* Community Detection with Edge Content in Social Media Networks
* Community Detection in Social Media by Leveraging Interactions and Intensities
Presented By: Mojtaba Rezaei & Reza Habibi Kerahroudi
University Of Tehran
Networked Systems Engineering
Community Detection in Social Media
Graph Algorithms Course Wikipedia
T w i t t e r
YouTube
Facebook
Community Detection with
Edge Content in Social Media Networks
Presented By: Mojtaba Rezaei
University Of Tehran
Networked Systems Engineering
Introduction
 Most community detection algorithms use the links between
the nodes in order to determine the dense regions in the
graph.
in many recent applications, edge content is available in order to provide better supervision to the community detection process
Introduction (cont.)
 An important problem in the area of social media is that of
community detection.
In the problem of community detection, the goal is to partition the network into dense regions of the graph.
Introduction (cont.)
a lot of rich information is encoded in the content of
the interactions among the actors in the network.
 E-mail networks
we will see that edge content provides a number of unique distinguishing characteristics of the communities which cannot be
modeled by node content.
Illustration of a social media network
The nodes represent users while the edges represent the favored images shared by the users
Introduction (cont.)
 Edge-based content is much more challenging, because
the different interests of the same actor node may be
reflected in different edges.
We will show that such an approach provides unique insights which are not possible with the use
of pure link-based or content-based methods.
Community Detection With Edge Content
 most community detection methods are focused on
partitioning the nodes based on linkage, and we are
interested in partitioning the edges based on both
linkage and content.
Community Detection With Edge Content (cont.)
 when there are no links, the problem defaults to the
pure content-based clustering problem.
Data Sets
 Enron Email Data Set
 200, 399 messages belonging to 158 members of senior management
 Flickr Social Network Data Set
 15 popular Flickr user groups, including “family”, “auto”, “concerts”, “pet portraits”, “kids and nature”, “street”,
“art”,“wide party,” “folk music“ , "magic city”, “party favors”, "British politics”, “youth basketball”, “fast food",
"fancy dress party” and “great sky.”
 This social media network has 4, 703 users in 15 groups
Community Detection in Social Media
by Leveraging Interactions and Intensities
Presented By: Reza Habibi Kerahroudi
University Of Tehran
Networked Systems Engineering
Introduction
 User interaction networks capture users’ associations derived from their
activities in social media such as: commenting on others’ posts, replying
to comments, referencing other users, etc.
 Communities can be generally defined as groups of users that are
"closely-knit”, in the sense that a group’s interconnections are more
dense compared to connections with the rest of the network.
Introduction (cont.)
 Our focus is on revealing the types of communities
generated with respect to certain events by
analyzing them in the dimensions of size, topic
diversity and time span.
 VERTEX STRUCTURE
 STRUCTURAL SIMILARITY
 ε – NEIGHBORHOOD
 CORE VERTEX
 DIRECT STRUCTURE REACHABILITY
 STRUCTURE REACHABILITY
 STRUCTURE CONNECTIVITY
 STRUCTURE-CONNECTED CLUSTER
 CLUSTERING
 HUB
 OUTLIER
SCAN algorithm
Getting from SCAN to WSCAN
 SCAN discovers cohesive network subclusters based on
parameters μ and , which control the minimum
community’s size and the minimum structural similarity
between two community’s nodes, respectively.
 To adapt SCAN for weighted interaction networks we
propose weighted structure reachability for (μ,
)-cores’ detection.
Real-World Networks
 For experimentation we have generated a network
based on Twitter user interactions, (i.e. mentions,
replies, retweets), extracted from data collected via
the Twitter Streaming API with topic-related
keywords.
Our selected topic refers to the official Euro group meetings (of Euro zone's finance ministers)
Real-World Networks
 Our EUROGROUP dataset
 (covering 8 meetings from 13/06/12 to 30/11/12) acts
as an exemplary case study of a series of events held
at different time instances, having the same
participants with a common generic context (i.e. the
Euro zone's monetary issues), but different focus
(depending on the agenda). The dataset spans 227
days and comprises: 29529 tweets, 10305 interactions
and 3015 different users.
EUROGROUP meetings, tweets, and communities
Classification of the most significant topics
based on interest intensity and diffusion

More Related Content

PPTX
06 Community Detection
PPTX
Group and Community Detection in Social Networks
PPTX
Community detection in complex social networks
PDF
Community Detection in Social Networks: A Brief Overview
PPT
Clique-based Network Clustering
PPTX
Community Detection
PDF
Community detection in social networks[1]
PDF
Community Detection in Social Media
06 Community Detection
Group and Community Detection in Social Networks
Community detection in complex social networks
Community Detection in Social Networks: A Brief Overview
Clique-based Network Clustering
Community Detection
Community detection in social networks[1]
Community Detection in Social Media

What's hot (20)

PPTX
Community detection in social networks
PPT
It’s a “small world” after all
PDF
16 zaman nips10_workshop_v2
PDF
Scalable Local Community Detection with Mapreduce for Large Networks
PPTX
Social Network Visualization 101
PDF
CS6010 Social Network Analysis Unit V
PPTX
Node XL - features and demo
PDF
Taxonomy and survey of community
PPTX
Social Network Analysis: What It Is, Why We Should Care, and What We Can Lear...
PPT
The Basics of Social Network Analysis
PPTX
02 Descriptive Statistics (2017)
PPTX
03 Communities in Networks (2017)
PDF
Exploratory social network analysis with pajek
PDF
CS6010 Social Network Analysis Unit III
PPTX
Social Network Analysis
PDF
Entropy based algorithm for community detection in augmented networks
PPTX
11 Keynote (2017)
PPT
Social Network Analysis
PPTX
A comparative study of social network analysis tools
PPTX
01 Network Data Collection (2017)
Community detection in social networks
It’s a “small world” after all
16 zaman nips10_workshop_v2
Scalable Local Community Detection with Mapreduce for Large Networks
Social Network Visualization 101
CS6010 Social Network Analysis Unit V
Node XL - features and demo
Taxonomy and survey of community
Social Network Analysis: What It Is, Why We Should Care, and What We Can Lear...
The Basics of Social Network Analysis
02 Descriptive Statistics (2017)
03 Communities in Networks (2017)
Exploratory social network analysis with pajek
CS6010 Social Network Analysis Unit III
Social Network Analysis
Entropy based algorithm for community detection in augmented networks
11 Keynote (2017)
Social Network Analysis
A comparative study of social network analysis tools
01 Network Data Collection (2017)
Ad

Similar to Community Detection in Social Media (20)

PDF
Community Detection in Networks Using Page Rank Vectors
PDF
Community Detection in Networks Using Page Rank Vectors
PDF
COMMUNITY DETECTION IN NETWORKS USING PAGE RANK VECTORS
PDF
Community detection in social networks an overview
PPTX
20121010 marc smith - mapping collections of connections in social media with...
PDF
Application Areas of Community Detection: A Review : NOTES
PDF
a modified weight balanced algorithm for influential users community detectio...
PDF
Jürgens diata12-communities
PPTX
4C13 J.15 Larson "Twitter based discourse community"
PPTX
community Detection.pptx
PPTX
20121001 pawcon 2012-marc smith - mapping collections of connections in socia...
PPTX
2013 NodeXL Social Media Network Analysis
PDF
How Important Social Graphs are for DTN Routing
PDF
Mesoscale Structures in Networks
PDF
Mesoscale Structures in Networks - Mason A. Porter
PDF
Community detection in complex network
PPTX
13 Community Detection
PPTX
20120301 strata-marc smith-mapping social media networks with no coding using...
PPTX
20120622 web sci12-won-marc smith-semantic and social network analysis of …
Community Detection in Networks Using Page Rank Vectors
Community Detection in Networks Using Page Rank Vectors
COMMUNITY DETECTION IN NETWORKS USING PAGE RANK VECTORS
Community detection in social networks an overview
20121010 marc smith - mapping collections of connections in social media with...
Application Areas of Community Detection: A Review : NOTES
a modified weight balanced algorithm for influential users community detectio...
Jürgens diata12-communities
4C13 J.15 Larson "Twitter based discourse community"
community Detection.pptx
20121001 pawcon 2012-marc smith - mapping collections of connections in socia...
2013 NodeXL Social Media Network Analysis
How Important Social Graphs are for DTN Routing
Mesoscale Structures in Networks
Mesoscale Structures in Networks - Mason A. Porter
Community detection in complex network
13 Community Detection
20120301 strata-marc smith-mapping social media networks with no coding using...
20120622 web sci12-won-marc smith-semantic and social network analysis of …
Ad

Recently uploaded (20)

PDF
AI-Driven Social Media Marketing | Top Social Media Marketing Agency & Strate...
PPTX
Lesson 1- PROF ELECT II tourismmmmmmmmmm
PPTX
Illuminati free in Uganda +256787776712,0741715666
PPTX
Deployment Experiences with Amrita Kripa: A User-Friendly Feature Rich Crowds...
PDF
How Social Media Management Drives Sales and Customer Loyalty.pdf
PDF
Dark Social Tracking Without Creeping People Out (1).pdf
PDF
What is TikTok Cyberbullying? 15 Smart Ways to Prevent It
PDF
Weather Station for Solar PV Plant – As per CAE 2025 Guidelines
PPTX
Unlock Your Business’s Full Online Potential
PPTX
Beyond Compare 5.1.4 Build 31268 Crack For Window
PPTX
ScriptCase Crack + Serial Keygen [Latest 2025]
PPTX
GridinSoft Anti-Malware 4.3.31 Crack & Activation Code
PPTX
Power BI DAX Formulas and fast easy technical learning
PPTX
Download NTLite 2025.06.10473 Crack Free
PDF
Delhi evenings are unforgettable when you call stylish girls
PDF
The Evolution of Excellence - Mobile App Development Companies in Austin.pdf
DOC
了解CSN毕业证学历认证,莱克福里斯特管理研究生院毕业证买大学文凭
PDF
Social Media Trends in 2025 Changing the Digital Era
PDF
Mastering the Digital Game: Marketing That Converts"
PPTX
Promote Your Business Through Facebook Ads
AI-Driven Social Media Marketing | Top Social Media Marketing Agency & Strate...
Lesson 1- PROF ELECT II tourismmmmmmmmmm
Illuminati free in Uganda +256787776712,0741715666
Deployment Experiences with Amrita Kripa: A User-Friendly Feature Rich Crowds...
How Social Media Management Drives Sales and Customer Loyalty.pdf
Dark Social Tracking Without Creeping People Out (1).pdf
What is TikTok Cyberbullying? 15 Smart Ways to Prevent It
Weather Station for Solar PV Plant – As per CAE 2025 Guidelines
Unlock Your Business’s Full Online Potential
Beyond Compare 5.1.4 Build 31268 Crack For Window
ScriptCase Crack + Serial Keygen [Latest 2025]
GridinSoft Anti-Malware 4.3.31 Crack & Activation Code
Power BI DAX Formulas and fast easy technical learning
Download NTLite 2025.06.10473 Crack Free
Delhi evenings are unforgettable when you call stylish girls
The Evolution of Excellence - Mobile App Development Companies in Austin.pdf
了解CSN毕业证学历认证,莱克福里斯特管理研究生院毕业证买大学文凭
Social Media Trends in 2025 Changing the Digital Era
Mastering the Digital Game: Marketing That Converts"
Promote Your Business Through Facebook Ads

Community Detection in Social Media

  • 1. * Community Detection with Edge Content in Social Media Networks * Community Detection in Social Media by Leveraging Interactions and Intensities Presented By: Mojtaba Rezaei & Reza Habibi Kerahroudi University Of Tehran Networked Systems Engineering Community Detection in Social Media Graph Algorithms Course Wikipedia T w i t t e r YouTube Facebook
  • 2. Community Detection with Edge Content in Social Media Networks Presented By: Mojtaba Rezaei University Of Tehran Networked Systems Engineering
  • 3. Introduction  Most community detection algorithms use the links between the nodes in order to determine the dense regions in the graph. in many recent applications, edge content is available in order to provide better supervision to the community detection process
  • 4. Introduction (cont.)  An important problem in the area of social media is that of community detection. In the problem of community detection, the goal is to partition the network into dense regions of the graph.
  • 5. Introduction (cont.) a lot of rich information is encoded in the content of the interactions among the actors in the network.  E-mail networks we will see that edge content provides a number of unique distinguishing characteristics of the communities which cannot be modeled by node content.
  • 6. Illustration of a social media network The nodes represent users while the edges represent the favored images shared by the users
  • 7. Introduction (cont.)  Edge-based content is much more challenging, because the different interests of the same actor node may be reflected in different edges. We will show that such an approach provides unique insights which are not possible with the use of pure link-based or content-based methods.
  • 8. Community Detection With Edge Content  most community detection methods are focused on partitioning the nodes based on linkage, and we are interested in partitioning the edges based on both linkage and content.
  • 9. Community Detection With Edge Content (cont.)  when there are no links, the problem defaults to the pure content-based clustering problem.
  • 10. Data Sets  Enron Email Data Set  200, 399 messages belonging to 158 members of senior management  Flickr Social Network Data Set  15 popular Flickr user groups, including “family”, “auto”, “concerts”, “pet portraits”, “kids and nature”, “street”, “art”,“wide party,” “folk music“ , "magic city”, “party favors”, "British politics”, “youth basketball”, “fast food", "fancy dress party” and “great sky.”  This social media network has 4, 703 users in 15 groups
  • 11. Community Detection in Social Media by Leveraging Interactions and Intensities Presented By: Reza Habibi Kerahroudi University Of Tehran Networked Systems Engineering
  • 12. Introduction  User interaction networks capture users’ associations derived from their activities in social media such as: commenting on others’ posts, replying to comments, referencing other users, etc.  Communities can be generally defined as groups of users that are "closely-knit”, in the sense that a group’s interconnections are more dense compared to connections with the rest of the network.
  • 13. Introduction (cont.)  Our focus is on revealing the types of communities generated with respect to certain events by analyzing them in the dimensions of size, topic diversity and time span.
  • 14.  VERTEX STRUCTURE  STRUCTURAL SIMILARITY  ε – NEIGHBORHOOD  CORE VERTEX  DIRECT STRUCTURE REACHABILITY  STRUCTURE REACHABILITY  STRUCTURE CONNECTIVITY  STRUCTURE-CONNECTED CLUSTER  CLUSTERING  HUB  OUTLIER SCAN algorithm
  • 15. Getting from SCAN to WSCAN  SCAN discovers cohesive network subclusters based on parameters μ and , which control the minimum community’s size and the minimum structural similarity between two community’s nodes, respectively.  To adapt SCAN for weighted interaction networks we propose weighted structure reachability for (μ, )-cores’ detection.
  • 16. Real-World Networks  For experimentation we have generated a network based on Twitter user interactions, (i.e. mentions, replies, retweets), extracted from data collected via the Twitter Streaming API with topic-related keywords. Our selected topic refers to the official Euro group meetings (of Euro zone's finance ministers)
  • 17. Real-World Networks  Our EUROGROUP dataset  (covering 8 meetings from 13/06/12 to 30/11/12) acts as an exemplary case study of a series of events held at different time instances, having the same participants with a common generic context (i.e. the Euro zone's monetary issues), but different focus (depending on the agenda). The dataset spans 227 days and comprises: 29529 tweets, 10305 interactions and 3015 different users.
  • 18. EUROGROUP meetings, tweets, and communities
  • 19. Classification of the most significant topics based on interest intensity and diffusion

Editor's Notes

  • #4: بیشتر الگوریتم های کامیونیتی دتکشن از لینک های بین نود ها برای مشخص کردن انجمن ها استفاده میکنن. اما اخیرا در اپلیکیشن ها محتوا و کانتن یال ها در دسترسن برای کامیونیتی دتکشن بهتر هر چند تا حالا کارهای زیادی برای استفاده بهتر و موثر تر از محتوای نودها جهت یافتن انجمن ها انجام شده با این حال وجود مکانیزمی برای استفاده از محتوای یال ها نتیجه بهتری میده در پیدا کردن انجمن ها
  • #5: یکی از مسایلی که در سوشیال مدیا وجود داره همین پیدا کردن انجمن هاست . هدف ما اینه که شبکه رو به ناحیه هایی تقسیم کنیم بطوریکه اعضای هر ناحیه به هم ارتباط داشته باشن به عبارت دیگه تشکیل یه کامیونیتی رو بدن
  • #6: از آنجایی که اطلاعات غنی زیادی در ارتباط بین کاربران شبکه کد شده می توان از این اطلاعات به خوبی برای پیدا کردن انجمن ها در شبکه استفاده کرد. یکسری از کارهایی که تا کنون انجام شده است نشان می دهد که محتوای رئوس می توانند به پیدا کردن انجمن ها در شبکه کمک کنند اما خواهیم دید که اطلاعاتی که در محتوای یال ها است ویژگی های به خصوصی را دارا است که در رئوس، آن ویژگی ها را نمی توان پیدا کرد. به عنوان مثال در شبکه ایمیل یک ارتباط بین دو کاربر وجود دارد با این حال واضح است که بهتر است کاربرانی که محتوای مشابه هم برای هم ارسال می کنند در یک انجمن قرار بگیرند نسبت به آنهایی که محتوای مشابه هم ارسال نمی کنند.
  • #7: این شکل یک شبکه رسانه اجتماعی را نشان می دهد که گره ها نشان دهنده کاربران هستند و یال ها نشان دهنده تصویری است که بین کاربران به اشتراک گذاشته شده است. با توجه به نوع اشتراکی که گذاشتند می توان در دو گروه : فامیلی و موزیک فولک تقسیم بندی کرد. ما اگر بخواهیم کاربر X را صرفا از روی محتوای گره تقسیم بندی کنیم ابهام وجود دارد که در کدام گروه قرار بگیرد اما با استفاده از محتوای یال ها که همان عکس های به اشتراک گذاشته می باشند به وضوح مشخص است که کاربر x باید در دو انجمن جدا با کاربران متفاوت قرار بگیرند.
  • #8: بیشتر کارهایی که تا الان در این زمینه انجام شده تمرکز خودشان را بیشتر بر روی نودها گذاشتن تا تا یال ها محتوای یال ها چالش بر انگیز تره نسبت به محتوای نود ها چون که علایق و نوع ارتباط یک کاربر یکسان ممکنه روی یال هاش از یالی به یال دیگه متفاوت باشه این مقاله یک راه حل منحصر بفرد برای پیدا کردن انجمن ها بوسیله یکپارچه کردن ساختار ( یعنی کی به کی لینک یا ارتباط داره) و محتوی، با استفاده از روش فاکتورگیری ماتریس ها خروجی این روش بوسیله روش هایی که صرفا لینک بیس هستن یا صرفا کانتنت بیس هستن ممکن نیست
  • #9: بیشتر متد های یافتن انجمن تمرکزشون بر روی تقسیم بندی نودها بر اساس لینکشون هست در حالیکه ما علاقمندیم به تقسیم بندی یال ها بر اساس هم لینک هاشون و هم ارتباطشون ایده اصلی که پشت این مدله اینه که یک فرد در یک شبکه اجتماعی ممکنه علایق متفاوتی داشته باشه که باعث داشتن محتوی متفاوت بر روی یالهاش در ارتباط با افراد دیگه بشه به عنوان مثال کاربر ایکس در شکل قبل علایق متفاوتی داشت و محتوای یالهاش با افراد دیگه متفاوت بود که مشخص میکرد این فرد باید در دو انجمن جداگانه قرار بگیره
  • #10: حالا زمانیکه ارتباطی در شبکه وجود نداشته باشه مسئله رو تبدیل میکنیم به یه مسئله صرفا بر اساس محتوی و بعد حلش میکنیم. گاهی هم ممکنه در یک شبکه ای یک سری از نودها لینک خیلی کمی به هم داشته باشن اما در یک انجمن یکسان قرار بگیرن اونم به این دلیل که شباهت به شدت بالایی در محتوی ارتباطیشون دارن. بنابراین ممکنه انجمن هایی داشته باشیم که ارتباط لینکیشون و شباهت محتواییشون با هم رابظه مستقیم نداشته باشن و یه رابطه معکوس داشته باشن یعنی ممکنه در یک شبکه، انجمنی داشته باشیم که اعضای این انجمن با هم لینک کمی داشته باشن ولی شباهت محتوی ارتباطی بینشون بالا باشه و یا لینک زیادی بین هم داشته باشن ولی شباهت محتوائیشون کم باشه و یه جور تریدآف بینشون وجود داره.
  • #11: از دو تا دیتا ست در این مقاله استفاده شده یکیش مربوط میشه به کمپانی اینرون که در زمینه انرژی در شهر تگزاس آمریکا فعالیت داره این دیتا ست شامل تعداد زیادی پیام های ایمیل بین کاربران این کمپانی میشه که در برای تحقیق و تفحص در مشکلات مالی این کمپانی در سال 2000 جمع آوری و مورد استفاده قرار گرفت. این ایمیل ها شامل دویست هزار و سیصد و نود و نه تا پیام بود که متعلق به صد و پنجاهو هشت نفر از مدیران ارشد کمپانی اینرون بود. برای مدلسازی این شبکه کاربران را نودهای شبکه و ایمیل های بین کاربران را یال های شبکه در نظر گرفتیم و یالها رو با محتوای ایمیل ها پیوند زدیم خوبی این دیتاست این بود که دانشجویان دانشگاه کالیفرنیا کار بررسی و استخراج تعداد دفعات استفاده از کلمات کلیدی را شرح داده بودند که کمک زیادی میکرد. دیتا ست دیگر شبکه اجتماعی فلیکر بود که ... کاربران میتونستن بر اساس علاقشون عکسی رو از سایت برای پروفایلشون انتخاب کنن برای مدل کردن این رسانه اجتماعی : دو تا کاربر بوسیله یک یال به هم وصل میشن اگه عکس یکسانی رو انتخاب کرده باش همچنین برای هر عکس کاربران میتونستن از چندتا کلمه کلیدی برای توصیف عکسشون استفاده کنن که برچسب گفته میشد محتوی هر یال اجتماع این برچسب ها و عکس هاشون میشد.
  • #17: برای آزمایشات ما شبکه‌ای مبتنی بر تعاملات کاربران توئیتر ( یعنی منشن‌ها، ریپلای‌ها، و ری‌توئیت‌ها ) استخراج شده از داده‌های جمع‌آوری‌شده توسط ای‌پی‌آی جریان توئیتر با کلمه‌های کلیدی مرتبط با موضوع تولید کرده‌ایم