SlideShare a Scribd company logo
2
1
2
Problems on User-based
Collaborative Filtering
Most read
11
Computation of Similarity between Items (2/2)
11
Item1 Item2 Item3 Item4 Item5
Alice 5 3 4 4 ?
User1 3 1 2 3 3
User2 4 3 4 3 5
User3 3 3 1 5 4
User4 1 5 5 2 1
sim=?
𝑠𝑖𝑚 𝑖E, 𝑖F =
3×3 + 4×5 + 3×4 + 1×1
3= + 4= + 3= + 1=× 3= + 5= + 4= + 1=
= 0.99
Most read
15
Adjusted Cosine Similarity (3/3)
15
Subtracts the user average from the ratings
and calculates cosine similarity using the
adjusted rating matrix
𝑠𝑖𝑚 𝑖E, 𝑖F
=
0.6×0.6 + 0.2×1.2 + (−0.2)×0.8 + (−1.8)×(−1.8)
0.6= + 0.2= + (−0.2)=+(−1.8)=× 0.6= + 1.2= + 0.8= + (−1.8)=
= 0.80
Item1 Item2 Item3 Item4 Item5 Avg.
Alice 1.0 -1.0 0.0 0.0 ? 4
User1 0.6 -1.4 -0.4 0.6 0.6 2.4
User2 0.2 -0.8 0.2 -0.8 1.2 3.8
User3 -0.2 -0.2 -2.2 2.8 0.8 3.2
User4 -1.8 2.2 2.2 -0.8 -1.8 2.8
Most read
Item-based
Collaborative Filtering
Yusuke Yamamoto
Lecturer, Faculty of Informatics
yusuke_yamamoto@acm.org
Data Engineering (Recommender Systems 2)
2019.10.28
1
2
Problems on User-based
Collaborative Filtering
User-based Collaborative Filtering
3
Predicts a target user’s rating for an item
based on rating tendency of similar users
𝑝𝑟𝑒𝑑𝑖𝑐𝑡 𝑢), 𝑖 = 𝑟,-
+
∑,∈12
𝑠𝑖𝑚(𝑢), 𝑢) 7 (𝑟,,8 − 𝑟,-
)
∑,∈12
𝑠𝑖𝑚(𝑢), 𝑢)
Item5 sim Average Rating
Alice ? 1 4
User1 3 0.85 2.4
User2 5 0.71 3.8
Similar
users
Computation of similarity between users
4
Pearson’s correlation coefficient
𝑠𝑖𝑚 𝑢), 𝑢: =
∑8∈;(𝑟,-,8 − 𝑟,-
)(𝑟,<,8 − 𝑟,<
)
∑8∈; 𝑟,-,8 − 𝑟,-
=
∑8∈; 𝑟,<,8 − 𝑟,<
=
Item1 Item2 Item3 Item4
Alice 5 3 4 4
User1 3 1 2 3
User2 4 3 4 3
User3 3 3 1 5
User4 1 5 5 2
sim=0.71
sim=-0.79
Problems on User-based Collaborative Filtering (1/2)
5
Item1 Item2 Item3 Item4 item5 item6
Bob 3 2
User1 3 1 2 3
User2 4 3 4 3
User3 3 3 1 5
User4 1 5 5 2 5
• It is rare that two users rated the same item
• User similarity drastically changes if a few ratings are added
Impossible to
compute similarity
Is it possible to compute precise user
similarity by using rating scores for only one
common item?
If users haven’t rate the same items yet,
user similarity cannot be computed
Problems on User-based Collaborative Filtering (2/2)
6
#Users >> #Items
• In general, the number of users are much bigger than that of items
• Big computational cost of nearest neighbors (similar users)
Unstable user preference
User preferences (user features) often change, while item features
do not often change
2
7
Item-based
Collaborative Filtering
Idea about Item-based Collaborative Filtering
8
Item1 Item2 Item3 Item4 Item5
Alice 5 3 4 4 ?
User1 3 1 2 3 3
User2 4 3 4 3 5
User3 3 3 1 5 4
User4 1 5 5 2 1
similar
Predicts unknown scores
based on rating tendency for similar items
similar
Advantages of Item-based Collaborative Filtering
9
Computational cost
In general, the number of items is much less than that of users, and so
the item-based CF’s computational cost is much smaller than the user-
based CF’s
Stable similarity computation
• Item features (vectors) do not often change and are stable
• Compared to user features (vectors) on a rating matrix, features
(vectors) have less N/A dimensions.
• It is possible to compute similarity between items by using enough
information
Computation of Similarity between Items (1/2)
10
Cosine similarity
𝑠𝑖𝑚 𝑖), 𝑖: = cos 𝜃 =
𝒗8-
7 𝒗8<
𝒗8-
∗ |𝒗8<
|
• Focuses on the angle between two vectors
• The similarity ranges between 0 and 1
• Best performance for item similarity calculation
:Item a, b𝑖), 𝑖:
:Item a, b’s rating vector𝒗8-
, 𝒗8-
0
:Angle between 𝒗8-
, 𝒗8-
𝜃
:Vector 𝒗’s length|𝒗|
Computation of Similarity between Items (2/2)
11
Item1 Item2 Item3 Item4 Item5
Alice 5 3 4 4 ?
User1 3 1 2 3 3
User2 4 3 4 3 5
User3 3 3 1 5 4
User4 1 5 5 2 1
sim=?
𝑠𝑖𝑚 𝑖E, 𝑖F =
3×3 + 4×5 + 3×4 + 1×1
3= + 4= + 3= + 1=× 3= + 5= + 4= + 1=
= 0.99
Problem of using basic cosine similarity
12
0
1
2
3
4
5
6
Item1 Item2 Item3 Item4
Alice
User1
Ratingscore
Basic cosine similarity does not take the
difference in the average rating behavior of
the users into account
Alice rates easily, and User1 rates strictly. However, if
considering the difference from the average, the rating
for Item 1 does not vary between Alice and User 1
Adjusted Cosine Similarity (1/3)
13
Item1 Item2 Item3 Item4 Item5 Avg.
Alice 5 3 4 4 ? 4
User1 3 1 2 3 3 2.4
User2 4 3 4 3 5 3.8
User3 3 3 1 5 4 3.2
User4 1 5 5 2 1 2.8
Subtracts the user average from the ratings
and calculates cosine similarity using the
adjusted rating matrix
Adjusted Cosine Similarity (2/3)
14
Subtracts the user average from the ratings
and calculates cosine similarity using the
adjusted rating matrix
Item1 Item2 Item3 Item4 Item5 Avg.
Alice 5 3 4 4 ? 4
User1 3 1 2 3 3 2.4
User2 4 3 4 3 5 3.8
User3 3 3 1 5 4 3.2
User4 1 5 5 2 1 2.8
-4 -4 -4 -4
-2.4 -2.4 -2.4 -2.4
-3.8 -3.8 -3.8 -3.8
-3.2 -3.2 -3.2 -3.2
-2.8 -2.8 -2.8 -2.8
-2.4
-3.8
-3.2
-2.8
Adjusted Cosine Similarity (3/3)
15
Subtracts the user average from the ratings
and calculates cosine similarity using the
adjusted rating matrix
𝑠𝑖𝑚 𝑖E, 𝑖F
=
0.6×0.6 + 0.2×1.2 + (−0.2)×0.8 + (−1.8)×(−1.8)
0.6= + 0.2= + (−0.2)=+(−1.8)=× 0.6= + 1.2= + 0.8= + (−1.8)=
= 0.80
Item1 Item2 Item3 Item4 Item5 Avg.
Alice 1.0 -1.0 0.0 0.0 ? 4
User1 0.6 -1.4 -0.4 0.6 0.6 2.4
User2 0.2 -0.8 0.2 -0.8 1.2 3.8
User3 -0.2 -0.2 -2.2 2.8 0.8 3.2
User4 -1.8 2.2 2.2 -0.8 -1.8 2.8
Rating Prediction based on Item Similarity
16
Prediction Function (predicted scores are adjusted)
𝑝𝑟𝑒𝑑𝑖𝑐𝑡 𝑢), 𝑖R =
∑8∈;2
𝑠𝑖𝑚(𝑖R, 𝑖) 7 𝑟,-,8
∑8∈;2
𝑠𝑖𝑚(𝑖R, 𝑖)
: target user a𝑢)
𝑟,,8 : rating score of user u for item i
𝑖R: target item t
𝐼T : a set of similar items for a target item
Selection of Similar Item (nearest neighbor items)
17
Set a threshold for item similarity
Focus on top K similar items (kNN method)
If an item has higher similarity than a threshold,
it can be regarded as a “similar” item
• If an item ranks at the top K similarity, it can be regarded
as a similar item
• K is often set to between 50 〜 200
Summary of Item-based Collaborative Filtering
18
Basic Approach
• Item similarities are obtained from a rating matrix
• Based on rating scores of similar items, systems predict
a rating score of target user for a target item
Similarity Calculation
Cosine similarity is known best in practice
Selection of Similar Items
Top K items with high similarity are often selected as
similar items

More Related Content

What's hot (20)

Recommendation system
Recommendation systemRecommendation system
Recommendation system
Akshat Thakar
 
Human computer interaction -Input output channel
Human computer interaction -Input output channelHuman computer interaction -Input output channel
Human computer interaction -Input output channel
N.Jagadish Kumar
 
Collaborative filtering
Collaborative filteringCollaborative filtering
Collaborative filtering
Neha Kulkarni
 
Sequential Decision Making in Recommendations
Sequential Decision Making in RecommendationsSequential Decision Making in Recommendations
Sequential Decision Making in Recommendations
Jaya Kawale
 
Recommender system introduction
Recommender system   introductionRecommender system   introduction
Recommender system introduction
Liang Xiang
 
Interactive Recommender Systems
Interactive Recommender SystemsInteractive Recommender Systems
Interactive Recommender Systems
Roelof van Zwol
 
ML Infrastracture @ Dropbox
ML Infrastracture @ Dropbox ML Infrastracture @ Dropbox
ML Infrastracture @ Dropbox
Tsahi Glik
 
Module 1st USER INTERFACE DESIGN (15CS832) - VTU
Module 1st USER INTERFACE DESIGN (15CS832) - VTU Module 1st USER INTERFACE DESIGN (15CS832) - VTU
Module 1st USER INTERFACE DESIGN (15CS832) - VTU
Sachin Gowda
 
Chapter 02 collaborative recommendation
Chapter 02   collaborative recommendationChapter 02   collaborative recommendation
Chapter 02 collaborative recommendation
Aravindharamanan S
 
Learning a Personalized Homepage
Learning a Personalized HomepageLearning a Personalized Homepage
Learning a Personalized Homepage
Justin Basilico
 
Recommendation System Explained
Recommendation System ExplainedRecommendation System Explained
Recommendation System Explained
Crossing Minds
 
Recommender Systems
Recommender SystemsRecommender Systems
Recommender Systems
T212
 
Google Data Studio How to Make Tooltips for Better Data Context
Google Data Studio  How to Make Tooltips for Better Data ContextGoogle Data Studio  How to Make Tooltips for Better Data Context
Google Data Studio How to Make Tooltips for Better Data Context
Boost Labs
 
Calibrated Recommendations
Calibrated RecommendationsCalibrated Recommendations
Calibrated Recommendations
Harald Steck
 
How to build a recommender system?
How to build a recommender system?How to build a recommender system?
How to build a recommender system?
blueace
 
M.Sc. Thesis - Automatic People Counting in Crowded Scenes
M.Sc. Thesis - Automatic People Counting in Crowded ScenesM.Sc. Thesis - Automatic People Counting in Crowded Scenes
M.Sc. Thesis - Automatic People Counting in Crowded Scenes
Ahmed Gad
 
Chapter five HCI
Chapter five HCIChapter five HCI
Chapter five HCI
yihunie ayalew
 
You only look once
You only look onceYou only look once
You only look once
Gin Kyeng Lee
 
Conexion a servidor desde android
Conexion a servidor desde androidConexion a servidor desde android
Conexion a servidor desde android
Jose Pablo Ovalle
 
Module 1
Module 1Module 1
Module 1
raghu katagall
 
Recommendation system
Recommendation systemRecommendation system
Recommendation system
Akshat Thakar
 
Human computer interaction -Input output channel
Human computer interaction -Input output channelHuman computer interaction -Input output channel
Human computer interaction -Input output channel
N.Jagadish Kumar
 
Collaborative filtering
Collaborative filteringCollaborative filtering
Collaborative filtering
Neha Kulkarni
 
Sequential Decision Making in Recommendations
Sequential Decision Making in RecommendationsSequential Decision Making in Recommendations
Sequential Decision Making in Recommendations
Jaya Kawale
 
Recommender system introduction
Recommender system   introductionRecommender system   introduction
Recommender system introduction
Liang Xiang
 
Interactive Recommender Systems
Interactive Recommender SystemsInteractive Recommender Systems
Interactive Recommender Systems
Roelof van Zwol
 
ML Infrastracture @ Dropbox
ML Infrastracture @ Dropbox ML Infrastracture @ Dropbox
ML Infrastracture @ Dropbox
Tsahi Glik
 
Module 1st USER INTERFACE DESIGN (15CS832) - VTU
Module 1st USER INTERFACE DESIGN (15CS832) - VTU Module 1st USER INTERFACE DESIGN (15CS832) - VTU
Module 1st USER INTERFACE DESIGN (15CS832) - VTU
Sachin Gowda
 
Chapter 02 collaborative recommendation
Chapter 02   collaborative recommendationChapter 02   collaborative recommendation
Chapter 02 collaborative recommendation
Aravindharamanan S
 
Learning a Personalized Homepage
Learning a Personalized HomepageLearning a Personalized Homepage
Learning a Personalized Homepage
Justin Basilico
 
Recommendation System Explained
Recommendation System ExplainedRecommendation System Explained
Recommendation System Explained
Crossing Minds
 
Recommender Systems
Recommender SystemsRecommender Systems
Recommender Systems
T212
 
Google Data Studio How to Make Tooltips for Better Data Context
Google Data Studio  How to Make Tooltips for Better Data ContextGoogle Data Studio  How to Make Tooltips for Better Data Context
Google Data Studio How to Make Tooltips for Better Data Context
Boost Labs
 
Calibrated Recommendations
Calibrated RecommendationsCalibrated Recommendations
Calibrated Recommendations
Harald Steck
 
How to build a recommender system?
How to build a recommender system?How to build a recommender system?
How to build a recommender system?
blueace
 
M.Sc. Thesis - Automatic People Counting in Crowded Scenes
M.Sc. Thesis - Automatic People Counting in Crowded ScenesM.Sc. Thesis - Automatic People Counting in Crowded Scenes
M.Sc. Thesis - Automatic People Counting in Crowded Scenes
Ahmed Gad
 
Conexion a servidor desde android
Conexion a servidor desde androidConexion a servidor desde android
Conexion a servidor desde android
Jose Pablo Ovalle
 

Similar to Collaborative Filtering 2: Item-based CF (20)

Item based approach
Item based approachItem based approach
Item based approach
Aravindharamanan S
 
introduction to machine learning 3d-collab-filtering.pptx
introduction to machine learning 3d-collab-filtering.pptxintroduction to machine learning 3d-collab-filtering.pptx
introduction to machine learning 3d-collab-filtering.pptx
Pratik Gohel
 
Aaa ped-19-Recommender Systems: Neighborhood-based Filtering
Aaa ped-19-Recommender Systems: Neighborhood-based FilteringAaa ped-19-Recommender Systems: Neighborhood-based Filtering
Aaa ped-19-Recommender Systems: Neighborhood-based Filtering
AminaRepo
 
IRJET- Book Recommendation System using Item Based Collaborative Filtering
IRJET- Book Recommendation System using Item Based Collaborative FilteringIRJET- Book Recommendation System using Item Based Collaborative Filtering
IRJET- Book Recommendation System using Item Based Collaborative Filtering
IRJET Journal
 
Introduction to recommender systems
Introduction to recommender systemsIntroduction to recommender systems
Introduction to recommender systems
Arnaud de Myttenaere
 
Project presentation
Project presentationProject presentation
Project presentation
Shivarshi Bajpai
 
Item basedcollaborativefilteringrecommendationalgorithms
Item basedcollaborativefilteringrecommendationalgorithmsItem basedcollaborativefilteringrecommendationalgorithms
Item basedcollaborativefilteringrecommendationalgorithms
Aravindharamanan S
 
Movie recommendation project
Movie recommendation projectMovie recommendation project
Movie recommendation project
Abhishek Jaisingh
 
Speaker pham cong dinh
Speaker pham cong dinhSpeaker pham cong dinh
Speaker pham cong dinh
AiTi Education
 
Recommender Systems! @ASAI 2011
Recommender Systems! @ASAI 2011Recommender Systems! @ASAI 2011
Recommender Systems! @ASAI 2011
Ernesto Mislej
 
movierecommendationproject-171223181147.pptx
movierecommendationproject-171223181147.pptxmovierecommendationproject-171223181147.pptx
movierecommendationproject-171223181147.pptx
AryanVyawahare
 
PPT by Jannach_organized.pdf presentation on the recommendation
PPT by Jannach_organized.pdf presentation on the recommendationPPT by Jannach_organized.pdf presentation on the recommendation
PPT by Jannach_organized.pdf presentation on the recommendation
sai419417
 
A survey of memory based methods for collaborative filtering based techniques
A survey of memory based methods for collaborative filtering based techniquesA survey of memory based methods for collaborative filtering based techniques
A survey of memory based methods for collaborative filtering based techniques
IAEME Publication
 
Survey of Recommendation Systems
Survey of Recommendation SystemsSurvey of Recommendation Systems
Survey of Recommendation Systems
youalab
 
Book Recommendation Engine
Book Recommendation EngineBook Recommendation Engine
Book Recommendation Engine
ShravaniBheema
 
Chapter 02 collaborative recommendation
Chapter 02   collaborative recommendationChapter 02   collaborative recommendation
Chapter 02 collaborative recommendation
Aravindharamanan S
 
collaborativefiltering-150228122057-conversion-gate02.pptx
collaborativefiltering-150228122057-conversion-gate02.pptxcollaborativefiltering-150228122057-conversion-gate02.pptx
collaborativefiltering-150228122057-conversion-gate02.pptx
ABINASHPADHY6
 
Recommender systems: Content-based and collaborative filtering
Recommender systems: Content-based and collaborative filteringRecommender systems: Content-based and collaborative filtering
Recommender systems: Content-based and collaborative filtering
Viet-Trung TRAN
 
Cs583 recommender-systems
Cs583 recommender-systemsCs583 recommender-systems
Cs583 recommender-systems
Aravindharamanan S
 
夏ゼミプレゼン 4xp
夏ゼミプレゼン 4xp夏ゼミプレゼン 4xp
夏ゼミプレゼン 4xp
umekoumeda
 
introduction to machine learning 3d-collab-filtering.pptx
introduction to machine learning 3d-collab-filtering.pptxintroduction to machine learning 3d-collab-filtering.pptx
introduction to machine learning 3d-collab-filtering.pptx
Pratik Gohel
 
Aaa ped-19-Recommender Systems: Neighborhood-based Filtering
Aaa ped-19-Recommender Systems: Neighborhood-based FilteringAaa ped-19-Recommender Systems: Neighborhood-based Filtering
Aaa ped-19-Recommender Systems: Neighborhood-based Filtering
AminaRepo
 
IRJET- Book Recommendation System using Item Based Collaborative Filtering
IRJET- Book Recommendation System using Item Based Collaborative FilteringIRJET- Book Recommendation System using Item Based Collaborative Filtering
IRJET- Book Recommendation System using Item Based Collaborative Filtering
IRJET Journal
 
Introduction to recommender systems
Introduction to recommender systemsIntroduction to recommender systems
Introduction to recommender systems
Arnaud de Myttenaere
 
Item basedcollaborativefilteringrecommendationalgorithms
Item basedcollaborativefilteringrecommendationalgorithmsItem basedcollaborativefilteringrecommendationalgorithms
Item basedcollaborativefilteringrecommendationalgorithms
Aravindharamanan S
 
Movie recommendation project
Movie recommendation projectMovie recommendation project
Movie recommendation project
Abhishek Jaisingh
 
Speaker pham cong dinh
Speaker pham cong dinhSpeaker pham cong dinh
Speaker pham cong dinh
AiTi Education
 
Recommender Systems! @ASAI 2011
Recommender Systems! @ASAI 2011Recommender Systems! @ASAI 2011
Recommender Systems! @ASAI 2011
Ernesto Mislej
 
movierecommendationproject-171223181147.pptx
movierecommendationproject-171223181147.pptxmovierecommendationproject-171223181147.pptx
movierecommendationproject-171223181147.pptx
AryanVyawahare
 
PPT by Jannach_organized.pdf presentation on the recommendation
PPT by Jannach_organized.pdf presentation on the recommendationPPT by Jannach_organized.pdf presentation on the recommendation
PPT by Jannach_organized.pdf presentation on the recommendation
sai419417
 
A survey of memory based methods for collaborative filtering based techniques
A survey of memory based methods for collaborative filtering based techniquesA survey of memory based methods for collaborative filtering based techniques
A survey of memory based methods for collaborative filtering based techniques
IAEME Publication
 
Survey of Recommendation Systems
Survey of Recommendation SystemsSurvey of Recommendation Systems
Survey of Recommendation Systems
youalab
 
Book Recommendation Engine
Book Recommendation EngineBook Recommendation Engine
Book Recommendation Engine
ShravaniBheema
 
Chapter 02 collaborative recommendation
Chapter 02   collaborative recommendationChapter 02   collaborative recommendation
Chapter 02 collaborative recommendation
Aravindharamanan S
 
collaborativefiltering-150228122057-conversion-gate02.pptx
collaborativefiltering-150228122057-conversion-gate02.pptxcollaborativefiltering-150228122057-conversion-gate02.pptx
collaborativefiltering-150228122057-conversion-gate02.pptx
ABINASHPADHY6
 
Recommender systems: Content-based and collaborative filtering
Recommender systems: Content-based and collaborative filteringRecommender systems: Content-based and collaborative filtering
Recommender systems: Content-based and collaborative filtering
Viet-Trung TRAN
 
夏ゼミプレゼン 4xp
夏ゼミプレゼン 4xp夏ゼミプレゼン 4xp
夏ゼミプレゼン 4xp
umekoumeda
 
Ad

More from Yusuke Yamamoto (20)

WISE2019 presentation
WISE2019 presentationWISE2019 presentation
WISE2019 presentation
Yusuke Yamamoto
 
Link Analysis
Link AnalysisLink Analysis
Link Analysis
Yusuke Yamamoto
 
Matrix Factorization
Matrix FactorizationMatrix Factorization
Matrix Factorization
Yusuke Yamamoto
 
データ解析技術2019
データ解析技術2019データ解析技術2019
データ解析技術2019
Yusuke Yamamoto
 
研究室紹介資料2019
研究室紹介資料2019研究室紹介資料2019
研究室紹介資料2019
Yusuke Yamamoto
 
ACM WebSci 2018 presentation/発表資料
ACM WebSci 2018 presentation/発表資料ACM WebSci 2018 presentation/発表資料
ACM WebSci 2018 presentation/発表資料
Yusuke Yamamoto
 
不便益システムシンポジウム2018発表資料
不便益システムシンポジウム2018発表資料不便益システムシンポジウム2018発表資料
不便益システムシンポジウム2018発表資料
Yusuke Yamamoto
 
KURA HOUR拡大版・附属図書館研究開発室セミナー 20180319
KURA HOUR拡大版・附属図書館研究開発室セミナー 20180319KURA HOUR拡大版・附属図書館研究開発室セミナー 20180319
KURA HOUR拡大版・附属図書館研究開発室セミナー 20180319
Yusuke Yamamoto
 
批判的ウェブ情報探索リテラシー尺度の開発
批判的ウェブ情報探索リテラシー尺度の開発批判的ウェブ情報探索リテラシー尺度の開発
批判的ウェブ情報探索リテラシー尺度の開発
Yusuke Yamamoto
 
東北地区大学図書館協議会 第72回総会講演資料20170922
東北地区大学図書館協議会 第72回総会講演資料20170922東北地区大学図書館協議会 第72回総会講演資料20170922
東北地区大学図書館協議会 第72回総会講演資料20170922
Yusuke Yamamoto
 
WI2研究会 Vol.10発表資料20170708
WI2研究会 Vol.10発表資料20170708WI2研究会 Vol.10発表資料20170708
WI2研究会 Vol.10発表資料20170708
Yusuke Yamamoto
 
情報学応用論20170622
情報学応用論20170622情報学応用論20170622
情報学応用論20170622
Yusuke Yamamoto
 
情報学総論20170623
情報学総論20170623情報学総論20170623
情報学総論20170623
Yusuke Yamamoto
 
情報学総論20170616
情報学総論20170616情報学総論20170616
情報学総論20170616
Yusuke Yamamoto
 
ビッグデータとITイノベーション
ビッグデータとITイノベーションビッグデータとITイノベーション
ビッグデータとITイノベーション
Yusuke Yamamoto
 
ウェブと研究者との関わり方20150302
ウェブと研究者との関わり方20150302ウェブと研究者との関わり方20150302
ウェブと研究者との関わり方20150302
Yusuke Yamamoto
 
大学の研究力を考える
大学の研究力を考える大学の研究力を考える
大学の研究力を考える
Yusuke Yamamoto
 
研究力DOWNシナリオ
研究力DOWNシナリオ研究力DOWNシナリオ
研究力DOWNシナリオ
Yusuke Yamamoto
 
URAかるた 〜URA業務の理解・共有を促進するゲーム教材
URAかるた 〜URA業務の理解・共有を促進するゲーム教材URAかるた 〜URA業務の理解・共有を促進するゲーム教材
URAかるた 〜URA業務の理解・共有を促進するゲーム教材
Yusuke Yamamoto
 
ポスター「科研費申請書の教科書 ~ 作成に意味はあったのか?」
ポスター「科研費申請書の教科書 ~ 作成に意味はあったのか?」ポスター「科研費申請書の教科書 ~ 作成に意味はあったのか?」
ポスター「科研費申請書の教科書 ~ 作成に意味はあったのか?」
Yusuke Yamamoto
 
データ解析技術2019
データ解析技術2019データ解析技術2019
データ解析技術2019
Yusuke Yamamoto
 
研究室紹介資料2019
研究室紹介資料2019研究室紹介資料2019
研究室紹介資料2019
Yusuke Yamamoto
 
ACM WebSci 2018 presentation/発表資料
ACM WebSci 2018 presentation/発表資料ACM WebSci 2018 presentation/発表資料
ACM WebSci 2018 presentation/発表資料
Yusuke Yamamoto
 
不便益システムシンポジウム2018発表資料
不便益システムシンポジウム2018発表資料不便益システムシンポジウム2018発表資料
不便益システムシンポジウム2018発表資料
Yusuke Yamamoto
 
KURA HOUR拡大版・附属図書館研究開発室セミナー 20180319
KURA HOUR拡大版・附属図書館研究開発室セミナー 20180319KURA HOUR拡大版・附属図書館研究開発室セミナー 20180319
KURA HOUR拡大版・附属図書館研究開発室セミナー 20180319
Yusuke Yamamoto
 
批判的ウェブ情報探索リテラシー尺度の開発
批判的ウェブ情報探索リテラシー尺度の開発批判的ウェブ情報探索リテラシー尺度の開発
批判的ウェブ情報探索リテラシー尺度の開発
Yusuke Yamamoto
 
東北地区大学図書館協議会 第72回総会講演資料20170922
東北地区大学図書館協議会 第72回総会講演資料20170922東北地区大学図書館協議会 第72回総会講演資料20170922
東北地区大学図書館協議会 第72回総会講演資料20170922
Yusuke Yamamoto
 
WI2研究会 Vol.10発表資料20170708
WI2研究会 Vol.10発表資料20170708WI2研究会 Vol.10発表資料20170708
WI2研究会 Vol.10発表資料20170708
Yusuke Yamamoto
 
情報学応用論20170622
情報学応用論20170622情報学応用論20170622
情報学応用論20170622
Yusuke Yamamoto
 
ビッグデータとITイノベーション
ビッグデータとITイノベーションビッグデータとITイノベーション
ビッグデータとITイノベーション
Yusuke Yamamoto
 
ウェブと研究者との関わり方20150302
ウェブと研究者との関わり方20150302ウェブと研究者との関わり方20150302
ウェブと研究者との関わり方20150302
Yusuke Yamamoto
 
大学の研究力を考える
大学の研究力を考える大学の研究力を考える
大学の研究力を考える
Yusuke Yamamoto
 
研究力DOWNシナリオ
研究力DOWNシナリオ研究力DOWNシナリオ
研究力DOWNシナリオ
Yusuke Yamamoto
 
URAかるた 〜URA業務の理解・共有を促進するゲーム教材
URAかるた 〜URA業務の理解・共有を促進するゲーム教材URAかるた 〜URA業務の理解・共有を促進するゲーム教材
URAかるた 〜URA業務の理解・共有を促進するゲーム教材
Yusuke Yamamoto
 
ポスター「科研費申請書の教科書 ~ 作成に意味はあったのか?」
ポスター「科研費申請書の教科書 ~ 作成に意味はあったのか?」ポスター「科研費申請書の教科書 ~ 作成に意味はあったのか?」
ポスター「科研費申請書の教科書 ~ 作成に意味はあったのか?」
Yusuke Yamamoto
 
Ad

Recently uploaded (20)

语法专题3-状语从句.pdf 英语语法基础部分,涉及到状语从句部分的内容来米爱上
语法专题3-状语从句.pdf 英语语法基础部分,涉及到状语从句部分的内容来米爱上语法专题3-状语从句.pdf 英语语法基础部分,涉及到状语从句部分的内容来米爱上
语法专题3-状语从句.pdf 英语语法基础部分,涉及到状语从句部分的内容来米爱上
JunZhao68
 
IST606_SecurityManagement-slides_ 4 pdf
IST606_SecurityManagement-slides_ 4  pdfIST606_SecurityManagement-slides_ 4  pdf
IST606_SecurityManagement-slides_ 4 pdf
nwanjamakane
 
Comprehensive Roadmap of AI, ML, DS, DA & DSA.pdf
Comprehensive Roadmap of AI, ML, DS, DA & DSA.pdfComprehensive Roadmap of AI, ML, DS, DA & DSA.pdf
Comprehensive Roadmap of AI, ML, DS, DA & DSA.pdf
epsilonice
 
1022_ExtendEnrichExcelUsingPythonWithTableau_04_16+04_17 (1).pdf
1022_ExtendEnrichExcelUsingPythonWithTableau_04_16+04_17 (1).pdf1022_ExtendEnrichExcelUsingPythonWithTableau_04_16+04_17 (1).pdf
1022_ExtendEnrichExcelUsingPythonWithTableau_04_16+04_17 (1).pdf
elinavihriala
 
Chapter4.1.pptx you can come to the house and statistics
Chapter4.1.pptx you can come to the house and statisticsChapter4.1.pptx you can come to the house and statistics
Chapter4.1.pptx you can come to the house and statistics
SotheaPheng
 
Blue Dark Professional Geometric Business Project Presentation .pdf
Blue Dark Professional Geometric Business Project Presentation .pdfBlue Dark Professional Geometric Business Project Presentation .pdf
Blue Dark Professional Geometric Business Project Presentation .pdf
mohammadhaidarayoobi
 
GDPR Audit - GDPR gap analysis cost Data Protection People.pdf
GDPR Audit - GDPR gap analysis cost  Data Protection People.pdfGDPR Audit - GDPR gap analysis cost  Data Protection People.pdf
GDPR Audit - GDPR gap analysis cost Data Protection People.pdf
Data Protection People
 
Alcoholic liver disease slides presentation new.pptx
Alcoholic liver disease slides presentation new.pptxAlcoholic liver disease slides presentation new.pptx
Alcoholic liver disease slides presentation new.pptx
DrShashank7
 
一比一原版(USC毕业证)南加利福尼亚大学毕业证如何办理
一比一原版(USC毕业证)南加利福尼亚大学毕业证如何办理一比一原版(USC毕业证)南加利福尼亚大学毕业证如何办理
一比一原版(USC毕业证)南加利福尼亚大学毕业证如何办理
Taqyea
 
llm lecture 3 stanford blah blah blah blah
llm lecture 3 stanford blah blah blah blahllm lecture 3 stanford blah blah blah blah
llm lecture 3 stanford blah blah blah blah
saud140081
 
Artificial-Intelligence-in-Autonomous-Vehicles (1)-1.pptx
Artificial-Intelligence-in-Autonomous-Vehicles (1)-1.pptxArtificial-Intelligence-in-Autonomous-Vehicles (1)-1.pptx
Artificial-Intelligence-in-Autonomous-Vehicles (1)-1.pptx
AbhijitPal87
 
EPC UNIT-V forengineeringstudentsin.pptx
EPC UNIT-V forengineeringstudentsin.pptxEPC UNIT-V forengineeringstudentsin.pptx
EPC UNIT-V forengineeringstudentsin.pptx
ExtremerZ
 
llm lecture 4 stanford blah blah blah blah
llm lecture 4 stanford blah blah blah blahllm lecture 4 stanford blah blah blah blah
llm lecture 4 stanford blah blah blah blah
saud140081
 
Cyber Security Presentation(Neon)xu.pptx
Cyber Security Presentation(Neon)xu.pptxCyber Security Presentation(Neon)xu.pptx
Cyber Security Presentation(Neon)xu.pptx
vilakshbhargava
 
Human body make Structure analysis the part of the human
Human body make Structure analysis the part of the humanHuman body make Structure analysis the part of the human
Human body make Structure analysis the part of the human
ankit392215
 
PSUG 7 - 2025-06-03 - David Bianco on Splunk SURGe
PSUG 7 - 2025-06-03 - David Bianco on Splunk SURGePSUG 7 - 2025-06-03 - David Bianco on Splunk SURGe
PSUG 7 - 2025-06-03 - David Bianco on Splunk SURGe
Tomas Moser
 
How to Choose the Right Online Proofing Software
How to Choose the Right Online Proofing SoftwareHow to Choose the Right Online Proofing Software
How to Choose the Right Online Proofing Software
skalatskayaek
 
Tableau Cloud - what to consider before making the move update 2025.pdf
Tableau Cloud - what to consider before making the move update 2025.pdfTableau Cloud - what to consider before making the move update 2025.pdf
Tableau Cloud - what to consider before making the move update 2025.pdf
elinavihriala
 
Arrays in c programing. practicals and .ppt
Arrays in c programing. practicals and .pptArrays in c programing. practicals and .ppt
Arrays in c programing. practicals and .ppt
Carlos701746
 
Glary Utilities Pro 5.157.0.183 Crack + Key Download [Latest]
Glary Utilities Pro 5.157.0.183 Crack + Key Download [Latest]Glary Utilities Pro 5.157.0.183 Crack + Key Download [Latest]
Glary Utilities Pro 5.157.0.183 Crack + Key Download [Latest]
Designer
 
语法专题3-状语从句.pdf 英语语法基础部分,涉及到状语从句部分的内容来米爱上
语法专题3-状语从句.pdf 英语语法基础部分,涉及到状语从句部分的内容来米爱上语法专题3-状语从句.pdf 英语语法基础部分,涉及到状语从句部分的内容来米爱上
语法专题3-状语从句.pdf 英语语法基础部分,涉及到状语从句部分的内容来米爱上
JunZhao68
 
IST606_SecurityManagement-slides_ 4 pdf
IST606_SecurityManagement-slides_ 4  pdfIST606_SecurityManagement-slides_ 4  pdf
IST606_SecurityManagement-slides_ 4 pdf
nwanjamakane
 
Comprehensive Roadmap of AI, ML, DS, DA & DSA.pdf
Comprehensive Roadmap of AI, ML, DS, DA & DSA.pdfComprehensive Roadmap of AI, ML, DS, DA & DSA.pdf
Comprehensive Roadmap of AI, ML, DS, DA & DSA.pdf
epsilonice
 
1022_ExtendEnrichExcelUsingPythonWithTableau_04_16+04_17 (1).pdf
1022_ExtendEnrichExcelUsingPythonWithTableau_04_16+04_17 (1).pdf1022_ExtendEnrichExcelUsingPythonWithTableau_04_16+04_17 (1).pdf
1022_ExtendEnrichExcelUsingPythonWithTableau_04_16+04_17 (1).pdf
elinavihriala
 
Chapter4.1.pptx you can come to the house and statistics
Chapter4.1.pptx you can come to the house and statisticsChapter4.1.pptx you can come to the house and statistics
Chapter4.1.pptx you can come to the house and statistics
SotheaPheng
 
Blue Dark Professional Geometric Business Project Presentation .pdf
Blue Dark Professional Geometric Business Project Presentation .pdfBlue Dark Professional Geometric Business Project Presentation .pdf
Blue Dark Professional Geometric Business Project Presentation .pdf
mohammadhaidarayoobi
 
GDPR Audit - GDPR gap analysis cost Data Protection People.pdf
GDPR Audit - GDPR gap analysis cost  Data Protection People.pdfGDPR Audit - GDPR gap analysis cost  Data Protection People.pdf
GDPR Audit - GDPR gap analysis cost Data Protection People.pdf
Data Protection People
 
Alcoholic liver disease slides presentation new.pptx
Alcoholic liver disease slides presentation new.pptxAlcoholic liver disease slides presentation new.pptx
Alcoholic liver disease slides presentation new.pptx
DrShashank7
 
一比一原版(USC毕业证)南加利福尼亚大学毕业证如何办理
一比一原版(USC毕业证)南加利福尼亚大学毕业证如何办理一比一原版(USC毕业证)南加利福尼亚大学毕业证如何办理
一比一原版(USC毕业证)南加利福尼亚大学毕业证如何办理
Taqyea
 
llm lecture 3 stanford blah blah blah blah
llm lecture 3 stanford blah blah blah blahllm lecture 3 stanford blah blah blah blah
llm lecture 3 stanford blah blah blah blah
saud140081
 
Artificial-Intelligence-in-Autonomous-Vehicles (1)-1.pptx
Artificial-Intelligence-in-Autonomous-Vehicles (1)-1.pptxArtificial-Intelligence-in-Autonomous-Vehicles (1)-1.pptx
Artificial-Intelligence-in-Autonomous-Vehicles (1)-1.pptx
AbhijitPal87
 
EPC UNIT-V forengineeringstudentsin.pptx
EPC UNIT-V forengineeringstudentsin.pptxEPC UNIT-V forengineeringstudentsin.pptx
EPC UNIT-V forengineeringstudentsin.pptx
ExtremerZ
 
llm lecture 4 stanford blah blah blah blah
llm lecture 4 stanford blah blah blah blahllm lecture 4 stanford blah blah blah blah
llm lecture 4 stanford blah blah blah blah
saud140081
 
Cyber Security Presentation(Neon)xu.pptx
Cyber Security Presentation(Neon)xu.pptxCyber Security Presentation(Neon)xu.pptx
Cyber Security Presentation(Neon)xu.pptx
vilakshbhargava
 
Human body make Structure analysis the part of the human
Human body make Structure analysis the part of the humanHuman body make Structure analysis the part of the human
Human body make Structure analysis the part of the human
ankit392215
 
PSUG 7 - 2025-06-03 - David Bianco on Splunk SURGe
PSUG 7 - 2025-06-03 - David Bianco on Splunk SURGePSUG 7 - 2025-06-03 - David Bianco on Splunk SURGe
PSUG 7 - 2025-06-03 - David Bianco on Splunk SURGe
Tomas Moser
 
How to Choose the Right Online Proofing Software
How to Choose the Right Online Proofing SoftwareHow to Choose the Right Online Proofing Software
How to Choose the Right Online Proofing Software
skalatskayaek
 
Tableau Cloud - what to consider before making the move update 2025.pdf
Tableau Cloud - what to consider before making the move update 2025.pdfTableau Cloud - what to consider before making the move update 2025.pdf
Tableau Cloud - what to consider before making the move update 2025.pdf
elinavihriala
 
Arrays in c programing. practicals and .ppt
Arrays in c programing. practicals and .pptArrays in c programing. practicals and .ppt
Arrays in c programing. practicals and .ppt
Carlos701746
 
Glary Utilities Pro 5.157.0.183 Crack + Key Download [Latest]
Glary Utilities Pro 5.157.0.183 Crack + Key Download [Latest]Glary Utilities Pro 5.157.0.183 Crack + Key Download [Latest]
Glary Utilities Pro 5.157.0.183 Crack + Key Download [Latest]
Designer
 

Collaborative Filtering 2: Item-based CF

  • 1. Item-based Collaborative Filtering Yusuke Yamamoto Lecturer, Faculty of Informatics [email protected] Data Engineering (Recommender Systems 2) 2019.10.28
  • 3. User-based Collaborative Filtering 3 Predicts a target user’s rating for an item based on rating tendency of similar users 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 𝑢), 𝑖 = 𝑟,- + ∑,∈12 𝑠𝑖𝑚(𝑢), 𝑢) 7 (𝑟,,8 − 𝑟,- ) ∑,∈12 𝑠𝑖𝑚(𝑢), 𝑢) Item5 sim Average Rating Alice ? 1 4 User1 3 0.85 2.4 User2 5 0.71 3.8 Similar users
  • 4. Computation of similarity between users 4 Pearson’s correlation coefficient 𝑠𝑖𝑚 𝑢), 𝑢: = ∑8∈;(𝑟,-,8 − 𝑟,- )(𝑟,<,8 − 𝑟,< ) ∑8∈; 𝑟,-,8 − 𝑟,- = ∑8∈; 𝑟,<,8 − 𝑟,< = Item1 Item2 Item3 Item4 Alice 5 3 4 4 User1 3 1 2 3 User2 4 3 4 3 User3 3 3 1 5 User4 1 5 5 2 sim=0.71 sim=-0.79
  • 5. Problems on User-based Collaborative Filtering (1/2) 5 Item1 Item2 Item3 Item4 item5 item6 Bob 3 2 User1 3 1 2 3 User2 4 3 4 3 User3 3 3 1 5 User4 1 5 5 2 5 • It is rare that two users rated the same item • User similarity drastically changes if a few ratings are added Impossible to compute similarity Is it possible to compute precise user similarity by using rating scores for only one common item? If users haven’t rate the same items yet, user similarity cannot be computed
  • 6. Problems on User-based Collaborative Filtering (2/2) 6 #Users >> #Items • In general, the number of users are much bigger than that of items • Big computational cost of nearest neighbors (similar users) Unstable user preference User preferences (user features) often change, while item features do not often change
  • 8. Idea about Item-based Collaborative Filtering 8 Item1 Item2 Item3 Item4 Item5 Alice 5 3 4 4 ? User1 3 1 2 3 3 User2 4 3 4 3 5 User3 3 3 1 5 4 User4 1 5 5 2 1 similar Predicts unknown scores based on rating tendency for similar items similar
  • 9. Advantages of Item-based Collaborative Filtering 9 Computational cost In general, the number of items is much less than that of users, and so the item-based CF’s computational cost is much smaller than the user- based CF’s Stable similarity computation • Item features (vectors) do not often change and are stable • Compared to user features (vectors) on a rating matrix, features (vectors) have less N/A dimensions. • It is possible to compute similarity between items by using enough information
  • 10. Computation of Similarity between Items (1/2) 10 Cosine similarity 𝑠𝑖𝑚 𝑖), 𝑖: = cos 𝜃 = 𝒗8- 7 𝒗8< 𝒗8- ∗ |𝒗8< | • Focuses on the angle between two vectors • The similarity ranges between 0 and 1 • Best performance for item similarity calculation :Item a, b𝑖), 𝑖: :Item a, b’s rating vector𝒗8- , 𝒗8- 0 :Angle between 𝒗8- , 𝒗8- 𝜃 :Vector 𝒗’s length|𝒗|
  • 11. Computation of Similarity between Items (2/2) 11 Item1 Item2 Item3 Item4 Item5 Alice 5 3 4 4 ? User1 3 1 2 3 3 User2 4 3 4 3 5 User3 3 3 1 5 4 User4 1 5 5 2 1 sim=? 𝑠𝑖𝑚 𝑖E, 𝑖F = 3×3 + 4×5 + 3×4 + 1×1 3= + 4= + 3= + 1=× 3= + 5= + 4= + 1= = 0.99
  • 12. Problem of using basic cosine similarity 12 0 1 2 3 4 5 6 Item1 Item2 Item3 Item4 Alice User1 Ratingscore Basic cosine similarity does not take the difference in the average rating behavior of the users into account Alice rates easily, and User1 rates strictly. However, if considering the difference from the average, the rating for Item 1 does not vary between Alice and User 1
  • 13. Adjusted Cosine Similarity (1/3) 13 Item1 Item2 Item3 Item4 Item5 Avg. Alice 5 3 4 4 ? 4 User1 3 1 2 3 3 2.4 User2 4 3 4 3 5 3.8 User3 3 3 1 5 4 3.2 User4 1 5 5 2 1 2.8 Subtracts the user average from the ratings and calculates cosine similarity using the adjusted rating matrix
  • 14. Adjusted Cosine Similarity (2/3) 14 Subtracts the user average from the ratings and calculates cosine similarity using the adjusted rating matrix Item1 Item2 Item3 Item4 Item5 Avg. Alice 5 3 4 4 ? 4 User1 3 1 2 3 3 2.4 User2 4 3 4 3 5 3.8 User3 3 3 1 5 4 3.2 User4 1 5 5 2 1 2.8 -4 -4 -4 -4 -2.4 -2.4 -2.4 -2.4 -3.8 -3.8 -3.8 -3.8 -3.2 -3.2 -3.2 -3.2 -2.8 -2.8 -2.8 -2.8 -2.4 -3.8 -3.2 -2.8
  • 15. Adjusted Cosine Similarity (3/3) 15 Subtracts the user average from the ratings and calculates cosine similarity using the adjusted rating matrix 𝑠𝑖𝑚 𝑖E, 𝑖F = 0.6×0.6 + 0.2×1.2 + (−0.2)×0.8 + (−1.8)×(−1.8) 0.6= + 0.2= + (−0.2)=+(−1.8)=× 0.6= + 1.2= + 0.8= + (−1.8)= = 0.80 Item1 Item2 Item3 Item4 Item5 Avg. Alice 1.0 -1.0 0.0 0.0 ? 4 User1 0.6 -1.4 -0.4 0.6 0.6 2.4 User2 0.2 -0.8 0.2 -0.8 1.2 3.8 User3 -0.2 -0.2 -2.2 2.8 0.8 3.2 User4 -1.8 2.2 2.2 -0.8 -1.8 2.8
  • 16. Rating Prediction based on Item Similarity 16 Prediction Function (predicted scores are adjusted) 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 𝑢), 𝑖R = ∑8∈;2 𝑠𝑖𝑚(𝑖R, 𝑖) 7 𝑟,-,8 ∑8∈;2 𝑠𝑖𝑚(𝑖R, 𝑖) : target user a𝑢) 𝑟,,8 : rating score of user u for item i 𝑖R: target item t 𝐼T : a set of similar items for a target item
  • 17. Selection of Similar Item (nearest neighbor items) 17 Set a threshold for item similarity Focus on top K similar items (kNN method) If an item has higher similarity than a threshold, it can be regarded as a “similar” item • If an item ranks at the top K similarity, it can be regarded as a similar item • K is often set to between 50 〜 200
  • 18. Summary of Item-based Collaborative Filtering 18 Basic Approach • Item similarities are obtained from a rating matrix • Based on rating scores of similar items, systems predict a rating score of target user for a target item Similarity Calculation Cosine similarity is known best in practice Selection of Similar Items Top K items with high similarity are often selected as similar items