maths Page 1 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) Exercise 8.1 Question 1: Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis. Answer The area of the region bounded by the curve, y2 = x, the lines, x = 1 and x = 4, and the x-axis is the area ABCD.
  • 2.
    Class XII Chapter8 – Application of Integrals Maths Page 2 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) Question 2: Find the area of the region bounded by y2 = 9x, x = 2, x = 4 and the x-axis in the first quadrant. Answer The area of the region bounded by the curve, y2 = 9x, x = 2, and x = 4, and the x-axis is the area ABCD.
  • 3.
    Class XII Chapter8 – Application of Integrals Maths Page 3 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) Question 3: Find the area of the region bounded by x2 = 4y, y = 2, y = 4 and the y-axis in the first quadrant. Answer The area of the region bounded by the curve, x2 = 4y, y = 2, and y = 4, and the y-axis is the area ABCD.
  • 4.
    Class XII Chapter8 – Application of Integrals Maths Page 4 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) Question 4: Find the area of the region bounded by the ellipse Answer The given equation of the ellipse, , can be represented as It can be observed that the ellipse is symmetrical about x-axis and y-axis. ∴ Area bounded by ellipse = 4 × Area of OAB
  • 5.
    Class XII Chapter8 – Application of Integrals Maths Page 5 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) Therefore, area bounded by the ellipse = 4 × 3π = 12π units Question 5: Find the area of the region bounded by the ellipse Answer The given equation of the ellipse can be represented as It can be observed that the ellipse is symmetrical about x-axis and y-axis. ∴ Area bounded by ellipse = 4 × Area OAB
  • 6.
    Class XII Chapter8 – Application of Integrals Maths Page 6 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) Therefore, area bounded by the ellipse = Question 6: Find the area of the region in the first quadrant enclosed by x-axis, line and the circle Answer The area of the region bounded by the circle, , and the x-axis is the area OAB.
  • 7.
    Class XII Chapter8 – Application of Integrals Maths Page 7 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) The point of intersection of the line and the circle in the first quadrant is . Area OAB = Area ∆OCA + Area ACB Area of OAC Area of ABC Therefore, area enclosed by x-axis, the line , and the circle in the first quadrant = Question 7: Find the area of the smaller part of the circle x2 + y2 = a2 cut off by the line Answer
  • 8.
    Class XII Chapter8 – Application of Integrals Maths Page 8 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) The area of the smaller part of the circle, x2 + y2 = a2 , cut off by the line, , is the area ABCDA. It can be observed that the area ABCD is symmetrical about x-axis. ∴ Area ABCD = 2 × Area ABC
  • 9.
    Class XII Chapter8 – Application of Integrals Maths Page 9 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) Therefore, the area of smaller part of the circle, x2 + y2 = a2 , cut off by the line, , is units. Question 8: The area between x = y2 and x = 4 is divided into two equal parts by the line x = a, find the value of a. Answer The line, x = a, divides the area bounded by the parabola and x = 4 into two equal parts.
  • 10.
    Class XII Chapter8 – Application of Integrals Maths Page 10 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) ∴ Area OAD = Area ABCD It can be observed that the given area is symmetrical about x-axis. ⇒ Area OED = Area EFCD
  • 11.
    Class XII Chapter8 – Application of Integrals Maths Page 11 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) From (1) and (2), we obtain Therefore, the value of a is . Question 9: Find the area of the region bounded by the parabola y = x2 and Answer The area bounded by the parabola, x2 = y,and the line, , can be represented as
  • 12.
    Class XII Chapter8 – Application of Integrals Maths Page 12 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) The given area is symmetrical about y-axis. ∴ Area OACO = Area ODBO The point of intersection of parabola, x2 = y, and line, y = x, is A (1, 1). Area of OACO = Area ∆OAB – Area OBACO ⇒ Area of OACO = Area of ∆OAB – Area of OBACO Therefore, required area = units
  • 13.
    Class XII Chapter8 – Application of Integrals Maths Page 13 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) Question 10: Find the area bounded by the curve x2 = 4y and the line x = 4y – 2 Answer The area bounded by the curve, x2 = 4y, and line, x = 4y – 2, is represented by the shaded area OBAO. Let A and B be the points of intersection of the line and parabola. Coordinates of point . Coordinates of point B are (2, 1). We draw AL and BM perpendicular to x-axis. It can be observed that, Area OBAO = Area OBCO + Area OACO … (1) Then, Area OBCO = Area OMBC – Area OMBO
  • 14.
    Class XII Chapter8 – Application of Integrals Maths Page 14 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) Similarly, Area OACO = Area OLAC – Area OLAO Therefore, required area = Question 11: Find the area of the region bounded by the curve y2 = 4x and the line x = 3 Answer The region bounded by the parabola, y2 = 4x, and the line, x = 3, is the area OACO.
  • 15.
    Class XII Chapter8 – Application of Integrals Maths Page 15 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) The area OACO is symmetrical about x-axis. ∴ Area of OACO = 2 (Area of OAB) Therefore, the required area is units. Question 12: Area lying in the first quadrant and bounded by the circle x2 + y2 = 4 and the lines x = 0 and x = 2 is
  • 16.
    Class XII Chapter8 – Application of Integrals Maths Page 16 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) A. π B. C. D. Answer The area bounded by the circle and the lines, x = 0 and x = 2, in the first quadrant is represented as Thus, the correct answer is A.
  • 17.
    Class XII Chapter8 – Application of Integrals Maths Page 17 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) Question 13: Area of the region bounded by the curve y2 = 4x, y-axis and the line y = 3 is A. 2 B. C. D. Answer The area bounded by the curve, y2 = 4x, y-axis, and y = 3 is represented as Thus, the correct answer is B.
  • 18.
    Class XII Chapter8 – Application of Integrals Maths Page 18 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) Exercise 8.2 Question 1: Find the area of the circle 4x2 + 4y2 = 9 which is interior to the parabola x2 = 4y Answer The required area is represented by the shaded area OBCDO. Solving the given equation of circle, 4x2 + 4y2 = 9, and parabola, x2 = 4y, we obtain the point of intersection as . It can be observed that the required area is symmetrical about y-axis. ∴ Area OBCDO = 2 × Area OBCO We draw BM perpendicular to OA. Therefore, the coordinates of M are . Therefore, Area OBCO = Area OMBCO – Area OMBO
  • 19.
    Class XII Chapter8 – Application of Integrals Maths Page 19 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) Therefore, the required area OBCDO is units Question 2: Find the area bounded by curves (x – 1)2 + y2 = 1 and x2 + y 2 = 1 Answer The area bounded by the curves, (x – 1)2 + y2 = 1 and x2 + y 2 = 1, is represented by the shaded area as
  • 20.
    Class XII Chapter8 – Application of Integrals Maths Page 20 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) On solving the equations, (x – 1)2 + y2 = 1 and x2 + y 2 = 1, we obtain the point of intersection as A and B . It can be observed that the required area is symmetrical about x-axis. ∴ Area OBCAO = 2 × Area OCAO We join AB, which intersects OC at M, such that AM is perpendicular to OC. The coordinates of M are .
  • 21.
    Class XII Chapter8 – Application of Integrals Maths Page 21 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) Therefore, required area OBCAO = units Question 3: Find the area of the region bounded by the curves y = x2 + 2, y = x, x = 0 and x = 3 Answer The area bounded by the curves, y = x2 + 2, y = x, x = 0, and x = 3, is represented by the shaded area OCBAO as
  • 22.
    Class XII Chapter8 – Application of Integrals Maths Page 22 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) Then, Area OCBAO = Area ODBAO – Area ODCO Question 4: Using integration finds the area of the region bounded by the triangle whose vertices are (–1, 0), (1, 3) and (3, 2). Answer BL and CM are drawn perpendicular to x-axis. It can be observed in the following figure that, Area (∆ACB) = Area (ALBA) + Area (BLMCB) – Area (AMCA) … (1)
  • 23.
    Class XII Chapter8 – Application of Integrals Maths Page 23 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) Equation of line segment AB is Equation of line segment BC is Equation of line segment AC is Therefore, from equation (1), we obtain
  • 24.
    Class XII Chapter8 – Application of Integrals Maths Page 24 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) Area (∆ABC) = (3 + 5 – 4) = 4 units Question 5: Using integration find the area of the triangular region whose sides have the equations y = 2x +1, y = 3x + 1 and x = 4. Answer The equations of sides of the triangle are y = 2x +1, y = 3x + 1, and x = 4. On solving these equations, we obtain the vertices of triangle as A(0, 1), B(4, 13), and C (4, 9). It can be observed that, Area (∆ACB) = Area (OLBAO) –Area (OLCAO) Question 6: Smaller area enclosed by the circle x2 + y2 = 4 and the line x + y = 2 is A. 2 (π – 2)
  • 25.
    Class XII Chapter8 – Application of Integrals Maths Page 25 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) B. π – 2 C. 2π – 1 D. 2 (π + 2) Answer The smaller area enclosed by the circle, x2 + y2 = 4, and the line, x + y = 2, is represented by the shaded area ACBA as It can be observed that, Area ACBA = Area OACBO – Area (∆OAB) Thus, the correct answer is B. Question 7: Area lying between the curve y2 = 4x and y = 2x is A.
  • 26.
    Class XII Chapter8 – Application of Integrals Maths Page 26 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) B. C. D. Answer The area lying between the curve, y2 = 4x and y = 2x, is represented by the shaded area OBAO as The points of intersection of these curves are O (0, 0) and A (1, 2). We draw AC perpendicular to x-axis such that the coordinates of C are (1, 0). ∴ Area OBAO = Area (∆OCA) – Area (OCABO)
  • 27.
    Class XII Chapter8 – Application of Integrals Maths Page 27 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) Thus, the correct answer is B.
  • 28.
    Class XII Chapter8 – Application of Integrals Maths Page 28 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) Miscellaneous Solutions Question 1: Find the area under the given curves and given lines: (i) y = x2 , x = 1, x = 2 and x-axis (ii) y = x4 , x = 1, x = 5 and x –axis Answer i. The required area is represented by the shaded area ADCBA as ii. The required area is represented by the shaded area ADCBA as
  • 29.
    Class XII Chapter8 – Application of Integrals Maths Page 29 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) Question 2: Find the area between the curves y = x and y = x2 Answer The required area is represented by the shaded area OBAO as
  • 30.
    Class XII Chapter8 – Application of Integrals Maths Page 30 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) The points of intersection of the curves, y = x and y = x2 , is A (1, 1). We draw AC perpendicular to x-axis. ∴ Area (OBAO) = Area (∆OCA) – Area (OCABO) … (1) Question 3: Find the area of the region lying in the first quadrant and bounded by y = 4x2 , x = 0, y = 1 and y = 4
  • 31.
    Class XII Chapter8 – Application of Integrals Maths Page 31 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) Answer The area in the first quadrant bounded by y = 4x2 , x = 0, y = 1, and y = 4 is represented by the shaded area ABCDA as Question 4: Sketch the graph of and evaluate Answer
  • 32.
    Class XII Chapter8 – Application of Integrals Maths Page 32 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) The given equation is The corresponding values of x and y are given in the following table. x – 6 – 5 – 4 – 3 – 2 – 1 0 y 3 2 1 0 1 2 3 On plotting these points, we obtain the graph of as follows. It is known that,
  • 33.
    Class XII Chapter8 – Application of Integrals Maths Page 33 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) Question 5: Find the area bounded by the curve y = sin x between x = 0 and x = 2π Answer The graph of y = sin x can be drawn as ∴ Required area = Area OABO + Area BCDB Question 6: Find the area enclosed between the parabola y2 = 4ax and the line y = mx Answer The area enclosed between the parabola, y2 = 4ax, and the line, y = mx, is represented by the shaded area OABO as
  • 34.
    Class XII Chapter8 – Application of Integrals Maths Page 34 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) The points of intersection of both the curves are (0, 0) and . We draw AC perpendicular to x-axis. ∴ Area OABO = Area OCABO – Area (∆OCA)
  • 35.
    Class XII Chapter8 – Application of Integrals Maths Page 35 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) Question 7: Find the area enclosed by the parabola 4y = 3x2 and the line 2y = 3x + 12 Answer The area enclosed between the parabola, 4y = 3x2 , and the line, 2y = 3x + 12, is represented by the shaded area OBAO as The points of intersection of the given curves are A (–2, 3) and (4, 12). We draw AC and BD perpendicular to x-axis. ∴ Area OBAO = Area CDBA – (Area ODBO + Area OACO)
  • 36.
    Class XII Chapter8 – Application of Integrals Maths Page 36 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) Question 8: Find the area of the smaller region bounded by the ellipse and the line Answer The area of the smaller region bounded by the ellipse, , and the line, , is represented by the shaded region BCAB as
  • 37.
    Class XII Chapter8 – Application of Integrals Maths Page 37 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) ∴ Area BCAB = Area (OBCAO) – Area (OBAO)
  • 38.
    Class XII Chapter8 – Application of Integrals Maths Page 38 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) Question 9: Find the area of the smaller region bounded by the ellipse and the line Answer The area of the smaller region bounded by the ellipse, , and the line, , is represented by the shaded region BCAB as ∴ Area BCAB = Area (OBCAO) – Area (OBAO)
  • 39.
    Class XII Chapter8 – Application of Integrals Maths Page 39 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) Question 10: Find the area of the region enclosed by the parabola x2 = y, the line y = x + 2 and x- axis Answer The area of the region enclosed by the parabola, x2 = y, the line, y = x + 2, and x-axis is represented by the shaded region OABCO as
  • 40.
    Class XII Chapter8 – Application of Integrals Maths Page 40 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) The point of intersection of the parabola, x2 = y, and the line, y = x + 2, is A (–1, 1). ∴ Area OABCO = Area (BCA) + Area COAC
  • 41.
    Class XII Chapter8 – Application of Integrals Maths Page 41 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) Question 11: Using the method of integration find the area bounded by the curve [Hint: the required region is bounded by lines x + y = 1, x – y = 1, – x + y = 1 and – x – y = 11] Answer The area bounded by the curve, , is represented by the shaded region ADCB as The curve intersects the axes at points A (0, 1), B (1, 0), C (0, –1), and D (–1, 0). It can be observed that the given curve is symmetrical about x-axis and y-axis. ∴ Area ADCB = 4 × Area OBAO
  • 42.
    Class XII Chapter8 – Application of Integrals Maths Page 42 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) Question 12: Find the area bounded by curves Answer The area bounded by the curves, , is represented by the shaded region as It can be observed that the required area is symmetrical about y-axis. Question 13: Using the method of integration find the area of the triangle ABC, coordinates of whose vertices are A (2, 0), B (4, 5) and C (6, 3)
  • 43.
    Class XII Chapter8 – Application of Integrals Maths Page 43 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) Answer The vertices of ∆ABC are A (2, 0), B (4, 5), and C (6, 3). Equation of line segment AB is Equation of line segment BC is Equation of line segment CA is
  • 44.
    Class XII Chapter8 – Application of Integrals Maths Page 44 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) Area (∆ABC) = Area (ABLA) + Area (BLMCB) – Area (ACMA) Question 14: Using the method of integration find the area of the region bounded by lines: 2x + y = 4, 3x – 2y = 6 and x – 3y + 5 = 0 Answer The given equations of lines are 2x + y = 4 … (1) 3x – 2y = 6 … (2) And, x – 3y + 5 = 0 … (3)
  • 45.
    Class XII Chapter8 – Application of Integrals Maths Page 45 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) The area of the region bounded by the lines is the area of ∆ABC. AL and CM are the perpendiculars on x-axis. Area (∆ABC) = Area (ALMCA) – Area (ALB) – Area (CMB) Question 15: Find the area of the region Answer The area bounded by the curves, , is represented as
  • 46.
    Class XII Chapter8 – Application of Integrals Maths Page 46 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) The points of intersection of both the curves are . The required area is given by OABCO. It can be observed that area OABCO is symmetrical about x-axis. ∴ Area OABCO = 2 × Area OBC Area OBCO = Area OMC + Area MBC Question 16: Area bounded by the curve y = x3 , the x-axis and the ordinates x = –2 and x = 1 is A. – 9 B.
  • 47.
    Class XII Chapter8 – Application of Integrals Maths Page 47 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) C. D. Answer Thus, the correct answer is B. Question 17: The area bounded by the curve , x-axis and the ordinates x = –1 and x = 1 is given by [Hint: y = x2 if x > 0 and y = –x2 if x < 0]
  • 48.
    Class XII Chapter8 – Application of Integrals Maths Page 48 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) A. 0 B. C. D. Answer Thus, the correct answer is C.
  • 49.
    Class XII Chapter8 – Application of Integrals Maths Page 49 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) Question 18: The area of the circle x2 + y2 = 16 exterior to the parabola y2 = 6x is A. B. C. D. Answer The given equations are x2 + y2 = 16 … (1) y2 = 6x … (2) Area bounded by the circle and parabola
  • 50.
    Class XII Chapter8 – Application of Integrals Maths Page 50 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) Area of circle = π (r)2 = π (4)2 = 16π units Thus, the correct answer is C.
  • 51.
    Class XII Chapter8 – Application of Integrals Maths Page 51 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) Question 19: The area bounded by the y-axis, y = cos x and y = sin x when A. B. C. D. Answer The given equations are y = cos x … (1) And, y = sin x … (2) Required area = Area (ABLA) + area (OBLO) Integrating by parts, we obtain
  • 52.
    Class XII Chapter8 – Application of Integrals Maths Page 52 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) Thus, the correct answer is B.
  • 53.
    Class XII Chapter8 – Application of Integrals Maths Page 53 of 53 Website: www.vidhyarjan.com Email: [email protected] Mobile: 9999 249717 Head Office: 1/3-H-A-2, Street # 6, East Azad Nagar, Delhi-110051 (One Km from ‘Welcome’ Metro Station) Therefore, the required area is units