2
Most read
3
Most read
6
Most read
Shri S’ad Vidya Mandal Institute of Technology
Topic: APPLICATION OF CONTOUR INTEGRATION
GUJARAT TECHNOLOGICAL UNIVERSITY
Complex variables and numerical method
PREPARED BY :
1] Rana manthan - 170450119044
2] Shah jay - 170450119046
3] Shah rishabh - 170450119047
4] Shah sheril - 170450119048
CONTENT
• Defining Line Integrals in the Complex
Plane
• Equivalence Between Complex and Real
Line Integrals
• Review of Line Integral Evaluation
• Line Integral Example
• Application of counter integral
Defining Line Integrals in the Complex Plane
0a z
Nb z
1z
2z
1
3z
2
3
N
1Nz C
nz
n
x
y
  
 
 
  
1
1
1
1
1
1
0
lim
lim
n
n
n n n
z
N
N n n n
n
n n n
b
N
N
a
z
N
n n n
N
n
C z z
I f z z
N
z z z
I f z dz I
f z z













 
 



  

 





Define on between and
Consider the sums
Let the number of subdivisions
such that and define
(The result is independent of the
details of the path subdivision.)
3
 
b
a
I f z dz 
Equivalence Between Complex and Real Line
Integrals
       
   
 
 
   
 
 
0 0 0 0
N N N N
b b
a a
b x ,y b x ,y
a x ,y a x ,y
C C
I f z dz u x,y iv x,y dx idy
u x,y dx v x,y dy i v x,y dx u x,y dy
udx vdy i vdx udy
C
 
 
     
   
   
 
 
 
Note that
The line integralis equivalent to two line integrals on .complex real
4
Review of Line Integral Evaluation
   
   
0
0
f
C
t
t
f
u x,y dx v x,y dy
dx dy
u v dt
dt dt
C
C : x x t , y y t , t t t
t

 
 
 
   


A line integral written as
is really a shorthand for
where is some parameterization of :
t
t
-a a
t-a a
1t
2t 3t
1Nt C
nt
x
y
0t
f Nt t
 ( ), ( )x t y t
1t 2t 3t 1Nt nt… …0t f Nt t
t
2 2 2
2 2
0
2 2
0
cos sin 0 2
f
f
x y a
x a t, y a t, t
x t , y a t , t a, t a,
x t , y a t , t a, t a,
 
  
    
     
      
parameterizations of the circle
1) (
Examp
)
2)
l
and
e :
5
The path C goes
counterclockwise
around the circle.
Line Integral Example
1
cos sin 0
C
I dz
z
C : x a , y a ,   

   
Evaluate : where
  2 2 2 2 2 2
1 1 1 x iy x y x y
f z i i
z x iy x iy x iy x y x y a a
         
                           
Consider
x
y
C

a
z
 
 
2
2
x
u z
a
y
v z
a



Hence
1 2 2
( )
a
a
xx y
I i dx
a a

   
    
  

   
1 2
C C
C C
I udx vdy i vdx udy
u iv dx v iu dy
I I
   
    
 
 
 
0
2 2 2
0
( )y x
I i dy
y
a a
  
    
  

6
The red color denotes functional dependence.
Line Integral Example (cont.)
Consider
x
y
C

a
z
 
0
2 2 2
0
0
2
0
0
2 2 2 2
2 2
0
2 2
2
0
2 2 2
1
2
0 2 2
0
( )
( )0
2
2 sin
2 2
2
a
a
a
a
y x
I i dy
a a
i
x dy
a
i i
a y dy a y dy
a a
i
a y dy
a
y a yi a
a
y
y
a
y
    

   
  
    
  
 
    
 
       
   



 

2
i
a
2
a
2
1
sin
2
a
a
i


  
  
   
 
  
 
7
Line Integral Example (cont.)
Consider
x
y
C

a
z 1 2
2 2
I I I i i
    
      
   
I i
Hence
Note: By symmetry (compare z and –z), we
also have:
1
2
C
dz i
z

x
y
C

a
z
8
Line Integral Example
Consider
x
y
C

r
z z
cos sin 0 2
cos sin
n
C
i
i
z dz
C : x r , y r ,
z r i r re ,
dz rie d ,


   
 

   
  



 Evalua : wherete
 
 
2
0
2
11
0
n
n i i
C
nn i
z dz re rie d
ir e d i

 





 

 

 1
1
ni
n e
r
i
 

 
 
 
2
0
12
1
( 1)
1
0 11
2 11
ni
n
n
n
, ne
r
i, nn





 

 
  
  
This is a useful result and it is
used to prove the “residue
theorem”.
9
Note: For n = -1, we can use the result on slide 9 (or just evaluate the integral directly).
10
Application of counter integral
• Oceanography
• Geology
• Environmental science
• Statistics
• Electrostatics
• meterology
THANK YOU

More Related Content

PPT
Fourier series
PPTX
Gram-Schmidt process
PPT
Laplace transform
PPTX
Echelon and reduced echelon form & Filters
PPTX
Complex form fourier series
PPTX
PPSX
Taylor’s series
PPTX
Vector space
Fourier series
Gram-Schmidt process
Laplace transform
Echelon and reduced echelon form & Filters
Complex form fourier series
Taylor’s series
Vector space

What's hot (20)

DOCX
Maximum power transfer theorem
PPTX
Resonance in R-L-C circuit
PPTX
Complex analysis
PPT
PPT of Improper Integrals IMPROPER INTEGRAL
PDF
Using Laplace Transforms to Solve Differential Equations
PPT
Fourier series
PPTX
Complex analysis
PPTX
Separation of variables
PPTX
Presentation on inverse matrix
PPTX
Laplace transformation
PDF
Higher Order Differential Equation
PPT
Limits
PPTX
Ordinary differential equation
PPTX
Improper integral
PPTX
Applied Calculus Chapter 1 polar coordinates and vector
 
PPTX
Metric space
PPTX
Homogeneous Linear Differential Equations
PDF
Fourier series 1
PPT
Unit 2 resonance circuit
Maximum power transfer theorem
Resonance in R-L-C circuit
Complex analysis
PPT of Improper Integrals IMPROPER INTEGRAL
Using Laplace Transforms to Solve Differential Equations
Fourier series
Complex analysis
Separation of variables
Presentation on inverse matrix
Laplace transformation
Higher Order Differential Equation
Limits
Ordinary differential equation
Improper integral
Applied Calculus Chapter 1 polar coordinates and vector
 
Metric space
Homogeneous Linear Differential Equations
Fourier series 1
Unit 2 resonance circuit
Ad

Similar to countor integral (20)

PPTX
15.2_Line Integrals.pptx
PPT
Line integral.ppt
PDF
Integration in the complex plane
PPTX
GTU LAVC Line Integral,Green Theorem in the Plane, Surface And Volume Integra...
PDF
Solved exercises line integral
PDF
MA101-Lecturenotes(2019-20)-Module 13 (1).pdf
PDF
MA101-Lecturenotes(2019-20)-Module 13 (1).pdf
PDF
SMT1105-1.pdf
PDF
engineeringmathematics-iv_unit-ii
PDF
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
PPTX
2112033_Yoses Manuel_Tugas 5a Matematika Teknik.pptx
PDF
Integración variable compleja. Integral de Cauchy
PDF
Definite Integral
PDF
Principle of Definite Integra - Integral Calculus - by Arun Umrao
PPT
Line integrals and method of evaluation.
PDF
Complex Integral
PPTX
Line integral & ML inequality
PDF
integration in maths pdf mathematics integration
PDF
Line Integral Multivariable Caclulus great slides
PPTX
INTEGRATION BY PARTS ,TRIPLE INTEGRAL ,CHANGE THE ORDER OF INTEGRATION,BETA ...
15.2_Line Integrals.pptx
Line integral.ppt
Integration in the complex plane
GTU LAVC Line Integral,Green Theorem in the Plane, Surface And Volume Integra...
Solved exercises line integral
MA101-Lecturenotes(2019-20)-Module 13 (1).pdf
MA101-Lecturenotes(2019-20)-Module 13 (1).pdf
SMT1105-1.pdf
engineeringmathematics-iv_unit-ii
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
2112033_Yoses Manuel_Tugas 5a Matematika Teknik.pptx
Integración variable compleja. Integral de Cauchy
Definite Integral
Principle of Definite Integra - Integral Calculus - by Arun Umrao
Line integrals and method of evaluation.
Complex Integral
Line integral & ML inequality
integration in maths pdf mathematics integration
Line Integral Multivariable Caclulus great slides
INTEGRATION BY PARTS ,TRIPLE INTEGRAL ,CHANGE THE ORDER OF INTEGRATION,BETA ...
Ad

Recently uploaded (20)

PDF
MACCAFERRY GUIA GAVIONES TERRAPLENES EN ESPAÑOL
PDF
[jvmmeetup] next-gen integration with apache camel and quarkus.pdf
PPTX
Agentic Artificial Intelligence (Agentic AI).pptx
PDF
Computer System Architecture 3rd Edition-M Morris Mano.pdf
PDF
20250617 - IR - Global Guide for HR - 51 pages.pdf
PDF
Lesson 3 .pdf
PDF
UEFA_Embodied_Carbon_Emissions_Football_Infrastructure.pdf
PDF
Principles of operation, construction, theory, advantages and disadvantages, ...
PDF
MLpara ingenieira CIVIL, meca Y AMBIENTAL
PDF
UEFA_Carbon_Footprint_Calculator_Methology_2.0.pdf
PDF
Unit I -OPERATING SYSTEMS_SRM_KATTANKULATHUR.pptx.pdf
PDF
Project_Mgmt_Institute_-Marc Marc Marc .pdf
PPT
UNIT-I Machine Learning Essentials for 2nd years
PDF
Mechanics of materials week 2 rajeshwari
PPTX
CNS - Unit 1 (Introduction To Computer Networks) - PPT (2).pptx
PDF
August -2025_Top10 Read_Articles_ijait.pdf
PPTX
Environmental studies, Moudle 3-Environmental Pollution.pptx
PDF
Cryptography and Network Security-Module-I.pdf
PPTX
Solar energy pdf of gitam songa hemant k
PPTX
Environmental studies, Moudle 3-Environmental Pollution.pptx
MACCAFERRY GUIA GAVIONES TERRAPLENES EN ESPAÑOL
[jvmmeetup] next-gen integration with apache camel and quarkus.pdf
Agentic Artificial Intelligence (Agentic AI).pptx
Computer System Architecture 3rd Edition-M Morris Mano.pdf
20250617 - IR - Global Guide for HR - 51 pages.pdf
Lesson 3 .pdf
UEFA_Embodied_Carbon_Emissions_Football_Infrastructure.pdf
Principles of operation, construction, theory, advantages and disadvantages, ...
MLpara ingenieira CIVIL, meca Y AMBIENTAL
UEFA_Carbon_Footprint_Calculator_Methology_2.0.pdf
Unit I -OPERATING SYSTEMS_SRM_KATTANKULATHUR.pptx.pdf
Project_Mgmt_Institute_-Marc Marc Marc .pdf
UNIT-I Machine Learning Essentials for 2nd years
Mechanics of materials week 2 rajeshwari
CNS - Unit 1 (Introduction To Computer Networks) - PPT (2).pptx
August -2025_Top10 Read_Articles_ijait.pdf
Environmental studies, Moudle 3-Environmental Pollution.pptx
Cryptography and Network Security-Module-I.pdf
Solar energy pdf of gitam songa hemant k
Environmental studies, Moudle 3-Environmental Pollution.pptx

countor integral

  • 1. Shri S’ad Vidya Mandal Institute of Technology Topic: APPLICATION OF CONTOUR INTEGRATION GUJARAT TECHNOLOGICAL UNIVERSITY Complex variables and numerical method PREPARED BY : 1] Rana manthan - 170450119044 2] Shah jay - 170450119046 3] Shah rishabh - 170450119047 4] Shah sheril - 170450119048
  • 2. CONTENT • Defining Line Integrals in the Complex Plane • Equivalence Between Complex and Real Line Integrals • Review of Line Integral Evaluation • Line Integral Example • Application of counter integral
  • 3. Defining Line Integrals in the Complex Plane 0a z Nb z 1z 2z 1 3z 2 3 N 1Nz C nz n x y           1 1 1 1 1 1 0 lim lim n n n n n z N N n n n n n n n b N N a z N n n n N n C z z I f z z N z z z I f z dz I f z z                                Define on between and Consider the sums Let the number of subdivisions such that and define (The result is independent of the details of the path subdivision.) 3   b a I f z dz 
  • 4. Equivalence Between Complex and Real Line Integrals                         0 0 0 0 N N N N b b a a b x ,y b x ,y a x ,y a x ,y C C I f z dz u x,y iv x,y dx idy u x,y dx v x,y dy i v x,y dx u x,y dy udx vdy i vdx udy C                         Note that The line integralis equivalent to two line integrals on .complex real 4
  • 5. Review of Line Integral Evaluation         0 0 f C t t f u x,y dx v x,y dy dx dy u v dt dt dt C C : x x t , y y t , t t t t              A line integral written as is really a shorthand for where is some parameterization of : t t -a a t-a a 1t 2t 3t 1Nt C nt x y 0t f Nt t  ( ), ( )x t y t 1t 2t 3t 1Nt nt… …0t f Nt t t 2 2 2 2 2 0 2 2 0 cos sin 0 2 f f x y a x a t, y a t, t x t , y a t , t a, t a, x t , y a t , t a, t a,                        parameterizations of the circle 1) ( Examp ) 2) l and e : 5 The path C goes counterclockwise around the circle.
  • 6. Line Integral Example 1 cos sin 0 C I dz z C : x a , y a ,         Evaluate : where   2 2 2 2 2 2 1 1 1 x iy x y x y f z i i z x iy x iy x iy x y x y a a                                       Consider x y C  a z     2 2 x u z a y v z a    Hence 1 2 2 ( ) a a xx y I i dx a a                   1 2 C C C C I udx vdy i vdx udy u iv dx v iu dy I I                0 2 2 2 0 ( )y x I i dy y a a             6 The red color denotes functional dependence.
  • 7. Line Integral Example (cont.) Consider x y C  a z   0 2 2 2 0 0 2 0 0 2 2 2 2 2 2 0 2 2 2 0 2 2 2 1 2 0 2 2 0 ( ) ( )0 2 2 sin 2 2 2 a a a a y x I i dy a a i x dy a i i a y dy a y dy a a i a y dy a y a yi a a y y a y                                                 2 i a 2 a 2 1 sin 2 a a i                    7
  • 8. Line Integral Example (cont.) Consider x y C  a z 1 2 2 2 I I I i i                 I i Hence Note: By symmetry (compare z and –z), we also have: 1 2 C dz i z  x y C  a z 8
  • 9. Line Integral Example Consider x y C  r z z cos sin 0 2 cos sin n C i i z dz C : x r , y r , z r i r re , dz rie d ,                     Evalua : wherete     2 0 2 11 0 n n i i C nn i z dz re rie d ir e d i                1 1 ni n e r i          2 0 12 1 ( 1) 1 0 11 2 11 ni n n n , ne r i, nn                 This is a useful result and it is used to prove the “residue theorem”. 9 Note: For n = -1, we can use the result on slide 9 (or just evaluate the integral directly).
  • 10. 10 Application of counter integral • Oceanography • Geology • Environmental science • Statistics • Electrostatics • meterology