1 1 2 .. /
1 1 1 2 .. / 02
• 2 IRP 201 Ig c
– e HI
• 201 8 9 6 8 6 6 -9 : / : 4C
• 2 8 9 6 8 6 6 -9 : / : 644C
• 201 8 9 6 8 6 6 4C 6 48 6 76 4C
• . 2 8 9 6 8 6 6 4C 6 48 6 76 944C
• 201 8 9 6 8 6 6 4C 6 48 6 76 4C
• 201 8 9 6 8 6 6 4C 6 48 6 76 4C
– ik V 4C 6 48 6 76 H
– H hKa I dEpl o np
x
• ms urV x dkleV
– ms
• . Vdkle
• t R
• Vv .Vdkle
– w V No p
•
– ah . a g_
• C 0 3 1 0883: 3 1 3D 1 / 0 3 8 088
• y m nV
– d c u Vi a g_ P
• 8 23 0 3 :3 1 0 3 1 0883: 3 3 3: 0 :
• 70 70 0 70 :3 C 0 3 1 0883: 3 8
EUPCPG EIC GNHG/
• i2A o bnu t
◆ j l h nje m
T UG GMDG .
GRGC EI GMDG . +
i
j l
dBGD hd
i?
2A W 82 0W 1 A2 822AB 2A B 422AB 82 W
2A
-
u
t
422A
-
s yp
EUPCPG EIC GNHGi x t rv
2A i o a v wo n
o g
422A +B 0VC F
A 4B +
3 NCM E 5CRI ON 2T ST GR
8 ,
#
NIDB
Near-Miss Incident DB
82 0 - 2A -
3 GR:GSR ?O EI
2A - 6 S7TD
ci i O
&
/
HP: http://xpaperchallenge.org/
Twitter: @CVpaperChalleng
.
http://xpaperchallenge.org/cv/recruit
o py
• -9 6 tu sk
– -9 6 u kSjl RcgR i vkT
• ALLI AH L A L L L -9 6 LM P
• ALLI C H I H N L
– -9 6 thdR_S. 3 O 2H LP 8 A H H T
• ALLI I D D H HLHD M NI IH L
– -9 6 : V S 0 7-/41 6T
• ALLI AH L A L L L NI : AH :
– -9 6 x kSrjl ibeR a i skT
• n ALLI D LH N H I H N L
• m ALLI D LH N H I H N L
e
,
• 1 67 hbcdUja
– 1 67 hbcdV1R A /CAI T /4 A D O W
• D . R A CAI G C A A D O A P I (
– 1 67 3 CGA igfV A 0 C2 W
• D . A C
– 1 67 :I A R 0A 6 A /II OI A RI A
• D . RI A AP A P
OI A R A A II OI A
– 1 67 . 9DA 9 5 A 2A A I 6 A
• D . DA A B S P DA A
A A I A B- A) ((
bad
• 1/0 D 25 @
– 1 /@ 5 A R IP
– 1/0 F 2 2 C G
• 8 A 8C 2 2 C D 25 1/0
– c V H I . 1 F 2:282A8 C G
• 8 A 8C 2:282A8 C D 25. 1
- C 2 0
- 0 9
-
2 / Nin G C
• 2 / eIST A
– 5 0 3 o r a h Oo r
• ,3 5 rC 0 85 5 rC 5 rCNl tP
• 2O c N VA 2 Sg u F
https://scholar.google.com/citations?view_op=top_venues&hl=en&vq=en
1 O R
1./ c CeiI
• 1./ 19> 2:
– dP I fabp V bp
• -1 Smo
• O fa V >9 bp hl
• 1./ . > 2: VD
1./ P0 2 : HR19> 2: 8 > 8
3/0 U c bh
• 3/0 3 C 7=
– l V
• U XVe
• a_ YH i ? 1 8:Ra_P Y T Ye
CC ? C 8: 9? 7C9 , +7.2 C8 =
3856 % %Vc iR ) P
(
• 3856 % % 8A H
– ho l ) , l % P
• Y Y 23 . _ ema( )_Up
• 23 _ (% X b
HH / H =? C H 1 0 47:9H=
.:5 & & c tVs X &Y
• .:5 & & :FLN
– } cghf
• D FNF X ow U {ruY 4
• 1-80a m lnd e_v
• yic/ L F Dghf 8L C L E N
S HF T LPF A L F D 0CCF F N NL F F D F C L
L N NF L F D -AP L LF L F D 4 L D L NFP
H A b lp
ENN R N ? H N E,P 2 N? =
/ H P
• / /8=?
–
?? C ? 6 5 : ?5 .10? 2
/ 23 Xf ip P #
%
• / 23 G 9
– Xaw
• %m P m d P
• nRV m u P Y% V m H = = Yv
• rsgbU Yty e 0 ? = _loc e h
H,## := C# 9 . 91 76 : 8
0856 hl o ,#, U
%
• 0856 8 M F
– kwc dv
• %m f UR m b U
• nV m t , UR a m 7H ? uX
• rieY 2 F 1 = s _g 047 f p
CMM ##PPP M = G#P M C/ . 37: M=PF ,
3 9: & &r“ ea % b
• 3 9: & & TVW N
– y qpk fon]? 2 d l
• 3 W WE V a r“ _b.
VVRU.%%YYY WVWE F O%F PP N%=3&P F TU7C ?Y Y
• 3 8R P 1FF UU A3 9: & & 6 P 3 P T PF B.
VVR.%% R P FF UU V F F O%3 9: & & R
• 3 8R P 1FF UU A3 9: & & ? TMU RB.
VVR.%% R P FF UU V F F O%3 9: & &CY TMU RU%O PW R
• Y VV T [ 3 9: & & .
VVRU.%%VY VV T F O%U TF 0S/ 3 9: & & UTF/V R CSW T /N
– t w r“ shviv gvmcu_
/, CA
• /, /6 18
– 9 618
• , 9 9 18 224 06 3 1
– 09 7 9
• , 9 9 18 224 06 3 1
https://www.youtube.com/watch?v=aHUYXtbwl_8
1 V M bQ O
• .= C H=PdaRT
– Y ahSW e
• /A H 0
• =CA A = 1 = A =CH
– 8 I I:= gf c
• HHE KKK IHI:= K H ? -=2.
http://cvpr2020.thecvf.com/
2/0 W kLhoR
• . C ?8 ?: 0 C
– bd mP O yta gz
– T pc sa e v nrY O
– iu1 C : 8 V w
• 4 1 ?= C H 3 I/ 1
https://www.youtube.com/watch?v=aHUYXtbwl_8
12 cgIe # L
• 1 0. /A - 1C H
– a r MfPRlj
– 12 TohS 12 lj
– 33.. SV p ndi
• ##7A : # 8 # # # 7# 7 7 C 1
https://www.youtube.com/watch?v=aHUYXtbwl_8
I
• 842 1 1 /31 0
– M
– C AM P
https://www.youtube.com/watch?v=aHUYXtbwl_8
+2 / Q A C
&
• , @ +2 /
– Q w eV lP s
– m
• 18 C0 4 18 5C
n r h i
• ZZ Q oRa 8 4 Q r HT
S R d t
https://www.youtube.com/watch?v=LkSBxpLOBx8
5 i S V W
• L O hcY
– t sT
• h Uu U af h
• v r nl fi fi Xo
• hcY y p g k
– U ws YT
• l
– 2L AL h Xb m_Y
• 2KAI IC 0ARI A .i O O?Ae
– D K QQQ R O O?A K R 1=?-P/ 8 O /? F QR 0 :?6:6/
. % % 0 %5
%
• %
– RV 2
• 6 27 P V
8 P6 7 6 /
17
–
• V /
• V 5 P C P
CVPR 2020 報告
*2/0 lr nwM I
•
– 3 C3 / 1AB A /IV N da
• C3 t f ae
– x u p c hM N
C3
i s P 8 / A* B 2 D , A1B 3 SRt Smo
. 89 i b
• hjl(/
– (/ hycl i
– “uxg o]sa efbd
• )t v k1 1. [/FF 1FOFRBT VF P FMS[
/ GGFRFOT BCMF 9FO FRFRhycl a m
• (/ -FODINBRL F IB F FT .-
• np ri F 3BPM O 2/2, A 8 PRDI(/ 0BDFCPPL A
FSI 9 . 1 1L PWBR FT BM 2.. A
Y OSU FRV SF FBRO O PG 8RPCBCM NNFTR D
/FGPRNBCMF (/ 7CKFDTS GRPN 2NB FS O TIF M
U FT BM . 89 A . 89 -FST 8B FR
+ P 8
• f e C ab V R 100/ /3 1 2/ /3 / /
– : V R
– 100/ /3 1 2/ /3 / / : e
• d D
Leveraging 2D Data to Learn Textured 3D Mesh
Generation
https://openaccess.thecvf.com/content_CVPR_2020/html/Henderso
n_Leveraging_2D_Data_to_Learn_Textured_3D_Mesh_Generation
_CVPR_2020_paper.html
From Image Collections to Point Clouds With Self-
Supervised Shape and Pose Networks
https://openaccess.thecvf.com/content_CVPR_2020/html/Navane
et_From_Image_Collections_to_Point_Clouds_With_Self-
Supervised_Shape_and_CVPR_2020_paper.html
R P 2/ 0
• 8 8 V3 1
– : C D
• C
Learning Unsupervised Hierarchical Part
Decomposition of 3D Objects From a Single RGB
Image
hhttps://openaccess.thecvf.com/content_CVPR_2020/html/Pasc
halidou_Learning_Unsupervised_Hierarchical_Part_Decomposit
ion_of_3D_Objects_From_a_CVPR_2020_paper.html
PQ-NET: A Generative Part Seq2Seq Network for
3D Shapes
https://openaccess.thecvf.com/content_CVPR_2020/papers/Wu
_PQ-
NET_A_Generative_Part_Seq2Seq_Network_for_3D_Shapes_
CVPR_2020_paper.pdf
bd cg D
• mal P h 3 3: /083 3:23 3
– CW V CW R S f eiI
• 3 3: /083 8 3 3:23 : 3/ : : 8
3 3 3: / : . 3 :
•
L L
Colored Voxel
http://www.krematas.com/nvr/index.html
Neural Rendering Workshop
https://www.neuralrender.com/
/ W V I
• NP R SN M : C 3 :G
– 3 - 3 3 3 - 3-
– - E F 0G C: 8 G 3 0 2 C: 3 G : C C:
3 D 3 3 3
– 0 F F 0G C: 2 C: D C 3 3
– 0G 0 C F 0G C: 8 3 0 3
Workshop
https://nvlabs.github.io/nvs-tutorial-cvpr2020/
Link
https://shihmengli.github.io/3D-Photo-Inpainting/
V e
• h R D
– 3 4/ 302 , 3 M d
• 8 8 D
i C
– h h P P c D
Articulation Implicit Function
Implicit Functions in Feature Space for 3D Shape Reconstruction and Completion
https://openaccess.thecvf.com/content_CVPR_2020/html/Henderson_Leveraging_2D_Data_to_Learn_Textured_3
D_Mesh_Generation_CVPR_2020_paper.html
3 /
• C P R2
– C D C C P 0
D 5 82
3 3D
Dynamic Voxel
3DV: 3D Dynamic Voxel for Action
Recognition in Depth Video
https://openaccess.thecvf.com/content_CVPR_2020/htm
l/Wang_3DV_3D_Dynamic_Voxel_for_Action_Recogniti
on_in_Depth_Video_CVPR_2020_paper.html
, Pb A IC
• , E X
– / no
• / 0680 /
• 06 8 22 8 0 6 6 08 0 82 083 62
– che pi r e ta
• V Ps V P e uRTdFl I
2/0 e R
•
– c e
• w e fbek d P
• d i X pon
• 2 e f x u dkn i ogb R
E A A A Tna lon
3 3G I D8E , C A AE A G A
. GD . I D E 3 A7 C D G A 2/0
rvs d n t
e “ n ad
km Vn N
V e
n be X
d” W n h
N
e R Z V
• 8 0
– jrul mtwd d
• c e xa XSi “d
• h e dch
xsoviopnk h
, AE K D P IG I EE KA F E FKA
HHIG KG ,OHD AFAF F AF 2 I D
2 KNGIC 3 B K K KGI
” bekv wkd g i
/ F K D P0FK IHI K D F I K -AF
I AF G FAKAGF A AGF .IG HAF
2
• 3,
– . Zi
• V R R L
• .c a a R L
• I d P a
tMr uml Zi a
TR I V
R R R fI
Io
t ns p
/ 9E 99B C FDE9C
AC DF /9 C 2
a
” “
Zio
r p
aTR e agho
” “
A 9E 0 E D C E A 8
C 9DD DD . C9 9 E /9 C 2
0:78 j V
• 2/91
– j2/91 j
• 2/9 2/??9 e 4 =CA6ANj
• zy j
9EI 4 =CAMj
V V h s lbm
V wtx R ERAG f h i
n je io
f
V9 =G = 2A C M 2 AA =I j
NN M, C M ?M=EG EN A PEME I 9EI 4 =CAM
V s b j
NN M, AI APEA IAN .E -M A T=/G3 4
4 =CA6ANj u v j
V i a u v j c e
h[f rb s
V V V hg s hdb
V4 =CA6AN 7 FA?N]pj
NN , E =CA IAN C =NA MA
0 N n r A
• 0 MC tMhe
– ui
• 3 1 2 32 3 /31 2 /AL E
• n N ui Mo o V N lR P
44 2 38 3 MS A
• N c a i fR
: 7 jl uXS T
• i xh f t x s
– 4,8S1 27 T /AAD D L4 LS1 32 T faR
• ec ognb S/AAD D L. LT j S .T rp
• d V S /AAD D L. L .T
0 D CL C A L F O . /NI D
, CDL LM A /AAD D L :D 7 DLD P
: 7
3 9 L F O/AAD D L. L 8 F F
/AAD D L E L . L LD P : 7
2/0 P
• w R w
– ifg Ic
• 0 8. A , 4 A. A n Vo” a
• . s , 4 AD N I I tr
– P
– ~v k a S “edcV
l n R V pa
035 3 4 A 3 E 8 8 . AC : 8 34 2/0
V4 8
•
– cP4i P4 P4
– R3 eR
– C R K
/0 2/- & 7 nc
,5 2 WkrMp ( ) O
(
• k u M W t
– ,CA C G C G ,5V k u W(dfWi
• 3G C ,5 C Wm S ,CA C G C G h oS
vn Wl VgS C C
• /.4W 0 I se yW c c aWu :
8G I G 8 8 G C A G : :8C G C P Wu
TR
A. Andonian*, C.Fosco*, ... & A.Oliva. We Have So Much in Common:
Modeling Relational Set Abstractions in Videos. [arXiv, soon]
Aude Oliva, MIT
http://ai.stanford.edu/~jingweij/cicv/
23 vyL P
Twitter Strong Accept x3
https://twitter.com/doubledaibo/status/1232832762270236672
• v “ t L spv “
– .G pv “ pv “ P
• ai b nS o spv zV P
• g ce S l m
– 4 D / 6 8D F D C P
• R pv u rq R
http://openaccess.thecvf.com/content_CVPR_2020/html/Shao_FineGym_A_Hierarchical_Video_Dataset_for_Fi
ne-Grained_Action_Understanding_CVPR_2020_paper.html
068A D D 6 6 , 6 :
3 8 : H 4 D / 6 8D F D CJ
23
30 Xt u PM
• t xfghr s r
– , xfghrM
• oVt R YXca y
– - 8 : E 2C7 3 :A /A : DM
• da np eiX s lW WR
T oVs TP
4F :E 7 /F E C /:E A AC
- 8 : E 2C7 3 :A /A : D
30
.: 8 E: A :C :E 7 , - 7
C8 E:8EFC:D AC - 8 : E 3 :A :8A E A
30
-312 P
• ʼ
– mpdenh xk o
• / 7 m iln V ,3,
urvP AI c
• y _ R w egtl V ba ,7 0
- : xs
– -312K .--3K _ m c R N
C C7 :AA: 7A 8A A 8
7
AC: 7 : : 4
7
/,- Pf Ci
• e g
– a o e 384 3 32 3 9 9 RPst
• hO L Z
– vl F r upP w P ZRP d P
o e o FVe no FVe
e 03 93 3 S V
4 b N VP )
•
– P
• 0 A A 7 0 U I7 A i
• 7 2 2l d(tso L agi b
gie U
. , 7 0 A A 7 5A C H
7 4 C A 7 A / 7 A A K 4
a“ b A 7 H
/ 7 f o r p
8 c Ln Oa d
0 A U am Ow
bU ” RiL 7 H r
l d U V Mr l
a d U VL f a
b vul agiL
a OtU l
M
- 8& & a Z &
•
– x Z
• u v m ihln d W e y
• rvks v 80, / KR PAFK d
• FNFKJ 4 J “ caopf gtw
5PN FGK B B U B C PLBM FNBA
FBRLKFJ 4B MJFJ /MKI 1I B
-K B FKJNV - 8 & &
/ EP B U FNFKJ 4 J P B F FKJ F E B C
PLBM FNBA PSF F MT 8B NKJFJ : NGNV - 8 & &
2 FBM FK JJF B U. K FJ 4KNNBN CKM
JNPLBM FNBA FABK 8BLMBNBJ FKJ 4B MJFJ V - 8
& &
40 Sf Mip O P
• e g
– n e O o hP
• ya cS s
• b Z
• UV N ldtr R vu yaMXN m
- 0C / E C
2 2 D E : -C C E D
, A C 40 - . E 2 2 D E : DDEC CE
: E E C8 40
5 2 2 D E : 2
/ C 40
+5 2% % g L %M
• ap sLlkM
– rioapL gM
– ioThnRV e
• 0 apTN rio uPf ioStm
• 3 +.2L +/. % M
4 + I 3 A ,
8 + C F . 8 5 C
2 A C C +/. % %
.412 P oImt
aehgP o fr TR V
– u v
• u v AC C 78C 5 8 8 6 A5A8 6 5 8 :8
• 3 5 7C 18 9 5 4 78 286 :
AC C 78C 5 8 8 6 A5A8 6 5 8 :8 5 7C A8 9 5 78 86 :
– sxi
• sxi AC C 78C 5 8 8 6 A5A8 6 5 8 :8 C8 9CEA8 C87 85 :
– pl
• .4Pwn -0P pl
AC C 78C 5 8 8 6 A5A8 6 5 8 :8 5
– cd
• -7 8 C5 5 / 5 A 8CaeP o
AC C 78C 5 8 8 6 A5A8 6 5 8 :8 57 8 C5 5 8 5 A 8C
CVPR 2020 報告
/ B N
• G
– 45 0 2 B A 6 S RV BP
– G C 8
0 : ey T
• s nmo d h
– PRIC .8 /FD .8cbe
• PRIC .8 S.B 58e
• /FD .8 nmoe T mVle
– kpjc s dc
• 5 251a geeSrteud bi
PRIC .8 0 : 9N I
/COP : MCN 4L LN IC 7C PFL
PPMO DFP AL 8 I O OPRICD
/FD .8 506 9N I
PPMO DFP AL G NLAH /FD .8 :R LNA
• P e :
– 04745/ 2 7 Ce O R
• 28 4 a cC V i h
• e V
MixNMatch
https://github.com/Yuheng-
Li/MixNMatch
Towards Unsupervised Learning of
Generative Models for 3D
Controllable Image Synthesis
http://openaccess.thecvf.com/content_CVPR_
2020/html/Liao_Towards_Unsupervised_Lear
ning_of_Generative_Models_for_3D_Controlla
ble_Image_CVPR_2020_paper.html
Self-Supervised Scene De-
Occlusion
https://openaccess.thecvf.com/content_
CVPR_2020/html/Zhan_Self-
Supervised_Scene_De-
Occlusion_CVPR_2020_paper.html
8 0
• P
– 85 8 V/
– 8 V 2
– 8R 9
– V
– C 48 5
-62 a VN
• w r mhn pas Z
– A9 BD RdaT
• ec A9 BDg P at
• S d2B F G 8F G a“R
• eg Z v a 8D: B A oil e
4 8A F 8 ,D : A F 08C
, F A A9 BD ,8 : 8A: A9 BD
/D . F 9F BA G 8 :8CF G D8 A A
48 C 4 9F BA -62
- 85 6
• V R Coe
– V r C - /25 - 6
• - : 9
• : P N 01
H
- C 9 t
, 12 d “O ” R S
• snu”Zj
– - dsnu
• - e a e j i
• / C D D F e
3 6 A 8 D -
08 H 5 - D 8 2 D: D
3-. 3 F 1 H , 12
O b3 D : - H D . :R3-.S
Wg j
O mo v mr cV ktl
sp cfh Pc d j
a
• po 635 S
– 25 28 2 t ec: r Dn
• /00/ 2 2 N R iC
• 25 83 2 / 2 V ld P
0:6 s v [U ( , V
)
• hie . t ru p n
– 5 1/. / 2 0:6 -
• hie y R2 HI p ] f g
dl R4 IED 2 IED m cS] oR4
2 a hie dr S
3 6 E P9 I D 5 HF D / I DH AH 8 F D
8 F DH C H C 8 EA 8 I D DH 0:6 H E
,62 gmN P
• a r hp ue sd
– E A , hp ue sd
• cbytlw a rin SRVMhp oUR
V2EG :B 8 E a
0 , . A A / A: 4 A BA A - B A 6 : BE
H 5A A .G : : 0B: : C BA ,62
/- H P
•
– V O
• R
• 60 , 532 3 02 8 60 328 2 8
• CD H IH /
20 WfnH u
• r dHafs
– MZ hoidX gVle
m d
8 8C 6 E/8C6- 8 0A8 CA6 87
- / 78 A . 6 0 8
, C 6C F 20
d R W P V
t . 6 06A :
5 5 6 : 8C 6 E AA8 6C : ,7:8 0 8
C 06A :F 20
,:67 l Z
• 0PI 5 G O O M OF - 0PI 7
– o beaih rd n
i l s c x u gW
s “
P O H , N A A 0PI 5 G O
O M OF 7 D FOF V ,:67
t pW l s me j
8 8 FO O H 6 .P0- 3PHOF 2 H 6FR H HFD A
ILHF FO .P OF C M 0FD 7 N HPOF - 0PI
-FDFOFT OF V ,:67
leml j -
”yxY s c -:Z -
-S IF : R H
D O H -: -
-S IF : R H C M OF
7 D FOF F - LO :FA V
,:67
l jv s fj pW i i l
szY ibg h s
P O H FH M O 6M AF OF D ,H O F D F -
N .P OF C 0PI 6 N 8 L A / MI O
8OSH V ,:67
0 Fn
• drs WR r PV
– e io fh PVSm g
– 5 96 /5 9 2 5 9 9 5 5 5D5C9D A:
AD5D98 5 -5 9C
• r lt PV H a
–
• dL cbc H 9 C90AC9
8I
• 2 25 / 7 0
– 2 25 0 2/05 L C
– 2/05 7 0 9
• Visual-Textual Capsule Routing for Text-Based Video Segmentation
Text Video Video Segmentation
• Object Relational Graph With Teacher-Recommended Learning for Video
Captioning (External language model dataset long-tail )
• 2 2 / 17 10
– 0 0 6086LR S C
– 0 0 6086 P
• Deep Relational Reasoning Graph Network for Arbitrary Shape Text
Detection (Graph CN Shape Scene Text )
• SwapText:Image Based Texts Transfer in Scenes
(Scene Text / )
, R
• 6 / 1 10
– 86 / 1 P L
– ,0 6 2 7 ,0 6 1G
– 86 / 1 ,0 6 1 C V
• REVERIE:Remote Embodied Visual Referring Expression in Real Indoor
Environments (Grounding Embodied AI ) ( )
• SQulNTing at VQA Models:Introspecting VQA Models With Sub-
Questions (Sub-questions Reasoning )( )
23 n ou &
• 8 1 A 9
– / 6 8 98 0 L 23 P V
– 1 3 6 7 1 R I D
– d iaI V C
• Ecbegts
• ca ts
• mtsV
P 40
•
– / I 67
– RX 0 / AC
– P
• 82
• P V 3 2
52 b P R
• s y x b gS a
– kpn rb w
• 4F D8N .FIIc kpnbutnliW a f d
V g jom b -D8 I yvR
• .8 4:8C : : F 6 C FD -D 8C8 : / C .8 CI
F 8:: II :L :FD :F 7 52 7 DC 2 7.8 4:8C 7 : 7 : F 7 7 76 C 7 FD7-D 8C8 : 7/ C .8 CI7 52 7 7 8 DC
– b r
• _ a h_ e b r
• O 8D : D 0 MF F 8 I CO 28: :
: F
F 8:: II :L :FD :F 7 52 7 DC 28 7 O 8D :7 D 70 MF 7 F 7 78 7 I CO728: 7 : 7 : F 7 52 7 7 8 DC
CVPR 2019
SKU-110K dataset
https://github.com/eg4000/SKU110K_CVPR19
-6 5 ʼA D E
• n p V
– 88 L V
/:7 8:7 tM V
• C de r o N
• F- 51 R C L P
: 8 /:7 8:7 o /:7 /:7 2 789 0 88 51
-6 5 - 51 l
20
• p y - r RtP
– n u a s c Pb
• r jLg emilfh mR dt b
8 / 86E 7 687 6E A
86 D A AC EA A A D 28 6 8D
O V d X
: EA A A D C : I
8 C : 7 EA 7 2 D EE8 E A
EE8 E A x oO v
CVPR 2020 報告
80
• 0 / V 0
– R
–
• 6
•
• / W
• C 7
– R P 2 7 6 2
2 S 79 6 7 6 6
8 4 atvUu W X
• K AL A R A L M LFMD K
– cdkileg Y aflVh
• 8 4 br sa D KM P MG L A
• np b y_ L B L D I W 4 PALM AX .AIAL G
D L
• /IP A 6 GFb m w o
– D KM P MG L A A L M IP A GFM KDK
• AM KAL L
– I D AID : 2AIAG M 0 I F M M .A LC G M D
DAI , I I AG 8 I . G B L DA K KAL S, I CI M -A LA
A LI IC B L / CA I 8 A MA - A I MK B ICT LAMAI A
8 4 A L M LFMD K
https://vislab.ucr.edu/Biometrics2020/index.php
/6 d I UM( )
)
• 2 A: 289 A
– a d 0k i J
– I c i B BCd
lrtIo stmd k
vd k id e V a d k R
d J P
• d d 0d k
– V dp n h i
– d iRe c i
– R k
– i
• /.d1 A: 8 28 Wd c
C A: 89 A 9B
https://people.eecs.berkeley.edu/~malik/
,612 a # R
• 3:8D0 I .D 3: D D I8D D , 8 D
– 3:8D0 I
• ,612 sPport II ##LLL :8D D I # h S l w
– -# - 3 C8DI : /8 1 #.D I8D: 1 3: D
, 8 :8I D
– II ##LLL :8D D I #: 8D :8DD I V
• pn a P P Pu II ## 8 : D I C # :8DD I7 D: C8 #
– V a UV gUe
http://www.scan-net.org/cvpr2020workshop/
sPpab_d N
cyrm _ V fe
-# - okyPm
pn N i np n N
mP piv _ apn h
T
http://www.scan-net.org/cvpr2020workshop/static/img/splash.jpg
. 7 g“ W)
(
• 3 D B A IG 2G A M / M W32/
– evVs ig
• :0- f _k nr vVs ig
• e vVs ig e ed
– - LM ,P
• 1 8 M R D D B . ILL 2G B 8 G MD L AI : E
8 ODL 8 G MD 8 BG M MDI S
• g 0.. c a
CMM L BDMC IG 1 I D8 .28 PLLL
https://lidchallenge.github.io/
h g
b gyVw t
i W h b
m i ”mu p W
.I ,MM MDI l e i
s ol
. 7 o ”d_
• 4EAR I G FROM LABELE I EOS
– mf bso
• n gu mf
• 2 VITE :PEA ER
– ,L OS A /FROS
– , REA E AL I
– 2VA 4APTEV
– 3ITE RA 5ALI
– 5I G U 4IU
– 7IERRE :ERMA ET
• RALjp atn gu mf
– ,3 7IERGIOVA I ET AL /VOLVI G 4OSSES FOR SUPERVISE I EO
EPRESE TATIO 4EAR I G . 7
https://sites.google.com/view/luv2020
w_ 1- r zy
_0UTURE 7RE .ROSS MO AL RA SLATIO .O TRASTIVE
/MBE I Gml v “n ho j mf
guk cmeiq s v atn
gu v
TTPS RIVE GOOGLE COM FILE LQ8U G E --LJ A.Y S VIEW
/ 8 k a (
)
• 8PCAM GRGM , :CCG RFPMS F RFC SRSPC
– k qmgnfw rsvtu
• 8PCAM GRGM gl kbg
• x oz ih y o “ihj ep qldngcf
q
•
– OSC PR S CP - 2 GT MD MPM RM
– /FC :S 2MM C C C PAF
– GAI FG CF PR / .CPIC CW
• .C R 8 NCP -U PB
– 0W KGA CSP C RGM 3 DCPC AC DMP MPCA RG P CARMPGC " /M G 2P CP 3 / " - CV BCP
:AFUG 3 /
.C R :RSBC R 8 NCP -U PB
– 5S RG / KCP P CARMPW MPCA RG , 8CBC RPG P CARMPW 8PCBGARGM G CRUMPI MD / KCP " 7 W
:RW C GT MD PUGAI " W 2SF GT MD PUGAI " GARMP : AFC GT MD PUGAI " - CV
MR W CAF M M GA GT
https://sites.google.com/view/ieeecvf-cvpr2020-precognition/home
724 U o nsRP Q
• CF I G 7AHA D G , H A D GI D HA D
– 7t Trk W
• b de eM aM eTrk
• , H A D/ Pb deTi Wumh QM F, H A D
Pb depxQU ecVfg
– v
• 0GAHI D G C DP6DAK H I HIADQ
• KA 2 GAB P G A , /4Q
• GA D / 0 K H B P6DAK 2AIIH G Q
• . A 8 P/ 4 H G Q
https://sites.google.com/view/cvcreative2020
-7 4 VR
• -7H G H
– -7 lu n
• -7e lu n c f ag P
– t o 8HA 4 -22 bd
– 74e T l x
– kmi h v
–
• , H 8 G 8G
– B C 8B 8D C B H BB8 D G G 8B C B8N G : D D 8 8BB
B N D DN - 8 G D . B 2 G B 0 8 4 AA /8 8G: 78D
.G D G :A 8D 5 C8H , HB D
– H 8GM G 8 H
rlos p iwyUc kmi
https://vap.aau.dk/cvsports/
/ Pk Cmz E
•
– e n RPriCgkCV c u
• 7 /7 7 h T s
• [] 7 6 M
• 0 l [] s
– 2A 62 7 2 8E I a
– [] s P o ltK T
https://eyewear-computing.org/EPIC_CVPR20/
-9 m R T (
()
• 0 C . M / C C M 8 N M -IG NM 9C CI
– 0 8/ ro S le gm:7
• 8CG CM N u ibt0 8/ m
– / F C C A 0 CFN 2 MCA MCI I 7N C / M MCI C -
• u a m w u bt ih mB MG l
f hn sl dc m u
• VB MG kj u ac u WiV w Sm pm
mr l l ak u Wm k
– , F 0 C MB :CF ,0: . M M
• l t xv m mc m BG E
BMM M ACMBN CI
BMM ACMBN IG C CI DI C P
ex U W
• GJ LCMC H FCMR CH GJ M K CLC H
– y gv
• wuarpT d gv
– iVnhmk
– o
– o U uet z
– cb
•
– CH O . JM W H JM 7J H 8CG
– FL -CHHW3 M 2 KHCHA
– FCO W MCOCMR H ,O HM A
– 0CM H K 3 FCEW M H M CH GJ M K CLC H
– HCG L . KAW9HL J KOCL JK L HM MC H
– HAD H S P W/ G HL H D ML CH
ejVlg a eps
http://ai.stanford.edu/~jingweij/cicv/
/1 ToqIptN L
• A8 98 ,
– u lRT gc , w
• . / V r S ,nmLT daeb k
• A8 98 0 9E A E 9 : 0 LT hPQ
c P
• 299 7 8 19 EA Sis
E 9 A8 98C A :
https://embodied-ai.org/
0 E cH
• A8 8AC A
– da OSRe
• A8 8AC A L PN
– / A8 8D A8 V T
– A8 8 A 8 08 di b
• mj PN
– A8 8AC A A8A8 29 A 8D A8 T
– / 8 A8 8AC 8A8 V da
– 0 V da
– A 0 ghln o
– da
http://activity-net.org/challenges/2020/index.html
0 km lsMI
• . C 9 C C: 1
– t o R TZa Uc
• 2 C I.: / C 8 .
– duvI nuv y
• . 2 9 : I
– I cW R NTt o
• 3: 9 1 9I C C C C 8 8 C
– Y V Tgf Pe rhi
https://matsui528.github.io/cvpr2020_tutorial_retrieval/
/ 89 b ) )
• R M H J MT M T H FMMC SH TP,
– i dmwya
• MT M T H FMMC HJJ K 4 2MMFJ
• MT M T H FMMC SH T 9HBI :V JHPIH B AMMI 5M CH 8M RP
2MMFJ K 2Y U M HS PH U M C :BGH CJ 0 ?Y HBG HBG J
2M P J B AMMI
• MT M T H FMMC AR J, - C T H VFHAAM HB MPME
• MT SH TP RP C H G C BHPHM MB PP, H M HM H
2MMFJ 2 F M H M JHP -4 :HKM PH HS PH U
https://www.youtube.com/watch?v=W1zPtTt43LI
MR RA if hvnspur zatou gbm
g k mlb k( maZ
ecg
5 9
- 5
yVe ,623 R
D G 0 GD D 2G 9 9B CC IG
- GC 9B - 19A I G C /C D I B
+ I 2 GR
– p D B /C RUd -
• - I B9 s /BB C D I D wg
• hmjo t
p Udr -
cmi lnO
w g
R2 I C IG I D D gyS -
P3 + Ud g , D D C
6 L DI - I B9 0 IRO
6 L - I 0 I B9 g f u c w
g W sv3 +g P, D D C b
a 3 D IG I D 0 Rg P
n P RNV- 23 M
)(
• , 2 9D /9 9B D : - A 7D 09C 9C , B
A 79 2 BD D : ,9CD D 9 D 2 A9B
, B A 79 2 BD D :ao S vr y lm S
, 2 9Dau
, 2 9D s y lm BAV tp eh i
dcgV alm w : 9 9G 397 CDB 7D A9 D
9 7 :V , 2 9D w
plU VR 2 P
)(
• - /DCD9 B C D B C9
H C 3 DC H 3H : CH
DCD 8 / CH DC
– / H B DCS M: C
B C D k 9 tW -00
vsN
– DC o W u nwW M
DD 9 DH i N
m cbdeg fh ar
m a 34 ”O P
))
• 0 O I7 A P
– 0 A A 7
– p Nb L0 A U ml bo sN
• b 7 H t n
• b c wn
. , 7 0 A A 7 A C H
7 4 C A 7 A / 7 A A K 34
c A 7 H / 7
t r l d RL
U l ceo sN lcU
9
7 H t n fl U Vl
Mt n b fl U VL
b c wn l
bi L b NvU
l n
7 2 2n f(vu
L bi “c i g R
U
nb g/ (
• / 5 M -P 5 GDH
– H DMD H -1 o c D D MD 2 0 D H G am o T
– M HM o G DHB S3NG Hi y u i H M DHM o tam f
hjlS2 y u h y u nd g w D H G i o
h cT
4N MD D HM E M am R
hjl4N MD T
sU) M D 5 Mf M D 5 Me
DG H D H 2 N D H M HM D o mV 0 MC/ MD H5 Me
G HMD BND e v o pr V D H 5 Me
D H A MN G o V D MD H5 Me0 M GDHD MD f M C MD
D H G o
lg 12 t K) (L
• C ACC A A A
A 3 / 2 A D A
0A
– 6A 3 / 2 A D A 63/2 W a C
CSC A CWo V v wV -CA D C A CT
C C CW fe A sr i wSN VPRI
– sign words SOTA 63/2W w u
WcnV I
-CA D 3 6A CT3 0 CdW A
sr i wI
v w mgPR63/2 a
i - 3 ) (R
• -EC ,7 1 ACE CE /A B 0 7EB B
7E 2CA B
– D 1 E 0 7EB B 10 b B 7 7AD b
a Vh-EC 7 A ACE ,1 N
– ,1aegMtxoA B 7 d c Pnmpr f
7E B 7 D7 E b a VM ,1
b 10 a h N
Slow drift phenomena
Embedding features
drift
Hard negative examples
,1v x 37 E 7 yl L7B CEX a vwPs
l Vc 3 S) (T
(
• G 0 F CB 8 2CA B
– 8 G A 1- / 8BB B e geD C FF cG G F CB m
B FG8B B G CBdG G G Fm A G G G C
m 8 G A a b G e m gil
– 1- / F 8BB B tyRv Rod d a NFD b
m il
tyRv Roe lP 1 CA G D 8G afrup bnx
R m nwxsxwR b e m V G
D 8G af l b G e m gN
D FD G 8DD B d e- B B m V
wVd T , 34 R (S
)
• E 9 (- D 9D D 9 1EC D
– /E D D J Ub EEC 9 E (- E A EL
E A C e r D E D mjln ac sO
– (- ihjl ( ig 2 ue xO
/E D D D 9D D E A ED EDeoT
ye O
D J Ub r 09 E N2 A
EL C e s
t P sv x
wrRb )0 I
• 0 1 ) 1 C (A1 55
– O TaN NIds
– ) 1 C O x mcTlO P t
– u d O j d
o ) 1 C d V a /5 I h i 2 53
I e 2 53 5 13 IdnV) 1 CN Ndy
b R 0: 9 % % O (P
%
• 2 C 1
– 2 C 6
• 2 C 6 3054 % - E . I D @ -% -)
– rxtM o Mpesc a
• n c
• 2 C 1 1 ( /0707c
https://arxiv.org/pdf/1911.09070.pdf
h o o MpesL
c a
O P c
V h gi
Mf g vc O
P n O1%N1 P
rxtM a n
TK N/745 ifD E
• 8 0
– 1 9 : 3: P p
– XCV n e
• P XCVe R o c
– 2 : 9@ - .6 , .6
http://openaccess.thecvf.com/content_CVPR_2020/papers/Feichtenhofer_X3D_Expanding_Architectures_for
_Efficient_Video_Recognition_CVPR_2020_paper.pdf
TgWM 12
• 8 D 1 C D
– iro tn a h V
– 1 C F D A E D Ec
• d sIo
– a iro pl NL c30
a I Il 2 / Ea
rlzI Oe Il
3 -ADD 2 A
1CA AD 20 1AA Oea
h L iro
s C E -ADD h M
H Il a 20
1AA c V H
P Tg tn
H L m dM ca
R c I h S
H
g R - 4 P
• /G HF2 , BB
– b oOmlnp
– h Sf “h a
0 . B /G HF2 , BB
1 G : B , : C GA G / G B 39 :
/G HF - 4
L “h aoOmlnp c
eL npr cfsni kh t
fN
oOmlnp V j
FH G HF
S - 34 P
• , F A 0:A :
– p n k
• k”
– - 7D7 : .7F7 :Fk a
• J m o J 2 l s J 2
1 1 :F 7 , F A 0:A : , F A 7
- C F A 5C7F F: C D7 5 :A:
0D7C - 34
a f k
a” srtw h R s
R Vi c/:G F
a R e“ Ri
c s dh R RS
e i J a S M
https://www.actiongenome.org/
f , 5 V W
• 1.M0-
– hsv ce dx - g
• tmwq j rikw b z g e
• 2G 0A 5 GDMLAGFa “ou vwpln
– ,GD : mt
• LLH GD : GG D G A :D 6 G C.IC 3 / 8 L
6 6 ALG L D R 1.M0- 3MDLA 2 D AP D
DA F 1 HDA AL .MF LAGF G 0A
5 GDMLAGF - 0M F -A ALA LAGFS , 5
LLH MF MC ALG AL M: AG 1.M0-
r e 3/0 N
• C - B G 7 AC D
7 AC C 7 A
– pxlaSP g h b c s ib
/AD . b Tt d f
• /AD . bm V w aSVdg h v
A n o f RZ “f
1 C - B
G 7 AC D 7 AC
,C 7 A F B F 2C
1 B 1 7 A 3/0
Zj a 3/0 R S
• CA A B . 8 F
– ” c ec p
• ic da k“
• C B B C k ” Ti
1 CI A CA A B
. 8 F B A 0 B B
C 1 , 1 D / C F 3/0
a1 B F B8 , A R1 ,S
Wg ” k ”
“ bVT n
bfh Pb “ c k
v sc 20 Wgc
c cuxlo
vrs t bah iO
ic
• 49 1 3/ 13 1 2 / 4031 143
– e gt r w nl
• R Pu TV d C o
Ps
• aF r w C
D F ea
• 2 310 51/ 1 1/
– lf ikjg lf
– / C PR cd V O b
S FN 0- D E
• 1 / / 6 1
– it sc C m g
– e V C fL g R
– 2 2 lP noP r / / 3
1 6P d ap
• 0 1 3 7 2
– bT A 0 1 0202/
– dR P dR a
dRCe
g V
n P S 0 us
• / 3 ?8 -38 -? 3 32 3 1
0 ?18 1
– xl Uwr f gt a o iva
U iv eag Ti k
– fd oUpIeagTi V wr H C
Ti RU 3 3 wr H
9
- D0 2 2
- C 9 1
M CDB
• L M
– ,0 /0 8 , 0 / 1 28 /3,
– VN P
2020
1960
CNN
Perceptron
Neocognitron
1980
1990
2000
2010
1970
HOG/SIFT
BoF/SVM
1st AI 2nd AI 3rd AI
Deep
Learning
F. Rosenblatt et al. “Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms” in 1961.
Rumelhart et al. “Learning representations by back-propagating errors” in Nature 1986.
K. Fukushima, “Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position”, in
1980
Y. LeCun et al. “Gradient-based learning applied to document recognition” in IEEE 1998.
Backprop.
.66 y - i s
• AL AKNL I 6A CIENL I - IP6AN
– AL AKNL I
• tv fkegos zwu ab
– GNE G SAL AL AKNL I
• AL AKNL I w
– 6A CIENL I - IP6AN
• “d t mehp u c x
AL AKNL I lYhnirs
6A CIENL I
3 0 F MDE U6A CIENL I 9AGB LC IE EIC 6A L G 6AN LF
AG B L A D IEM B NNALI 8A CIENE I :I BBA NA S 9DEBN
EI MENE I V ,E G -S AIANE M KK
DNNKM L NI LC L I K GE K KALM 0 F MDE K B
- IP G NE I G 6A L G 6AN
A- I AN G U1L EAIN , MA A LIEIC
KKGEA N . AIN 8A CIENE I V 2///
DNNK S II GA I AR K GEM K B G
A I K B
1 0 kp l R
%
• 4 9 80d U ihf x
– .E N - g 4 9 80 %
• % s r Ywt u r Pn494R
hoela B , EC B I G BC D : BCDL E I C A
– / EC @ 7IG A CG 8 : 931 1IG GL
d1227 U S V
-- . N !
--C D
– /31-1 IC V
– 8 73
4 !! /31 71 8:3!
4 !!0 : 410 2 08 !
×
-11 , in I
0 8 1 E V
– D 98E C D
– gc F + , 23t
– R g PVF r
http://fungai.org/images/blog/imagenet-logo.png
https://www.ted.com/talks/fei_fei_li_how_we_re_teaching_computers_t
o_understand_pictures/up-next?language=ja
0 8 1 E oeF 4E8 C F
2C 9 E FRPVr
7 C 2 89 c I P
/ / 5 - I s
F dmelf r W
gc aN TS
ot 0 a
r /
– 62 P 0 N AD
– 0 lV T U G
PC A DI
– s tdI e
https://www.nextplatform.com/2015/03/18/nvidia-tweaks-pascal-gpus-for-deep-learning-push/
3 1 P05 81
s td
177e 0 epuv , (
+
• e z )V +
– )w mik l age x] [
– d e 9 KC 7 L H D
/ P7 L 5 CR NKD 46 90
227 L C HG G 46 90 )
2HHA6 7 L R A 46 90 ) 0 89
9 K7 L 3 46 90 0 89 +
46 90 CGG S16e
+ rnpS I sote
ILSVRC2014 winner 22
46 90 CGG S y ( h
3:: lnZ2 ehif - (-
,
• p tukZ lk
– R: Sms adbcg
• R: S 3 NR : S 4: S
– lkZrok : T BL 0 DI S DST B DI 4GG D NS: S
• :0 : S 4GG D NS: S
4: S 4 CL D
J. Hu et al. “Squeeze-and-Excitation Networks, N 097 .
ISSPR/ B H BCR , . ,
S BL 0HH HBS E R ETBL
BNRG MBS NR G 3 P : T BL
: SV R N 2 ,
ISSPR/ B H BCR , . ,
R: S
5 6TBNH S BL 3 NR LX 2 NN DS E
2 N LTS NBL : SV R N 2
,
ISSPR/ B H BCR - ..(
3 NR : S 1 A PI S BL 8 B N NH BNRG BCL
0 DI S DST R G DBLBCL 7MBH
D HN S N N 2 -
ISSPR/ B H BCR , , ,
:0 : S
2 8 T S BL H RR : T BL
0 DI S DST B DI N 2 -
ISSPR/ B H BCR , .
:0 : S
9 BN S BL 4GG D NS: S/ SI N NH
9 E L DBL NH G 2 N LTS NBL : T BL
: SV R N 7298 .
ISSPR/ B H PEG . .) PEG
4GG D NS: S
1 gU ] V-&),
(,
• s [ Y neVmt rU m r
– idha. : 2 OP&2 OP N : 5 1
– l. 2 F P P
– O L 5 LFQ F . mtock 9/ OQ 1 F
– m r. S OPN LR PO )1 LR ( 1 LR
Person
Uma
G S LD LT O 8: +A
: 3 NOG CI 8: A
2 5 LF 8: +A
S PN LT L 48 A
5 o a4Cox yd( /e
()0
Hito
Uma
9HH SPRL FCPVSH 4C @ (G
2 H3VVXY
7HXY @ 4 F8P XOP R 44C(,G
@ VVSP N SYP YHXR VXX 7HXYL @ 4 F@L A(,G
@
@ 4 dju 9H HMYL I L Y LXXe f ”
L XOVY 5LYL YV nr nrd” v klle
E [( [) [ F@L TV 4C @(- 4C @(. H DP[(/G
L XOVY LYL YV M SS V L Y SH L
HYLXY 2SNV PYOT ”
HXR @ 4 F9L 44C(.G
@V 2SPN 5LY ALN
IIV] XLNTL YHYPV o i
n n tms HXR @ 4 v jh
+( /2 1 A4 4
IIV]o i n
tms@LYP H LYv
gtoi wb
+ /2 1 A4 4
AA5 F P 644C(-G
L XOVY LYL YV 2 OV 3V]
9H HMYL MLHY L o
9 8 F5HSHS 4C @ ,G
AC
47 FDollár 3 C4 0G
AVMY HX H L
5 FFelzenszwalb
B 2 ()G
HYL Y AC
• o ud) (c) (.e
@ 4 F8P XOP R 4C @(+G
ALSL YP[L ALH O 4
3 h 2Bhrvwsa ,b
h la , b
1 MRKL I EP 0R 0REP VMV S EPI 7R E MER I MR
FNI 3I I MSR MR 2B ,
L TV. E M S K EFV + , ,-
7
1 MRKL I EP 7 4 . 4 M MIR :XP M EPI
A EMRMRK MR IX 7 ,
L TV. TETI V RMTV TETI , VRMTI I M MIR
QXP M V EPI EMRMRK TH
7 4
> DLES I EP : 3I . 0 MRKPI LS FNI
3I I S FEVIH SR :XP M 9I IP 5IE X I EQMH
I ZS O MR 0007 -
L TV. E M S K EFV ,
: 3I
D CMRK M I EP FNI V EV SMR V MR E CM -
L TV. E M S K EFV - +,
2IR I I
9EZ I EP 2S RI I . 3I I MRK FNI V EV
EM IH 8I TSMR V MR 422B ,
L TV. E M S K EFV , ,
2S RI I
8 3XER I EP 2IR I I . 8I TSMR A MTPI V S
FNI 3I I MSR MR 722B -
L TV. E M S K EFV - , ,-
2IR I I
:EVO 2 + / 2IR I I + ig
d e “fk m x h u t
a bm y cj onpm y onpm
/ a a T (+U
(
• s l k t s Sp
• ls g
– hl t S b R
– g ] ]
• nS St
0 ID 78 )
d dPv
CD CN 3CI HH L F )
CN 8 IICACLDCL 52 -2 )
Pv
S i o r
5 M 8 1C 2
8 2 -HFDI /CN CD
k t s
Sp at lg
[ X g
]
/CCK A ( CI 7-52
/FH NC I a
V bs l k t s Sp g e
/22 tvO. efdP Q
– . 214P y sQ xi o
• r P0 8 : .8C A A Q
• n up P 8 5 : A A I:D A , 5 Q
• 8 / 8
8 u 5 l N
p
l V
g
R 5
R0 8 : .8C A A R 8 / 8
a m mw V
p h
https://visualqa.org/
3 A 8 : 8 LShow and Tell: A
Neural Image Caption Generator A
. 4 )
C 8D D C ; ( ())) C ;
C 8 8 D
/33 N.8 mv nP )+
))
• sluP3 / C DC .DC
– (/, D .DC 3 Pow
– (/ slu, .33 1 2P r g R cb
– )/, )/ .33Pl iS Tb VbS
– ( /, :A .DC P“ l i fp t
)/ a aP.)/ )/ 3 0)/
)/oeui
a arkp
P)/
/ C A L- .AD 1DD D D A
.DC DAI DC D - DC D C DC M C .84 ( +
188 n T0 ab )-V
)
• nvr
5MGN C S1C NC 0 L GK G E 2QC N G
G CKN S G 400 (& ,
https://arxiv.org/abs/1705.00754
1C NC0 L GK G E
G C S G E C K CILKM /A GK
1C CA GK S G /07 77 (& ,
https://arxiv.org/abs/1710.06236
/1
GP C S C M G E L GK CILKM CLMCNC GK
RG KA 3 K 1GDDPNGK S G 0 9 (& .
https://arxiv.org/abs/1906.05571
KA 3 K 1GDDPNGK 31
nv ls d
nv ui en tpTwpV
oTc gh d f m nvr V
V N 1
• 8 6:
– / 3D
– /
GAN
https://medium.com/@sunnerli/the-
missing-piece-of-gan-d091604a615a
/
BigGAN https://arxiv.org/pdf/1809.11096.pdf
1 A C 5G8
288i [1 ix y # ,]
• 3/8i g l
3/8 p u i3/8]
• A3 GNN X 84: B R .##RCRGS PKR #RCRGS# IGPGSC KWG C WGS CSKCN PG R
213/8 j j i ]
• A C S 416 B R .##CS KW SI#CD #
:K :K RK GN af e1 P K K PCNg3/8]
• A4 NC 1 : B R .##CS KW SI#CD #
1Z NG3/8 RK RK i gb ]
• A V 411 B R .##CS KW SI#R # - R
/13/8 vs k h bdr wot fbc]
• A9 GSC 4176 B R .##CS KW SI#CD # - ,
3/8# 83/8 ]
• A/SL W MZ 4176 B R.##RS GG KPI ONS RSG #W #CSL W MZ C ON
• A7KZC 416 ,B R .##CS KW SI#CD # , -
:33/8 ]
• A5CSSC 416 ,B R .##CS KW SI#CD # -
, GN / GP K P 3/8 nv t m ]
• A CPI CS KW , , ,B R .##CS KW SI#CD # , , ,
- 0KI3/8 3/8]
• A0S M 416 -B R .##CS KW SI#CD # , - -
, ei
377c yM2:c opl , ,S
• sa x 507 G :04
– ioha xd507 Q - S
• 97507 1B 507 9 C 507
– :8 :04 :04 g fV
• 507ce 6D 2DCC EG g a
x trc y v
N:8 :04 N1B 507
0 Razavi et al. “Generating Diverse High-
Fidelity Imageswith VQ-VAE-2,” NeurIPS,
2019.
A EG. B D E - E
-- 3 lsum
• Re a Ve
– iOtOm
• A 9 9 9 C9D A
• 9D A9 9I F 9 DA A
• 1D A 9D ,9 DA A
• A 8 CF F A
• /9 A D 9 9AF ,9 DA A
– V S { g UfLdT Zf
c }
– v 1 dT v pnrg W c g
f
• hr ko w a N
))V ,Vmx n C
• V
– / -/ 2 /30 /8
• /8 C
pk u { l i
• / /8 C
pk u l iS l i
• -/ 2 /8 C
S V l i
– / U vs VW
• /30 /8 } C
} D}
– if V U} NV
U if V Vr a o
– / e
//Z ,4ZhnoiN
N3 8B : .:8 B B Z t
– 38 CBCA 6 8A ,401
• ,401 : 08D: 8
• Ze asZuy
– ,4Z Z L w T P e a S
– p V Zu ]
D 8 CBCA 8B C :
g edfh[ e a r lkm R
38 2 A 8 3 :: V e asZu
0 l V/:l ʼ y
• [p P
– z i [p k g
• 3 B D HR 2 , hj] d 2 kn w v l r c
• 0 6 EA?N 0ANA?ND e l i 1//: .A N AL
• /ON NA 4A L o l mi d
9O ALHARAL 1//: 6L G .
z b/2w vi 0
aok pr bd
8AHAS 1//: 6L G
/ON NAi ut z r
pk c
9CHAG P 1//:
2 l lw
v s
33 /8 kstl ()&)
(
S I 2 9 D D
– a uVL a
• v ifb 9 . L ifb 9 9 .
• N r V1C9 3 9 rS 1C9 3
9 Nec Pmgr
9 a,x dp nrV T
( 9 ;9 84/ 1C9 3
O1C9 3 v x
.33 rv efaM +N
gk m ns
– 0 3 i u
• 5 14 5 /C C : C C D 1 C : DF 4 C D
• l to https://arxiv.org/abs/2002.05709
5 14 d L uSwR
M5F C D 8 p 2 D 5 14 p %%2NSI
i
V m
loD G
• dm
– a
• /A 4 2 1 1
• 3 4 1 18 41 5
• 1 1 5 4 1
• 1 .1 3 1
– Ncm /A 4 2G sm
– eg 3 4 1 18 41 5G
• vz Su dm
• cm V rL
– y 1 1 5 4 1 G
• SR i 4 5 t Ch C cG n
11P A 5P i D
C i SP
– / 1 R p n G R
• B4 / 1
– 523 7 26 7
– /Ve f t I 378 7 D3 N D
• B/ 6 / 1
– 0 3
– s Vr N C Ve f t I a
C C iVm
188n V0 n ,
%
• /DS KC :DPF KI 5 ED8DP
a sk
BN PBF MND PN Kn
m
n jo5 ED8DP ND
PN K a i]sTTT
7 F H K 200 %,
3/o 8 n4 FP Ej c n / 1/
[
M %- , R :D 8D P % %
o 8 n
https://venturebeat.com/2018/05/02/facebook-is-using-instagram-photos-and-hashtags-to-improve-its-computer-vision/
5 ED8DPo n wvn m ds
• c ]
• wv yj a dtp n j
– gc % 6 n o
• o a h nj Xw m
n j ken
rttp j s
[ 4D N %,
wvm c ds r n
/44 y M 8 nrsoP + +
• y /- t
– y g n e V
– y
2C IC 2 K G9C
3 D I C 7CD 3 GI G9C +
0B CK G D 856 ,
2C IC 3 D I C 7CD
c f y ,c f y
,c f y
1 I G D 3
R v y mN i n
a T y mN i n
[ dhnnrso X V]
// 2 iorjM# N
• // koL Lf K nnLg
– 3 3 # 19 3 93 1 , 3
1 9 1 9 3C D/ C 3 8 /1,
F/ C 3 38
M y N
– 3 T b 2 Vc // x
https://chainer.org/images/logo.png
http://pytorch.org/docs/master/_static/pytorch-logo-dark.svg
https://www.tensorflow.org/_static/image
s/tensorflow/logo.png
st 93 1 v 1 9 xv 3 # 1 b
, 3 a e c
3 4 1 9 lphfi 3 # aP wV
4 dv 3Adlp m ( (-a
).
• 8 3/ no kh icfg dz
– 1B> 1 WTI 7RR I 3 RWH rtbe
UWFEPI( 1239 6W ENW GRPM URR
• :W VM 7 :W VM RHI
– 9PE I IV d
• . 0 0 ( P 0 P 0 P 0 -P 0 P 0 P
u s > 21:5 ( x 1239
https://commons.wikimedia.org/wiki/
File:TSUBAME_3.0_PA075096.jpg
: DEPE ENM IV E DIV 1 RV IT 1GGI ITEVIH >74/ IU IV
TEM M R 9PE I IV M ,) , UIGR HU ETCMX STI STM V
. ( .
VVSU/ ETYMX RT SH . ( SH
S N
• V
–
–
– D
–
–
–
5 / C 83A0 5 1
f V-:fsyzt & &
• , ,8 8A M C - MN , ,8
– f dc ol g e
– g21 1 O NAOe bf ] i
– g f ujvon zf
21 1 ,POK KIKPN M C A DI MG
oryk pmwzr
n z h5 O / KR 8OAMAK 3 O D C 5 FA O AOA O K
7K 5 KIAOMS 8AI O 8ACIA O O K
0A CAM -: 7
2 I 1--:
f f
ec h a
e [n zh
8PTPG 2 O KG
-: 7
33 y T,9 irtjW
• smhacf
– _ E N N ND I
– nklorVept I /O D I N
W “
– uy i gbtd W “
, : I N G R I /O D I+ E N 5
. ND ND I 1N L ND P I /O D I S DI
,956
CNN + I NC P IN IN ,956 L : I
I /O D I E N 5 . ND ND I 1N L NDP I /O D I
,956 L
0D I G N G R2 P L DI C , G ND I L D
8L FDI S DI ,956
http://openaccess.thecvf.com/content_CVPR_2019/papers/Giancola_Leveraging_Shape_Completion_for_3D_Sia
mese_Tracking_CVPR_2019_paper.pdf
i gbtd Wv
/44 P.8 grshR S
• l danst
– l dans e ans
– / 1 ABGF R S
• / 1 ABGF v Y om
– 1./- R S
• 1./- v k ip VY f c_rs s
9 2 D / 1 ABGF , 8 I BD - F AE IC GI
/ BGF 5G 0 BE BGF E F BGF F
3 F B B BGF G .DG ABF 3E N BF .85
A G F A GE GF F :.85 : I 2 :/ 1 ABGF :,:
8 I BD :- F AE IC: GI:/ BGF:5G :0 BE BGF: E F BGF: F :.85 :
: I
H. Kataoka, K. Abe, M. Minoguchi, A. Nakamura, Y. Satoh, "Ten-
million-order Human Database for World-wide Fashion Culture
Analysis", in CVPR 2019 Workshop on FFSS-USAD.
A G F A GE GF F :.85 : I 2 :/ 1 ABGF :,:8 I BD :-
F AE IC: GI:/ BGF:5G :0 BE BGF: E F BGF: F :.85 : : I
166 tuW0 ckmd Z
• t w s
– t otie
– p V rntv V Xhlgb a
• t 1/ y Z
1 1 C C H TScaling Egocentric
Vision: The EPIC-KITCHENS Dataset
200
E N- C A G AEC N D EP K
5 S C H T:EC
5 C AN 4P .A K
BCK 1 NC
- ,
E N- BCC B AK CNC AE K C
NKP AC K C NKP AC B NC N G C AN
0 3P C H TAVA: A
Video Dataset of Spatio-
temporally Localized
Atomic Visual Actions
0 78
E N- CNC AE DKKDHC AK BKR H
K B E H
M. Monfort et al. “Moments in Time
Dataset: one million videos for event
understanding,” in arXiv pre-print
1801.03150, 2018.
http://moments.csail.mit.edu/
4 E K C H THACS: Human Action
Clips and Segments Dataset for
Recognition and Temporal Localization
C ,
E - E AN AN H CBP
9K C E D 9K C E D B NC
E N- AK B NC N NK C E D NK C E D
055 L/ nu oN
&
• / nu o, gtis r
– ea aS S
• l h T e
– pmn
•
y DC 3 C # E FD : 3.
/D E DC A 6 D D F E .0. mn
– pmn
• 0 0 C C A C . D 3
2.81
– pmn V M
•
f X XP
22d T-8dw} V W
• # # -8 dw}
– vUsd {y n Zif
• d N pU urtz k S
• F N evUs vUs
– vUs d U U
• 7F C 5 E 5 D R 5L 1 F F
• : 3F 0 N R A D F F
• E F , F E F F E F 5OF A
, D 1 F F ,L E F F 2,5 / F
6 F F
h lk
hamoS chg g g
22c U,8cmstnW
,8 5 w d w e
– ,8d lVkv Zc u f“
• ,8 5 c L d b hy
C I F R 0.N/ S
,8 5
B L LBNHLN L C I AC BN
CI 0.N/
N F R7HLN OCL 1 HCHA I
I F C I F
3 D L I 0 A L CH B CF S ,8 5
W L P
: B IO F
R N IF FCHA
3 D L S ,8 5
ba
itp Vkojrtd
c h gw e
8 : :
- . 5 1
-
6 5 7 6 5 7 97 P
-
C
– 3 ;7 a P o
• /412 E . l.
• /412 ,E-+- . l.
• 0//4 ,E++ . l.
• /412 -E - . - l.
• /412 E + . l.
– pv i g rnh
• ;8 crn TV 7 t P R
P R
lE e
lE +f
+ +. 00
– i m e p
– h t r al e
/ 6 b
G e ug
alH e / 6 b
. 10vn
e i c
https://github.com/cvpaperchallenge/ECCV201
8_Survey/blob/master/ECCV2018_Survey.md
http://xpaperchallenge.org/cv/survey
/cvpr2019_summaries/
52 2 . 00 1-
6
– @
•
•
– n
• j e cg
– 7 j
• v
– t v 7 p /
– t l 7
ag
r
h h •h h h h h h
1 < 61
• x = {cv, nl, robot}
– x N RN LV h
P eg
1 < 61 + . /:2:> ab c Ni C
robotpaper.challenge
T V SK N
P R K
/ 2 0 / 2 2 : 0 2 0 . / 2
20 / , / : / C : / / / /
CVPR 2020 報告
_g N
• . .;7 N . F 7 N
– Zl lb wy
– . .;7 N
• b R Wi _ Y
• R Ul ZP R
• t r b tm a S
– . F 7 p o N
• a T h S R _W
– a c 0 ;v a 1
– FFC F ; 9 9 7 ; 1 977 6 / :;
• R Vl tu b nt ws cWi
– nt ws b5 a Rde
S
• .2 5 .2
– Pe
– .2 u
• u r
• b T Y v Y
– .2
• v P o
– v r W
• lab l i Y S ;
– s R / V .2P V
– tW Y b Pe b i CY W ;
O &
• /-. .1 3 5 /-. / 3
– .1 3 / 3
• / v C e
• lae 9 t iu I V e
P RC
• V e s t iu D
r e OC
I
DF
*
T
A 55 3 E3 F 5 5 34 3 X3 /
/
5* * * * *
@ C / . . /

More Related Content

PPTX
猫でも分かるVariational AutoEncoder
PDF
3D CNNによる人物行動認識の動向
PDF
自己教師学習(Self-Supervised Learning)
PDF
ドメイン適応の原理と応用
PDF
SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向
PDF
Variational AutoEncoder
PDF
Skip Connection まとめ(Neural Network)
PPTX
畳み込みニューラルネットワークの高精度化と高速化
猫でも分かるVariational AutoEncoder
3D CNNによる人物行動認識の動向
自己教師学習(Self-Supervised Learning)
ドメイン適応の原理と応用
SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向
Variational AutoEncoder
Skip Connection まとめ(Neural Network)
畳み込みニューラルネットワークの高精度化と高速化

What's hot (20)

PDF
[第2回3D勉強会 研究紹介] Neural 3D Mesh Renderer (CVPR 2018)
PPTX
【DL輪読会】ViT + Self Supervised Learningまとめ
PDF
Transformer メタサーベイ
PPTX
You Only Look One-level Featureの解説と見せかけた物体検出のよもやま話
PPTX
[DL輪読会]MetaFormer is Actually What You Need for Vision
PPTX
[DL輪読会]representation learning via invariant causal mechanisms
PDF
Disentanglement Survey:Can You Explain How Much Are Generative models Disenta...
PPTX
[DL輪読会]Clebsch–Gordan Nets: a Fully Fourier Space Spherical Convolutional Neu...
PDF
Layer Normalization@NIPS+読み会・関西
PPTX
Graph Neural Networks
PPTX
勾配降下法の 最適化アルゴリズム
PPTX
SfM Learner系単眼深度推定手法について
PPTX
Direct Sparse Odometryの解説
PDF
[DL輪読会]data2vec: A General Framework for Self-supervised Learning in Speech,...
PDF
LiDAR-SLAM チュートリアル資料
PPTX
近年のHierarchical Vision Transformer
PPTX
【DL輪読会】LAR-SR: A Local Autoregressive Model for Image Super-Resolution
PPTX
[解説スライド] NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
PDF
機械学習モデルの判断根拠の説明(Ver.2)
PPTX
[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...
[第2回3D勉強会 研究紹介] Neural 3D Mesh Renderer (CVPR 2018)
【DL輪読会】ViT + Self Supervised Learningまとめ
Transformer メタサーベイ
You Only Look One-level Featureの解説と見せかけた物体検出のよもやま話
[DL輪読会]MetaFormer is Actually What You Need for Vision
[DL輪読会]representation learning via invariant causal mechanisms
Disentanglement Survey:Can You Explain How Much Are Generative models Disenta...
[DL輪読会]Clebsch–Gordan Nets: a Fully Fourier Space Spherical Convolutional Neu...
Layer Normalization@NIPS+読み会・関西
Graph Neural Networks
勾配降下法の 最適化アルゴリズム
SfM Learner系単眼深度推定手法について
Direct Sparse Odometryの解説
[DL輪読会]data2vec: A General Framework for Self-supervised Learning in Speech,...
LiDAR-SLAM チュートリアル資料
近年のHierarchical Vision Transformer
【DL輪読会】LAR-SR: A Local Autoregressive Model for Image Super-Resolution
[解説スライド] NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
機械学習モデルの判断根拠の説明(Ver.2)
[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...

Similar to CVPR 2020 報告 (20)

PDF
Phase behavior
PDF
#21世紀の所得倍増計画 を開始し、成熟国家へ - 日本の運命の分かれ道、令和元年 #2019年参院選 提案資料 -
PDF
【CVPR 2020】Segmentation, Grouping and Shape
PDF
20181109 tfug fukuoka_02_tpu
PDF
FIWARE Global Summit - FI-Lab India Stepping Stone for Implementing FIWARE Ec...
PDF
Db2 Warehouse v3.0 運用管理ガイド 基礎編 20190104 Db2 Warehouse v3.0 Basic Operation G...
PDF
2019年の市民型選挙の戦略とは
PDF
Db2 Warehouse v3.0 SMP 導入ガイド 20190104 Db2 Warehouse SMP v3.0 configration Ins...
PDF
Google Cloud Dataflowによる データ変換処理入門
PDF
IVS CTO Night And Day 2018 Winter - re:Invent 2018 reCap
PDF
Kubernetes ネットワーキングのすべて
PDF
市民発の参院選(&衆院選)マニフェスト提案 #私が生きやすい日本に - 日本の運命の分かれ道、令和元年 #2019年参院選 提案資料 -
PDF
SoftWare Systems Analysis
PDF
re:Invent 2018 recap for Gaming ~ゲーム関連セッションのご紹介~
PDF
Evolution towards the Internet of Everything
PDF
Theory and Methods for Unsupervised Anomaly Detection in Sounds Based on Deep...
PDF
53213810409
PDF
Safe Reinforcement Learning
PDF
[플래텀 차이나리포트] 2018 중국 신유통 현황
PDF
【ECCV 2018】NAM: Non-Adversarial Unsupervised Domain Mapping
Phase behavior
#21世紀の所得倍増計画 を開始し、成熟国家へ - 日本の運命の分かれ道、令和元年 #2019年参院選 提案資料 -
【CVPR 2020】Segmentation, Grouping and Shape
20181109 tfug fukuoka_02_tpu
FIWARE Global Summit - FI-Lab India Stepping Stone for Implementing FIWARE Ec...
Db2 Warehouse v3.0 運用管理ガイド 基礎編 20190104 Db2 Warehouse v3.0 Basic Operation G...
2019年の市民型選挙の戦略とは
Db2 Warehouse v3.0 SMP 導入ガイド 20190104 Db2 Warehouse SMP v3.0 configration Ins...
Google Cloud Dataflowによる データ変換処理入門
IVS CTO Night And Day 2018 Winter - re:Invent 2018 reCap
Kubernetes ネットワーキングのすべて
市民発の参院選(&衆院選)マニフェスト提案 #私が生きやすい日本に - 日本の運命の分かれ道、令和元年 #2019年参院選 提案資料 -
SoftWare Systems Analysis
re:Invent 2018 recap for Gaming ~ゲーム関連セッションのご紹介~
Evolution towards the Internet of Everything
Theory and Methods for Unsupervised Anomaly Detection in Sounds Based on Deep...
53213810409
Safe Reinforcement Learning
[플래텀 차이나리포트] 2018 중국 신유통 현황
【ECCV 2018】NAM: Non-Adversarial Unsupervised Domain Mapping

Recently uploaded (20)

PDF
Taming the Chaos: How to Turn Unstructured Data into Decisions
PPTX
GROUP4NURSINGINFORMATICSREPORT-2 PRESENTATION
PDF
Zenith AI: Advanced Artificial Intelligence
PDF
A review of recent deep learning applications in wood surface defect identifi...
PDF
A contest of sentiment analysis: k-nearest neighbor versus neural network
PDF
sbt 2.0: go big (Scala Days 2025 edition)
PPT
Galois Field Theory of Risk: A Perspective, Protocol, and Mathematical Backgr...
PDF
How IoT Sensor Integration in 2025 is Transforming Industries Worldwide
PDF
Architecture types and enterprise applications.pdf
PPT
Geologic Time for studying geology for geologist
PPTX
TEXTILE technology diploma scope and career opportunities
PPTX
Custom Battery Pack Design Considerations for Performance and Safety
DOCX
search engine optimization ppt fir known well about this
PDF
Credit Without Borders: AI and Financial Inclusion in Bangladesh
PPTX
Modernising the Digital Integration Hub
PDF
CloudStack 4.21: First Look Webinar slides
PPTX
MicrosoftCybserSecurityReferenceArchitecture-April-2025.pptx
PDF
Comparative analysis of machine learning models for fake news detection in so...
PPTX
2018-HIPAA-Renewal-Training for executives
PDF
Produktkatalog für HOBO Datenlogger, Wetterstationen, Sensoren, Software und ...
Taming the Chaos: How to Turn Unstructured Data into Decisions
GROUP4NURSINGINFORMATICSREPORT-2 PRESENTATION
Zenith AI: Advanced Artificial Intelligence
A review of recent deep learning applications in wood surface defect identifi...
A contest of sentiment analysis: k-nearest neighbor versus neural network
sbt 2.0: go big (Scala Days 2025 edition)
Galois Field Theory of Risk: A Perspective, Protocol, and Mathematical Backgr...
How IoT Sensor Integration in 2025 is Transforming Industries Worldwide
Architecture types and enterprise applications.pdf
Geologic Time for studying geology for geologist
TEXTILE technology diploma scope and career opportunities
Custom Battery Pack Design Considerations for Performance and Safety
search engine optimization ppt fir known well about this
Credit Without Borders: AI and Financial Inclusion in Bangladesh
Modernising the Digital Integration Hub
CloudStack 4.21: First Look Webinar slides
MicrosoftCybserSecurityReferenceArchitecture-April-2025.pptx
Comparative analysis of machine learning models for fake news detection in so...
2018-HIPAA-Renewal-Training for executives
Produktkatalog für HOBO Datenlogger, Wetterstationen, Sensoren, Software und ...

CVPR 2020 報告

  • 1. 1 1 2 .. / 1 1 1 2 .. / 02
  • 2. • 2 IRP 201 Ig c – e HI • 201 8 9 6 8 6 6 -9 : / : 4C • 2 8 9 6 8 6 6 -9 : / : 644C • 201 8 9 6 8 6 6 4C 6 48 6 76 4C • . 2 8 9 6 8 6 6 4C 6 48 6 76 944C • 201 8 9 6 8 6 6 4C 6 48 6 76 4C • 201 8 9 6 8 6 6 4C 6 48 6 76 4C – ik V 4C 6 48 6 76 H – H hKa I dEpl o np
  • 3. x • ms urV x dkleV – ms • . Vdkle • t R • Vv .Vdkle – w V No p • – ah . a g_ • C 0 3 1 0883: 3 1 3D 1 / 0 3 8 088 • y m nV – d c u Vi a g_ P • 8 23 0 3 :3 1 0 3 1 0883: 3 3 3: 0 : • 70 70 0 70 :3 C 0 3 1 0883: 3 8
  • 4. EUPCPG EIC GNHG/ • i2A o bnu t ◆ j l h nje m T UG GMDG . GRGC EI GMDG . + i j l dBGD hd i? 2A W 82 0W 1 A2 822AB 2A B 422AB 82 W 2A - u t 422A - s yp EUPCPG EIC GNHGi x t rv 2A i o a v wo n o g 422A +B 0VC F A 4B + 3 NCM E 5CRI ON 2T ST GR 8 , # NIDB Near-Miss Incident DB 82 0 - 2A - 3 GR:GSR ?O EI 2A - 6 S7TD ci i O & / HP: http://xpaperchallenge.org/ Twitter: @CVpaperChalleng
  • 6. o py • -9 6 tu sk – -9 6 u kSjl RcgR i vkT • ALLI AH L A L L L -9 6 LM P • ALLI C H I H N L – -9 6 thdR_S. 3 O 2H LP 8 A H H T • ALLI I D D H HLHD M NI IH L – -9 6 : V S 0 7-/41 6T • ALLI AH L A L L L NI : AH : – -9 6 x kSrjl ibeR a i skT • n ALLI D LH N H I H N L • m ALLI D LH N H I H N L
  • 7. e , • 1 67 hbcdUja – 1 67 hbcdV1R A /CAI T /4 A D O W • D . R A CAI G C A A D O A P I ( – 1 67 3 CGA igfV A 0 C2 W • D . A C – 1 67 :I A R 0A 6 A /II OI A RI A • D . RI A AP A P OI A R A A II OI A – 1 67 . 9DA 9 5 A 2A A I 6 A • D . DA A B S P DA A A A I A B- A) ((
  • 8. bad • 1/0 D 25 @ – 1 /@ 5 A R IP – 1/0 F 2 2 C G • 8 A 8C 2 2 C D 25 1/0 – c V H I . 1 F 2:282A8 C G • 8 A 8C 2:282A8 C D 25. 1
  • 9. - C 2 0 - 0 9 -
  • 10. 2 / Nin G C • 2 / eIST A – 5 0 3 o r a h Oo r • ,3 5 rC 0 85 5 rC 5 rCNl tP • 2O c N VA 2 Sg u F https://scholar.google.com/citations?view_op=top_venues&hl=en&vq=en 1 O R
  • 11. 1./ c CeiI • 1./ 19> 2: – dP I fabp V bp • -1 Smo • O fa V >9 bp hl • 1./ . > 2: VD 1./ P0 2 : HR19> 2: 8 > 8
  • 12. 3/0 U c bh • 3/0 3 C 7= – l V • U XVe • a_ YH i ? 1 8:Ra_P Y T Ye CC ? C 8: 9? 7C9 , +7.2 C8 =
  • 13. 3856 % %Vc iR ) P ( • 3856 % % 8A H – ho l ) , l % P • Y Y 23 . _ ema( )_Up • 23 _ (% X b HH / H =? C H 1 0 47:9H=
  • 14. .:5 & & c tVs X &Y • .:5 & & :FLN – } cghf • D FNF X ow U {ruY 4 • 1-80a m lnd e_v • yic/ L F Dghf 8L C L E N S HF T LPF A L F D 0CCF F N NL F F D F C L L N NF L F D -AP L LF L F D 4 L D L NFP H A b lp ENN R N ? H N E,P 2 N? =
  • 15. / H P • / /8=? – ?? C ? 6 5 : ?5 .10? 2
  • 16. / 23 Xf ip P # % • / 23 G 9 – Xaw • %m P m d P • nRV m u P Y% V m H = = Yv • rsgbU Yty e 0 ? = _loc e h H,## := C# 9 . 91 76 : 8
  • 17. 0856 hl o ,#, U % • 0856 8 M F – kwc dv • %m f UR m b U • nV m t , UR a m 7H ? uX • rieY 2 F 1 = s _g 047 f p CMM ##PPP M = G#P M C/ . 37: M=PF ,
  • 18. 3 9: & &r“ ea % b • 3 9: & & TVW N – y qpk fon]? 2 d l • 3 W WE V a r“ _b. VVRU.%%YYY WVWE F O%F PP N%=3&P F TU7C ?Y Y • 3 8R P 1FF UU A3 9: & & 6 P 3 P T PF B. VVR.%% R P FF UU V F F O%3 9: & & R • 3 8R P 1FF UU A3 9: & & ? TMU RB. VVR.%% R P FF UU V F F O%3 9: & &CY TMU RU%O PW R • Y VV T [ 3 9: & & . VVRU.%%VY VV T F O%U TF 0S/ 3 9: & & UTF/V R CSW T /N – t w r“ shviv gvmcu_
  • 19. /, CA • /, /6 18 – 9 618 • , 9 9 18 224 06 3 1 – 09 7 9 • , 9 9 18 224 06 3 1 https://www.youtube.com/watch?v=aHUYXtbwl_8
  • 20. 1 V M bQ O • .= C H=PdaRT – Y ahSW e • /A H 0 • =CA A = 1 = A =CH – 8 I I:= gf c • HHE KKK IHI:= K H ? -=2. http://cvpr2020.thecvf.com/
  • 21. 2/0 W kLhoR • . C ?8 ?: 0 C – bd mP O yta gz – T pc sa e v nrY O – iu1 C : 8 V w • 4 1 ?= C H 3 I/ 1 https://www.youtube.com/watch?v=aHUYXtbwl_8
  • 22. 12 cgIe # L • 1 0. /A - 1C H – a r MfPRlj – 12 TohS 12 lj – 33.. SV p ndi • ##7A : # 8 # # # 7# 7 7 C 1 https://www.youtube.com/watch?v=aHUYXtbwl_8
  • 23. I • 842 1 1 /31 0 – M – C AM P https://www.youtube.com/watch?v=aHUYXtbwl_8
  • 24. +2 / Q A C & • , @ +2 / – Q w eV lP s – m • 18 C0 4 18 5C n r h i • ZZ Q oRa 8 4 Q r HT S R d t https://www.youtube.com/watch?v=LkSBxpLOBx8
  • 25. 5 i S V W • L O hcY – t sT • h Uu U af h • v r nl fi fi Xo • hcY y p g k – U ws YT • l – 2L AL h Xb m_Y • 2KAI IC 0ARI A .i O O?Ae – D K QQQ R O O?A K R 1=?-P/ 8 O /? F QR 0 :?6:6/
  • 26. . % % 0 %5 % • % – RV 2 • 6 27 P V 8 P6 7 6 / 17 – • V / • V 5 P C P
  • 28. *2/0 lr nwM I • – 3 C3 / 1AB A /IV N da • C3 t f ae – x u p c hM N C3 i s P 8 / A* B 2 D , A1B 3 SRt Smo
  • 29. . 89 i b • hjl(/ – (/ hycl i – “uxg o]sa efbd • )t v k1 1. [/FF 1FOFRBT VF P FMS[ / GGFRFOT BCMF 9FO FRFRhycl a m • (/ -FODINBRL F IB F FT .- • np ri F 3BPM O 2/2, A 8 PRDI(/ 0BDFCPPL A FSI 9 . 1 1L PWBR FT BM 2.. A Y OSU FRV SF FBRO O PG 8RPCBCM NNFTR D /FGPRNBCMF (/ 7CKFDTS GRPN 2NB FS O TIF M U FT BM . 89 A . 89 -FST 8B FR
  • 30. + P 8 • f e C ab V R 100/ /3 1 2/ /3 / / – : V R – 100/ /3 1 2/ /3 / / : e • d D Leveraging 2D Data to Learn Textured 3D Mesh Generation https://openaccess.thecvf.com/content_CVPR_2020/html/Henderso n_Leveraging_2D_Data_to_Learn_Textured_3D_Mesh_Generation _CVPR_2020_paper.html From Image Collections to Point Clouds With Self- Supervised Shape and Pose Networks https://openaccess.thecvf.com/content_CVPR_2020/html/Navane et_From_Image_Collections_to_Point_Clouds_With_Self- Supervised_Shape_and_CVPR_2020_paper.html
  • 31. R P 2/ 0 • 8 8 V3 1 – : C D • C Learning Unsupervised Hierarchical Part Decomposition of 3D Objects From a Single RGB Image hhttps://openaccess.thecvf.com/content_CVPR_2020/html/Pasc halidou_Learning_Unsupervised_Hierarchical_Part_Decomposit ion_of_3D_Objects_From_a_CVPR_2020_paper.html PQ-NET: A Generative Part Seq2Seq Network for 3D Shapes https://openaccess.thecvf.com/content_CVPR_2020/papers/Wu _PQ- NET_A_Generative_Part_Seq2Seq_Network_for_3D_Shapes_ CVPR_2020_paper.pdf
  • 32. bd cg D • mal P h 3 3: /083 3:23 3 – CW V CW R S f eiI • 3 3: /083 8 3 3:23 : 3/ : : 8 3 3 3: / : . 3 : • L L Colored Voxel http://www.krematas.com/nvr/index.html Neural Rendering Workshop https://www.neuralrender.com/
  • 33. / W V I • NP R SN M : C 3 :G – 3 - 3 3 3 - 3- – - E F 0G C: 8 G 3 0 2 C: 3 G : C C: 3 D 3 3 3 – 0 F F 0G C: 2 C: D C 3 3 – 0G 0 C F 0G C: 8 3 0 3 Workshop https://nvlabs.github.io/nvs-tutorial-cvpr2020/ Link https://shihmengli.github.io/3D-Photo-Inpainting/
  • 34. V e • h R D – 3 4/ 302 , 3 M d • 8 8 D i C – h h P P c D Articulation Implicit Function Implicit Functions in Feature Space for 3D Shape Reconstruction and Completion https://openaccess.thecvf.com/content_CVPR_2020/html/Henderson_Leveraging_2D_Data_to_Learn_Textured_3 D_Mesh_Generation_CVPR_2020_paper.html
  • 35. 3 / • C P R2 – C D C C P 0 D 5 82 3 3D Dynamic Voxel 3DV: 3D Dynamic Voxel for Action Recognition in Depth Video https://openaccess.thecvf.com/content_CVPR_2020/htm l/Wang_3DV_3D_Dynamic_Voxel_for_Action_Recogniti on_in_Depth_Video_CVPR_2020_paper.html
  • 36. , Pb A IC • , E X – / no • / 0680 / • 06 8 22 8 0 6 6 08 0 82 083 62 – che pi r e ta • V Ps V P e uRTdFl I
  • 37. 2/0 e R • – c e • w e fbek d P • d i X pon • 2 e f x u dkn i ogb R E A A A Tna lon 3 3G I D8E , C A AE A G A . GD . I D E 3 A7 C D G A 2/0 rvs d n t e “ n ad km Vn N V e n be X d” W n h N
  • 38. e R Z V • 8 0 – jrul mtwd d • c e xa XSi “d • h e dch xsoviopnk h , AE K D P IG I EE KA F E FKA HHIG KG ,OHD AFAF F AF 2 I D 2 KNGIC 3 B K K KGI ” bekv wkd g i / F K D P0FK IHI K D F I K -AF I AF G FAKAGF A AGF .IG HAF
  • 39. 2 • 3, – . Zi • V R R L • .c a a R L • I d P a tMr uml Zi a TR I V R R R fI Io t ns p / 9E 99B C FDE9C AC DF /9 C 2 a ” “ Zio r p aTR e agho ” “ A 9E 0 E D C E A 8 C 9DD DD . C9 9 E /9 C 2
  • 40. 0:78 j V • 2/91 – j2/91 j • 2/9 2/??9 e 4 =CA6ANj • zy j 9EI 4 =CAMj V V h s lbm V wtx R ERAG f h i n je io f V9 =G = 2A C M 2 AA =I j NN M, C M ?M=EG EN A PEME I 9EI 4 =CAM V s b j NN M, AI APEA IAN .E -M A T=/G3 4 4 =CA6ANj u v j V i a u v j c e h[f rb s V V V hg s hdb V4 =CA6AN 7 FA?N]pj NN , E =CA IAN C =NA MA
  • 41. 0 N n r A • 0 MC tMhe – ui • 3 1 2 32 3 /31 2 /AL E • n N ui Mo o V N lR P 44 2 38 3 MS A • N c a i fR
  • 42. : 7 jl uXS T • i xh f t x s – 4,8S1 27 T /AAD D L4 LS1 32 T faR • ec ognb S/AAD D L. LT j S .T rp • d V S /AAD D L. L .T 0 D CL C A L F O . /NI D , CDL LM A /AAD D L :D 7 DLD P : 7 3 9 L F O/AAD D L. L 8 F F /AAD D L E L . L LD P : 7
  • 43. 2/0 P • w R w – ifg Ic • 0 8. A , 4 A. A n Vo” a • . s , 4 AD N I I tr – P – ~v k a S “edcV l n R V pa 035 3 4 A 3 E 8 8 . AC : 8 34 2/0
  • 44. V4 8 • – cP4i P4 P4 – R3 eR – C R K /0 2/- & 7 nc
  • 45. ,5 2 WkrMp ( ) O ( • k u M W t – ,CA C G C G ,5V k u W(dfWi • 3G C ,5 C Wm S ,CA C G C G h oS vn Wl VgS C C • /.4W 0 I se yW c c aWu : 8G I G 8 8 G C A G : :8C G C P Wu TR A. Andonian*, C.Fosco*, ... & A.Oliva. We Have So Much in Common: Modeling Relational Set Abstractions in Videos. [arXiv, soon] Aude Oliva, MIT http://ai.stanford.edu/~jingweij/cicv/
  • 46. 23 vyL P Twitter Strong Accept x3 https://twitter.com/doubledaibo/status/1232832762270236672 • v “ t L spv “ – .G pv “ pv “ P • ai b nS o spv zV P • g ce S l m – 4 D / 6 8D F D C P • R pv u rq R http://openaccess.thecvf.com/content_CVPR_2020/html/Shao_FineGym_A_Hierarchical_Video_Dataset_for_Fi ne-Grained_Action_Understanding_CVPR_2020_paper.html 068A D D 6 6 , 6 : 3 8 : H 4 D / 6 8D F D CJ 23
  • 47. 30 Xt u PM • t xfghr s r – , xfghrM • oVt R YXca y – - 8 : E 2C7 3 :A /A : DM • da np eiX s lW WR T oVs TP 4F :E 7 /F E C /:E A AC - 8 : E 2C7 3 :A /A : D 30 .: 8 E: A :C :E 7 , - 7 C8 E:8EFC:D AC - 8 : E 3 :A :8A E A 30
  • 48. -312 P • ʼ – mpdenh xk o • / 7 m iln V ,3, urvP AI c • y _ R w egtl V ba ,7 0 - : xs – -312K .--3K _ m c R N C C7 :AA: 7A 8A A 8 7 AC: 7 : : 4 7
  • 49. /,- Pf Ci • e g – a o e 384 3 32 3 9 9 RPst • hO L Z – vl F r upP w P ZRP d P o e o FVe no FVe e 03 93 3 S V
  • 50. 4 b N VP ) • – P • 0 A A 7 0 U I7 A i • 7 2 2l d(tso L agi b gie U . , 7 0 A A 7 5A C H 7 4 C A 7 A / 7 A A K 4 a“ b A 7 H / 7 f o r p 8 c Ln Oa d 0 A U am Ow bU ” RiL 7 H r l d U V Mr l a d U VL f a b vul agiL a OtU l M
  • 51. - 8& & a Z & • – x Z • u v m ihln d W e y • rvks v 80, / KR PAFK d • FNFKJ 4 J “ caopf gtw 5PN FGK B B U B C PLBM FNBA FBRLKFJ 4B MJFJ /MKI 1I B -K B FKJNV - 8 & & / EP B U FNFKJ 4 J P B F FKJ F E B C PLBM FNBA PSF F MT 8B NKJFJ : NGNV - 8 & & 2 FBM FK JJF B U. K FJ 4KNNBN CKM JNPLBM FNBA FABK 8BLMBNBJ FKJ 4B MJFJ V - 8 & &
  • 52. 40 Sf Mip O P • e g – n e O o hP • ya cS s • b Z • UV N ldtr R vu yaMXN m - 0C / E C 2 2 D E : -C C E D , A C 40 - . E 2 2 D E : DDEC CE : E E C8 40 5 2 2 D E : 2 / C 40
  • 53. +5 2% % g L %M • ap sLlkM – rioapL gM – ioThnRV e • 0 apTN rio uPf ioStm • 3 +.2L +/. % M 4 + I 3 A , 8 + C F . 8 5 C 2 A C C +/. % %
  • 54. .412 P oImt aehgP o fr TR V – u v • u v AC C 78C 5 8 8 6 A5A8 6 5 8 :8 • 3 5 7C 18 9 5 4 78 286 : AC C 78C 5 8 8 6 A5A8 6 5 8 :8 5 7C A8 9 5 78 86 : – sxi • sxi AC C 78C 5 8 8 6 A5A8 6 5 8 :8 C8 9CEA8 C87 85 : – pl • .4Pwn -0P pl AC C 78C 5 8 8 6 A5A8 6 5 8 :8 5 – cd • -7 8 C5 5 / 5 A 8CaeP o AC C 78C 5 8 8 6 A5A8 6 5 8 :8 57 8 C5 5 8 5 A 8C
  • 56. / B N • G – 45 0 2 B A 6 S RV BP – G C 8
  • 57. 0 : ey T • s nmo d h – PRIC .8 /FD .8cbe • PRIC .8 S.B 58e • /FD .8 nmoe T mVle – kpjc s dc • 5 251a geeSrteud bi PRIC .8 0 : 9N I /COP : MCN 4L LN IC 7C PFL PPMO DFP AL 8 I O OPRICD /FD .8 506 9N I PPMO DFP AL G NLAH /FD .8 :R LNA
  • 58. • P e : – 04745/ 2 7 Ce O R • 28 4 a cC V i h • e V MixNMatch https://github.com/Yuheng- Li/MixNMatch Towards Unsupervised Learning of Generative Models for 3D Controllable Image Synthesis http://openaccess.thecvf.com/content_CVPR_ 2020/html/Liao_Towards_Unsupervised_Lear ning_of_Generative_Models_for_3D_Controlla ble_Image_CVPR_2020_paper.html Self-Supervised Scene De- Occlusion https://openaccess.thecvf.com/content_ CVPR_2020/html/Zhan_Self- Supervised_Scene_De- Occlusion_CVPR_2020_paper.html
  • 59. 8 0 • P – 85 8 V/ – 8 V 2 – 8R 9 – V – C 48 5
  • 60. -62 a VN • w r mhn pas Z – A9 BD RdaT • ec A9 BDg P at • S d2B F G 8F G a“R • eg Z v a 8D: B A oil e 4 8A F 8 ,D : A F 08C , F A A9 BD ,8 : 8A: A9 BD /D . F 9F BA G 8 :8CF G D8 A A 48 C 4 9F BA -62
  • 61. - 85 6 • V R Coe – V r C - /25 - 6 • - : 9 • : P N 01 H - C 9 t
  • 62. , 12 d “O ” R S • snu”Zj – - dsnu • - e a e j i • / C D D F e 3 6 A 8 D - 08 H 5 - D 8 2 D: D 3-. 3 F 1 H , 12 O b3 D : - H D . :R3-.S Wg j O mo v mr cV ktl sp cfh Pc d j
  • 63. a • po 635 S – 25 28 2 t ec: r Dn • /00/ 2 2 N R iC • 25 83 2 / 2 V ld P
  • 64. 0:6 s v [U ( , V ) • hie . t ru p n – 5 1/. / 2 0:6 - • hie y R2 HI p ] f g dl R4 IED 2 IED m cS] oR4 2 a hie dr S 3 6 E P9 I D 5 HF D / I DH AH 8 F D 8 F DH C H C 8 EA 8 I D DH 0:6 H E
  • 65. ,62 gmN P • a r hp ue sd – E A , hp ue sd • cbytlw a rin SRVMhp oUR V2EG :B 8 E a 0 , . A A / A: 4 A BA A - B A 6 : BE H 5A A .G : : 0B: : C BA ,62
  • 66. /- H P • – V O • R • 60 , 532 3 02 8 60 328 2 8 • CD H IH /
  • 67. 20 WfnH u • r dHafs – MZ hoidX gVle m d 8 8C 6 E/8C6- 8 0A8 CA6 87 - / 78 A . 6 0 8 , C 6C F 20 d R W P V t . 6 06A : 5 5 6 : 8C 6 E AA8 6C : ,7:8 0 8 C 06A :F 20
  • 68. ,:67 l Z • 0PI 5 G O O M OF - 0PI 7 – o beaih rd n i l s c x u gW s “ P O H , N A A 0PI 5 G O O M OF 7 D FOF V ,:67 t pW l s me j 8 8 FO O H 6 .P0- 3PHOF 2 H 6FR H HFD A ILHF FO .P OF C M 0FD 7 N HPOF - 0PI -FDFOFT OF V ,:67 leml j - ”yxY s c -:Z - -S IF : R H D O H -: - -S IF : R H C M OF 7 D FOF F - LO :FA V ,:67 l jv s fj pW i i l szY ibg h s P O H FH M O 6M AF OF D ,H O F D F - N .P OF C 0PI 6 N 8 L A / MI O 8OSH V ,:67
  • 69. 0 Fn • drs WR r PV – e io fh PVSm g – 5 96 /5 9 2 5 9 9 5 5 5D5C9D A: AD5D98 5 -5 9C • r lt PV H a – • dL cbc H 9 C90AC9
  • 70. 8I • 2 25 / 7 0 – 2 25 0 2/05 L C – 2/05 7 0 9 • Visual-Textual Capsule Routing for Text-Based Video Segmentation Text Video Video Segmentation • Object Relational Graph With Teacher-Recommended Learning for Video Captioning (External language model dataset long-tail )
  • 71. • 2 2 / 17 10 – 0 0 6086LR S C – 0 0 6086 P • Deep Relational Reasoning Graph Network for Arbitrary Shape Text Detection (Graph CN Shape Scene Text ) • SwapText:Image Based Texts Transfer in Scenes (Scene Text / )
  • 72. , R • 6 / 1 10 – 86 / 1 P L – ,0 6 2 7 ,0 6 1G – 86 / 1 ,0 6 1 C V • REVERIE:Remote Embodied Visual Referring Expression in Real Indoor Environments (Grounding Embodied AI ) ( ) • SQulNTing at VQA Models:Introspecting VQA Models With Sub- Questions (Sub-questions Reasoning )( )
  • 73. 23 n ou & • 8 1 A 9 – / 6 8 98 0 L 23 P V – 1 3 6 7 1 R I D – d iaI V C • Ecbegts • ca ts • mtsV
  • 74. P 40 • – / I 67 – RX 0 / AC – P • 82 • P V 3 2
  • 75. 52 b P R • s y x b gS a – kpn rb w • 4F D8N .FIIc kpnbutnliW a f d V g jom b -D8 I yvR • .8 4:8C : : F 6 C FD -D 8C8 : / C .8 CI F 8:: II :L :FD :F 7 52 7 DC 2 7.8 4:8C 7 : 7 : F 7 7 76 C 7 FD7-D 8C8 : 7/ C .8 CI7 52 7 7 8 DC – b r • _ a h_ e b r • O 8D : D 0 MF F 8 I CO 28: : : F F 8:: II :L :FD :F 7 52 7 DC 28 7 O 8D :7 D 70 MF 7 F 7 78 7 I CO728: 7 : 7 : F 7 52 7 7 8 DC CVPR 2019 SKU-110K dataset https://github.com/eg4000/SKU110K_CVPR19
  • 76. -6 5 ʼA D E • n p V – 88 L V /:7 8:7 tM V • C de r o N • F- 51 R C L P : 8 /:7 8:7 o /:7 /:7 2 789 0 88 51 -6 5 - 51 l
  • 77. 20 • p y - r RtP – n u a s c Pb • r jLg emilfh mR dt b 8 / 86E 7 687 6E A 86 D A AC EA A A D 28 6 8D O V d X : EA A A D C : I 8 C : 7 EA 7 2 D EE8 E A EE8 E A x oO v
  • 79. 80 • 0 / V 0 – R – • 6 • • / W • C 7 – R P 2 7 6 2 2 S 79 6 7 6 6
  • 80. 8 4 atvUu W X • K AL A R A L M LFMD K – cdkileg Y aflVh • 8 4 br sa D KM P MG L A • np b y_ L B L D I W 4 PALM AX .AIAL G D L • /IP A 6 GFb m w o – D KM P MG L A A L M IP A GFM KDK • AM KAL L – I D AID : 2AIAG M 0 I F M M .A LC G M D DAI , I I AG 8 I . G B L DA K KAL S, I CI M -A LA A LI IC B L / CA I 8 A MA - A I MK B ICT LAMAI A 8 4 A L M LFMD K https://vislab.ucr.edu/Biometrics2020/index.php
  • 81. /6 d I UM( ) ) • 2 A: 289 A – a d 0k i J – I c i B BCd lrtIo stmd k vd k id e V a d k R d J P • d d 0d k – V dp n h i – d iRe c i – R k – i • /.d1 A: 8 28 Wd c C A: 89 A 9B https://people.eecs.berkeley.edu/~malik/
  • 82. ,612 a # R • 3:8D0 I .D 3: D D I8D D , 8 D – 3:8D0 I • ,612 sPport II ##LLL :8D D I # h S l w – -# - 3 C8DI : /8 1 #.D I8D: 1 3: D , 8 :8I D – II ##LLL :8D D I #: 8D :8DD I V • pn a P P Pu II ## 8 : D I C # :8DD I7 D: C8 # – V a UV gUe http://www.scan-net.org/cvpr2020workshop/ sPpab_d N cyrm _ V fe -# - okyPm pn N i np n N mP piv _ apn h T http://www.scan-net.org/cvpr2020workshop/static/img/splash.jpg
  • 83. . 7 g“ W) ( • 3 D B A IG 2G A M / M W32/ – evVs ig • :0- f _k nr vVs ig • e vVs ig e ed – - LM ,P • 1 8 M R D D B . ILL 2G B 8 G MD L AI : E 8 ODL 8 G MD 8 BG M MDI S • g 0.. c a CMM L BDMC IG 1 I D8 .28 PLLL https://lidchallenge.github.io/ h g b gyVw t i W h b m i ”mu p W .I ,MM MDI l e i s ol
  • 84. . 7 o ”d_ • 4EAR I G FROM LABELE I EOS – mf bso • n gu mf • 2 VITE :PEA ER – ,L OS A /FROS – , REA E AL I – 2VA 4APTEV – 3ITE RA 5ALI – 5I G U 4IU – 7IERRE :ERMA ET • RALjp atn gu mf – ,3 7IERGIOVA I ET AL /VOLVI G 4OSSES FOR SUPERVISE I EO EPRESE TATIO 4EAR I G . 7 https://sites.google.com/view/luv2020 w_ 1- r zy _0UTURE 7RE .ROSS MO AL RA SLATIO .O TRASTIVE /MBE I Gml v “n ho j mf guk cmeiq s v atn gu v TTPS RIVE GOOGLE COM FILE LQ8U G E --LJ A.Y S VIEW
  • 85. / 8 k a ( ) • 8PCAM GRGM , :CCG RFPMS F RFC SRSPC – k qmgnfw rsvtu • 8PCAM GRGM gl kbg • x oz ih y o “ihj ep qldngcf q • – OSC PR S CP - 2 GT MD MPM RM – /FC :S 2MM C C C PAF – GAI FG CF PR / .CPIC CW • .C R 8 NCP -U PB – 0W KGA CSP C RGM 3 DCPC AC DMP MPCA RG P CARMPGC " /M G 2P CP 3 / " - CV BCP :AFUG 3 / .C R :RSBC R 8 NCP -U PB – 5S RG / KCP P CARMPW MPCA RG , 8CBC RPG P CARMPW 8PCBGARGM G CRUMPI MD / KCP " 7 W :RW C GT MD PUGAI " W 2SF GT MD PUGAI " GARMP : AFC GT MD PUGAI " - CV MR W CAF M M GA GT https://sites.google.com/view/ieeecvf-cvpr2020-precognition/home
  • 86. 724 U o nsRP Q • CF I G 7AHA D G , H A D GI D HA D – 7t Trk W • b de eM aM eTrk • , H A D/ Pb deTi Wumh QM F, H A D Pb depxQU ecVfg – v • 0GAHI D G C DP6DAK H I HIADQ • KA 2 GAB P G A , /4Q • GA D / 0 K H B P6DAK 2AIIH G Q • . A 8 P/ 4 H G Q https://sites.google.com/view/cvcreative2020
  • 87. -7 4 VR • -7H G H – -7 lu n • -7e lu n c f ag P – t o 8HA 4 -22 bd – 74e T l x – kmi h v – • , H 8 G 8G – B C 8B 8D C B H BB8 D G G 8B C B8N G : D D 8 8BB B N D DN - 8 G D . B 2 G B 0 8 4 AA /8 8G: 78D .G D G :A 8D 5 C8H , HB D – H 8GM G 8 H rlos p iwyUc kmi https://vap.aau.dk/cvsports/
  • 88. / Pk Cmz E • – e n RPriCgkCV c u • 7 /7 7 h T s • [] 7 6 M • 0 l [] s – 2A 62 7 2 8E I a – [] s P o ltK T https://eyewear-computing.org/EPIC_CVPR20/
  • 89. -9 m R T ( () • 0 C . M / C C M 8 N M -IG NM 9C CI – 0 8/ ro S le gm:7 • 8CG CM N u ibt0 8/ m – / F C C A 0 CFN 2 MCA MCI I 7N C / M MCI C - • u a m w u bt ih mB MG l f hn sl dc m u • VB MG kj u ac u WiV w Sm pm mr l l ak u Wm k – , F 0 C MB :CF ,0: . M M • l t xv m mc m BG E BMM M ACMBN CI BMM ACMBN IG C CI DI C P
  • 90. ex U W • GJ LCMC H FCMR CH GJ M K CLC H – y gv • wuarpT d gv – iVnhmk – o – o U uet z – cb • – CH O . JM W H JM 7J H 8CG – FL -CHHW3 M 2 KHCHA – FCO W MCOCMR H ,O HM A – 0CM H K 3 FCEW M H M CH GJ M K CLC H – HCG L . KAW9HL J KOCL JK L HM MC H – HAD H S P W/ G HL H D ML CH ejVlg a eps http://ai.stanford.edu/~jingweij/cicv/
  • 91. /1 ToqIptN L • A8 98 , – u lRT gc , w • . / V r S ,nmLT daeb k • A8 98 0 9E A E 9 : 0 LT hPQ c P • 299 7 8 19 EA Sis E 9 A8 98C A : https://embodied-ai.org/
  • 92. 0 E cH • A8 8AC A – da OSRe • A8 8AC A L PN – / A8 8D A8 V T – A8 8 A 8 08 di b • mj PN – A8 8AC A A8A8 29 A 8D A8 T – / 8 A8 8AC 8A8 V da – 0 V da – A 0 ghln o – da http://activity-net.org/challenges/2020/index.html
  • 93. 0 km lsMI • . C 9 C C: 1 – t o R TZa Uc • 2 C I.: / C 8 . – duvI nuv y • . 2 9 : I – I cW R NTt o • 3: 9 1 9I C C C C 8 8 C – Y V Tgf Pe rhi https://matsui528.github.io/cvpr2020_tutorial_retrieval/
  • 94. / 89 b ) ) • R M H J MT M T H FMMC SH TP, – i dmwya • MT M T H FMMC HJJ K 4 2MMFJ • MT M T H FMMC SH T 9HBI :V JHPIH B AMMI 5M CH 8M RP 2MMFJ K 2Y U M HS PH U M C :BGH CJ 0 ?Y HBG HBG J 2M P J B AMMI • MT M T H FMMC AR J, - C T H VFHAAM HB MPME • MT SH TP RP C H G C BHPHM MB PP, H M HM H 2MMFJ 2 F M H M JHP -4 :HKM PH HS PH U https://www.youtube.com/watch?v=W1zPtTt43LI MR RA if hvnspur zatou gbm g k mlb k( maZ ecg
  • 96. yVe ,623 R D G 0 GD D 2G 9 9B CC IG - GC 9B - 19A I G C /C D I B + I 2 GR – p D B /C RUd - • - I B9 s /BB C D I D wg • hmjo t p Udr - cmi lnO w g R2 I C IG I D D gyS - P3 + Ud g , D D C 6 L DI - I B9 0 IRO 6 L - I 0 I B9 g f u c w g W sv3 +g P, D D C b a 3 D IG I D 0 Rg P
  • 97. n P RNV- 23 M )( • , 2 9D /9 9B D : - A 7D 09C 9C , B A 79 2 BD D : ,9CD D 9 D 2 A9B , B A 79 2 BD D :ao S vr y lm S , 2 9Dau , 2 9D s y lm BAV tp eh i dcgV alm w : 9 9G 397 CDB 7D A9 D 9 7 :V , 2 9D w
  • 98. plU VR 2 P )( • - /DCD9 B C D B C9 H C 3 DC H 3H : CH DCD 8 / CH DC – / H B DCS M: C B C D k 9 tW -00 vsN – DC o W u nwW M DD 9 DH i N m cbdeg fh ar
  • 99. m a 34 ”O P )) • 0 O I7 A P – 0 A A 7 – p Nb L0 A U ml bo sN • b 7 H t n • b c wn . , 7 0 A A 7 A C H 7 4 C A 7 A / 7 A A K 34 c A 7 H / 7 t r l d RL U l ceo sN lcU 9 7 H t n fl U Vl Mt n b fl U VL b c wn l bi L b NvU l n 7 2 2n f(vu L bi “c i g R U
  • 100. nb g/ ( • / 5 M -P 5 GDH – H DMD H -1 o c D D MD 2 0 D H G am o T – M HM o G DHB S3NG Hi y u i H M DHM o tam f hjlS2 y u h y u nd g w D H G i o h cT 4N MD D HM E M am R hjl4N MD T sU) M D 5 Mf M D 5 Me DG H D H 2 N D H M HM D o mV 0 MC/ MD H5 Me G HMD BND e v o pr V D H 5 Me D H A MN G o V D MD H5 Me0 M GDHD MD f M C MD D H G o
  • 101. lg 12 t K) (L • C ACC A A A A 3 / 2 A D A 0A – 6A 3 / 2 A D A 63/2 W a C CSC A CWo V v wV -CA D C A CT C C CW fe A sr i wSN VPRI – sign words SOTA 63/2W w u WcnV I -CA D 3 6A CT3 0 CdW A sr i wI v w mgPR63/2 a
  • 102. i - 3 ) (R • -EC ,7 1 ACE CE /A B 0 7EB B 7E 2CA B – D 1 E 0 7EB B 10 b B 7 7AD b a Vh-EC 7 A ACE ,1 N – ,1aegMtxoA B 7 d c Pnmpr f 7E B 7 D7 E b a VM ,1 b 10 a h N Slow drift phenomena Embedding features drift Hard negative examples ,1v x 37 E 7 yl L7B CEX a vwPs
  • 103. l Vc 3 S) (T ( • G 0 F CB 8 2CA B – 8 G A 1- / 8BB B e geD C FF cG G F CB m B FG8B B G CBdG G G Fm A G G G C m 8 G A a b G e m gil – 1- / F 8BB B tyRv Rod d a NFD b m il tyRv Roe lP 1 CA G D 8G afrup bnx R m nwxsxwR b e m V G D 8G af l b G e m gN D FD G 8DD B d e- B B m V
  • 104. wVd T , 34 R (S ) • E 9 (- D 9D D 9 1EC D – /E D D J Ub EEC 9 E (- E A EL E A C e r D E D mjln ac sO – (- ihjl ( ig 2 ue xO /E D D D 9D D E A ED EDeoT ye O D J Ub r 09 E N2 A EL C e s t P sv x
  • 105. wrRb )0 I • 0 1 ) 1 C (A1 55 – O TaN NIds – ) 1 C O x mcTlO P t – u d O j d o ) 1 C d V a /5 I h i 2 53 I e 2 53 5 13 IdnV) 1 CN Ndy
  • 106. b R 0: 9 % % O (P % • 2 C 1 – 2 C 6 • 2 C 6 3054 % - E . I D @ -% -) – rxtM o Mpesc a • n c • 2 C 1 1 ( /0707c https://arxiv.org/pdf/1911.09070.pdf h o o MpesL c a O P c V h gi Mf g vc O P n O1%N1 P rxtM a n
  • 107. TK N/745 ifD E • 8 0 – 1 9 : 3: P p – XCV n e • P XCVe R o c – 2 : 9@ - .6 , .6 http://openaccess.thecvf.com/content_CVPR_2020/papers/Feichtenhofer_X3D_Expanding_Architectures_for _Efficient_Video_Recognition_CVPR_2020_paper.pdf
  • 108. TgWM 12 • 8 D 1 C D – iro tn a h V – 1 C F D A E D Ec • d sIo – a iro pl NL c30 a I Il 2 / Ea rlzI Oe Il 3 -ADD 2 A 1CA AD 20 1AA Oea h L iro s C E -ADD h M H Il a 20 1AA c V H P Tg tn H L m dM ca R c I h S H
  • 109. g R - 4 P • /G HF2 , BB – b oOmlnp – h Sf “h a 0 . B /G HF2 , BB 1 G : B , : C GA G / G B 39 : /G HF - 4 L “h aoOmlnp c eL npr cfsni kh t fN oOmlnp V j FH G HF
  • 110. S - 34 P • , F A 0:A : – p n k • k” – - 7D7 : .7F7 :Fk a • J m o J 2 l s J 2 1 1 :F 7 , F A 0:A : , F A 7 - C F A 5C7F F: C D7 5 :A: 0D7C - 34 a f k a” srtw h R s R Vi c/:G F a R e“ Ri c s dh R RS e i J a S M https://www.actiongenome.org/
  • 111. f , 5 V W • 1.M0- – hsv ce dx - g • tmwq j rikw b z g e • 2G 0A 5 GDMLAGFa “ou vwpln – ,GD : mt • LLH GD : GG D G A :D 6 G C.IC 3 / 8 L 6 6 ALG L D R 1.M0- 3MDLA 2 D AP D DA F 1 HDA AL .MF LAGF G 0A 5 GDMLAGF - 0M F -A ALA LAGFS , 5 LLH MF MC ALG AL M: AG 1.M0-
  • 112. r e 3/0 N • C - B G 7 AC D 7 AC C 7 A – pxlaSP g h b c s ib /AD . b Tt d f • /AD . bm V w aSVdg h v A n o f RZ “f 1 C - B G 7 AC D 7 AC ,C 7 A F B F 2C 1 B 1 7 A 3/0
  • 113. Zj a 3/0 R S • CA A B . 8 F – ” c ec p • ic da k“ • C B B C k ” Ti 1 CI A CA A B . 8 F B A 0 B B C 1 , 1 D / C F 3/0 a1 B F B8 , A R1 ,S Wg ” k ” “ bVT n bfh Pb “ c k v sc 20 Wgc c cuxlo vrs t bah iO
  • 114. ic • 49 1 3/ 13 1 2 / 4031 143 – e gt r w nl • R Pu TV d C o Ps • aF r w C
  • 115. D F ea • 2 310 51/ 1 1/ – lf ikjg lf – / C PR cd V O b
  • 116. S FN 0- D E • 1 / / 6 1 – it sc C m g – e V C fL g R – 2 2 lP noP r / / 3 1 6P d ap
  • 117. • 0 1 3 7 2 – bT A 0 1 0202/ – dR P dR a dRCe g V
  • 118. n P S 0 us • / 3 ?8 -38 -? 3 32 3 1 0 ?18 1 – xl Uwr f gt a o iva U iv eag Ti k – fd oUpIeagTi V wr H C Ti RU 3 3 wr H
  • 119. 9 - D0 2 2 - C 9 1
  • 120. M CDB • L M – ,0 /0 8 , 0 / 1 28 /3, – VN P 2020 1960 CNN Perceptron Neocognitron 1980 1990 2000 2010 1970 HOG/SIFT BoF/SVM 1st AI 2nd AI 3rd AI Deep Learning F. Rosenblatt et al. “Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms” in 1961. Rumelhart et al. “Learning representations by back-propagating errors” in Nature 1986. K. Fukushima, “Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position”, in 1980 Y. LeCun et al. “Gradient-based learning applied to document recognition” in IEEE 1998. Backprop.
  • 121. .66 y - i s • AL AKNL I 6A CIENL I - IP6AN – AL AKNL I • tv fkegos zwu ab – GNE G SAL AL AKNL I • AL AKNL I w – 6A CIENL I - IP6AN • “d t mehp u c x AL AKNL I lYhnirs 6A CIENL I 3 0 F MDE U6A CIENL I 9AGB LC IE EIC 6A L G 6AN LF AG B L A D IEM B NNALI 8A CIENE I :I BBA NA S 9DEBN EI MENE I V ,E G -S AIANE M KK DNNKM L NI LC L I K GE K KALM 0 F MDE K B - IP G NE I G 6A L G 6AN A- I AN G U1L EAIN , MA A LIEIC KKGEA N . AIN 8A CIENE I V 2/// DNNK S II GA I AR K GEM K B G A I K B
  • 122. 1 0 kp l R % • 4 9 80d U ihf x – .E N - g 4 9 80 % • % s r Ywt u r Pn494R hoela B , EC B I G BC D : BCDL E I C A – / EC @ 7IG A CG 8 : 931 1IG GL d1227 U S V
  • 123. -- . N ! --C D – /31-1 IC V – 8 73 4 !! /31 71 8:3! 4 !!0 : 410 2 08 ! ×
  • 124. -11 , in I 0 8 1 E V – D 98E C D – gc F + , 23t – R g PVF r http://fungai.org/images/blog/imagenet-logo.png https://www.ted.com/talks/fei_fei_li_how_we_re_teaching_computers_t o_understand_pictures/up-next?language=ja 0 8 1 E oeF 4E8 C F 2C 9 E FRPVr 7 C 2 89 c I P / / 5 - I s F dmelf r W gc aN TS
  • 125. ot 0 a r / – 62 P 0 N AD – 0 lV T U G PC A DI – s tdI e https://www.nextplatform.com/2015/03/18/nvidia-tweaks-pascal-gpus-for-deep-learning-push/ 3 1 P05 81 s td
  • 126. 177e 0 epuv , ( + • e z )V + – )w mik l age x] [ – d e 9 KC 7 L H D / P7 L 5 CR NKD 46 90 227 L C HG G 46 90 ) 2HHA6 7 L R A 46 90 ) 0 89 9 K7 L 3 46 90 0 89 + 46 90 CGG S16e + rnpS I sote ILSVRC2014 winner 22 46 90 CGG S y ( h
  • 127. 3:: lnZ2 ehif - (- , • p tukZ lk – R: Sms adbcg • R: S 3 NR : S 4: S – lkZrok : T BL 0 DI S DST B DI 4GG D NS: S • :0 : S 4GG D NS: S 4: S 4 CL D J. Hu et al. “Squeeze-and-Excitation Networks, N 097 . ISSPR/ B H BCR , . , S BL 0HH HBS E R ETBL BNRG MBS NR G 3 P : T BL : SV R N 2 , ISSPR/ B H BCR , . , R: S 5 6TBNH S BL 3 NR LX 2 NN DS E 2 N LTS NBL : SV R N 2 , ISSPR/ B H BCR - ..( 3 NR : S 1 A PI S BL 8 B N NH BNRG BCL 0 DI S DST R G DBLBCL 7MBH D HN S N N 2 - ISSPR/ B H BCR , , , :0 : S 2 8 T S BL H RR : T BL 0 DI S DST B DI N 2 - ISSPR/ B H BCR , . :0 : S 9 BN S BL 4GG D NS: S/ SI N NH 9 E L DBL NH G 2 N LTS NBL : T BL : SV R N 7298 . ISSPR/ B H PEG . .) PEG 4GG D NS: S
  • 128. 1 gU ] V-&), (, • s [ Y neVmt rU m r – idha. : 2 OP&2 OP N : 5 1 – l. 2 F P P – O L 5 LFQ F . mtock 9/ OQ 1 F – m r. S OPN LR PO )1 LR ( 1 LR Person Uma G S LD LT O 8: +A : 3 NOG CI 8: A 2 5 LF 8: +A S PN LT L 48 A
  • 129. 5 o a4Cox yd( /e ()0 Hito Uma 9HH SPRL FCPVSH 4C @ (G 2 H3VVXY 7HXY @ 4 F8P XOP R 44C(,G @ VVSP N SYP YHXR VXX 7HXYL @ 4 F@L A(,G @ @ 4 dju 9H HMYL I L Y LXXe f ” L XOVY 5LYL YV nr nrd” v klle E [( [) [ F@L TV 4C @(- 4C @(. H DP[(/G L XOVY LYL YV M SS V L Y SH L HYLXY 2SNV PYOT ” HXR @ 4 F9L 44C(.G @V 2SPN 5LY ALN IIV] XLNTL YHYPV o i n n tms HXR @ 4 v jh +( /2 1 A4 4 IIV]o i n tms@LYP H LYv gtoi wb + /2 1 A4 4 AA5 F P 644C(-G L XOVY LYL YV 2 OV 3V] 9H HMYL MLHY L o 9 8 F5HSHS 4C @ ,G AC 47 FDollár 3 C4 0G AVMY HX H L 5 FFelzenszwalb B 2 ()G HYL Y AC • o ud) (c) (.e @ 4 F8P XOP R 4C @(+G ALSL YP[L ALH O 4
  • 130. 3 h 2Bhrvwsa ,b h la , b 1 MRKL I EP 0R 0REP VMV S EPI 7R E MER I MR FNI 3I I MSR MR 2B , L TV. E M S K EFV + , ,- 7 1 MRKL I EP 7 4 . 4 M MIR :XP M EPI A EMRMRK MR IX 7 , L TV. TETI V RMTV TETI , VRMTI I M MIR QXP M V EPI EMRMRK TH 7 4 > DLES I EP : 3I . 0 MRKPI LS FNI 3I I S FEVIH SR :XP M 9I IP 5IE X I EQMH I ZS O MR 0007 - L TV. E M S K EFV , : 3I D CMRK M I EP FNI V EV SMR V MR E CM - L TV. E M S K EFV - +, 2IR I I 9EZ I EP 2S RI I . 3I I MRK FNI V EV EM IH 8I TSMR V MR 422B , L TV. E M S K EFV , , 2S RI I 8 3XER I EP 2IR I I . 8I TSMR A MTPI V S FNI 3I I MSR MR 722B - L TV. E M S K EFV - , ,- 2IR I I :EVO 2 + / 2IR I I + ig d e “fk m x h u t a bm y cj onpm y onpm
  • 131. / a a T (+U ( • s l k t s Sp • ls g – hl t S b R – g ] ] • nS St 0 ID 78 ) d dPv CD CN 3CI HH L F ) CN 8 IICACLDCL 52 -2 ) Pv S i o r 5 M 8 1C 2 8 2 -HFDI /CN CD k t s Sp at lg [ X g ] /CCK A ( CI 7-52 /FH NC I a V bs l k t s Sp g e
  • 132. /22 tvO. efdP Q – . 214P y sQ xi o • r P0 8 : .8C A A Q • n up P 8 5 : A A I:D A , 5 Q • 8 / 8 8 u 5 l N p l V g R 5 R0 8 : .8C A A R 8 / 8 a m mw V p h https://visualqa.org/ 3 A 8 : 8 LShow and Tell: A Neural Image Caption Generator A . 4 ) C 8D D C ; ( ())) C ; C 8 8 D
  • 133. /33 N.8 mv nP )+ )) • sluP3 / C DC .DC – (/, D .DC 3 Pow – (/ slu, .33 1 2P r g R cb – )/, )/ .33Pl iS Tb VbS – ( /, :A .DC P“ l i fp t )/ a aP.)/ )/ 3 0)/ )/oeui a arkp P)/ / C A L- .AD 1DD D D A .DC DAI DC D - DC D C DC M C .84 ( +
  • 134. 188 n T0 ab )-V ) • nvr 5MGN C S1C NC 0 L GK G E 2QC N G G CKN S G 400 (& , https://arxiv.org/abs/1705.00754 1C NC0 L GK G E G C S G E C K CILKM /A GK 1C CA GK S G /07 77 (& , https://arxiv.org/abs/1710.06236 /1 GP C S C M G E L GK CILKM CLMCNC GK RG KA 3 K 1GDDPNGK S G 0 9 (& . https://arxiv.org/abs/1906.05571 KA 3 K 1GDDPNGK 31 nv ls d nv ui en tpTwpV oTc gh d f m nvr V
  • 135. V N 1 • 8 6: – / 3D – / GAN https://medium.com/@sunnerli/the- missing-piece-of-gan-d091604a615a / BigGAN https://arxiv.org/pdf/1809.11096.pdf 1 A C 5G8
  • 136. 288i [1 ix y # ,] • 3/8i g l 3/8 p u i3/8] • A3 GNN X 84: B R .##RCRGS PKR #RCRGS# IGPGSC KWG C WGS CSKCN PG R 213/8 j j i ] • A C S 416 B R .##CS KW SI#CD # :K :K RK GN af e1 P K K PCNg3/8] • A4 NC 1 : B R .##CS KW SI#CD # 1Z NG3/8 RK RK i gb ] • A V 411 B R .##CS KW SI#R # - R /13/8 vs k h bdr wot fbc] • A9 GSC 4176 B R .##CS KW SI#CD # - , 3/8# 83/8 ] • A/SL W MZ 4176 B R.##RS GG KPI ONS RSG #W #CSL W MZ C ON • A7KZC 416 ,B R .##CS KW SI#CD # , - :33/8 ] • A5CSSC 416 ,B R .##CS KW SI#CD # - , GN / GP K P 3/8 nv t m ] • A CPI CS KW , , ,B R .##CS KW SI#CD # , , , - 0KI3/8 3/8] • A0S M 416 -B R .##CS KW SI#CD # , - - , ei
  • 137. 377c yM2:c opl , ,S • sa x 507 G :04 – ioha xd507 Q - S • 97507 1B 507 9 C 507 – :8 :04 :04 g fV • 507ce 6D 2DCC EG g a x trc y v N:8 :04 N1B 507 0 Razavi et al. “Generating Diverse High- Fidelity Imageswith VQ-VAE-2,” NeurIPS, 2019. A EG. B D E - E
  • 138. -- 3 lsum • Re a Ve – iOtOm • A 9 9 9 C9D A • 9D A9 9I F 9 DA A • 1D A 9D ,9 DA A • A 8 CF F A • /9 A D 9 9AF ,9 DA A – V S { g UfLdT Zf c } – v 1 dT v pnrg W c g f • hr ko w a N
  • 139. ))V ,Vmx n C • V – / -/ 2 /30 /8 • /8 C pk u { l i • / /8 C pk u l iS l i • -/ 2 /8 C S V l i – / U vs VW • /30 /8 } C } D} – if V U} NV U if V Vr a o – / e
  • 140. //Z ,4ZhnoiN N3 8B : .:8 B B Z t – 38 CBCA 6 8A ,401 • ,401 : 08D: 8 • Ze asZuy – ,4Z Z L w T P e a S – p V Zu ] D 8 CBCA 8B C : g edfh[ e a r lkm R 38 2 A 8 3 :: V e asZu
  • 141. 0 l V/:l ʼ y • [p P – z i [p k g • 3 B D HR 2 , hj] d 2 kn w v l r c • 0 6 EA?N 0ANA?ND e l i 1//: .A N AL • /ON NA 4A L o l mi d 9O ALHARAL 1//: 6L G . z b/2w vi 0 aok pr bd 8AHAS 1//: 6L G /ON NAi ut z r pk c 9CHAG P 1//: 2 l lw v s
  • 142. 33 /8 kstl ()&) ( S I 2 9 D D – a uVL a • v ifb 9 . L ifb 9 9 . • N r V1C9 3 9 rS 1C9 3 9 Nec Pmgr 9 a,x dp nrV T ( 9 ;9 84/ 1C9 3 O1C9 3 v x
  • 143. .33 rv efaM +N gk m ns – 0 3 i u • 5 14 5 /C C : C C D 1 C : DF 4 C D • l to https://arxiv.org/abs/2002.05709 5 14 d L uSwR M5F C D 8 p 2 D 5 14 p %%2NSI i V m
  • 144. loD G • dm – a • /A 4 2 1 1 • 3 4 1 18 41 5 • 1 1 5 4 1 • 1 .1 3 1 – Ncm /A 4 2G sm – eg 3 4 1 18 41 5G • vz Su dm • cm V rL – y 1 1 5 4 1 G • SR i 4 5 t Ch C cG n
  • 145. 11P A 5P i D C i SP – / 1 R p n G R • B4 / 1 – 523 7 26 7 – /Ve f t I 378 7 D3 N D • B/ 6 / 1 – 0 3 – s Vr N C Ve f t I a C C iVm
  • 146. 188n V0 n , % • /DS KC :DPF KI 5 ED8DP a sk BN PBF MND PN Kn m n jo5 ED8DP ND PN K a i]sTTT 7 F H K 200 %, 3/o 8 n4 FP Ej c n / 1/ [ M %- , R :D 8D P % % o 8 n https://venturebeat.com/2018/05/02/facebook-is-using-instagram-photos-and-hashtags-to-improve-its-computer-vision/ 5 ED8DPo n wvn m ds • c ] • wv yj a dtp n j – gc % 6 n o • o a h nj Xw m n j ken rttp j s [ 4D N %, wvm c ds r n
  • 147. /44 y M 8 nrsoP + + • y /- t – y g n e V – y 2C IC 2 K G9C 3 D I C 7CD 3 GI G9C + 0B CK G D 856 , 2C IC 3 D I C 7CD c f y ,c f y ,c f y 1 I G D 3 R v y mN i n a T y mN i n [ dhnnrso X V]
  • 148. // 2 iorjM# N • // koL Lf K nnLg – 3 3 # 19 3 93 1 , 3 1 9 1 9 3C D/ C 3 8 /1, F/ C 3 38 M y N – 3 T b 2 Vc // x https://chainer.org/images/logo.png http://pytorch.org/docs/master/_static/pytorch-logo-dark.svg https://www.tensorflow.org/_static/image s/tensorflow/logo.png st 93 1 v 1 9 xv 3 # 1 b , 3 a e c 3 4 1 9 lphfi 3 # aP wV
  • 149. 4 dv 3Adlp m ( (-a ). • 8 3/ no kh icfg dz – 1B> 1 WTI 7RR I 3 RWH rtbe UWFEPI( 1239 6W ENW GRPM URR • :W VM 7 :W VM RHI – 9PE I IV d • . 0 0 ( P 0 P 0 P 0 -P 0 P 0 P u s > 21:5 ( x 1239 https://commons.wikimedia.org/wiki/ File:TSUBAME_3.0_PA075096.jpg : DEPE ENM IV E DIV 1 RV IT 1GGI ITEVIH >74/ IU IV TEM M R 9PE I IV M ,) , UIGR HU ETCMX STI STM V . ( . VVSU/ ETYMX RT SH . ( SH
  • 150. S N • V – – – D – – – 5 / C 83A0 5 1
  • 151. f V-:fsyzt & & • , ,8 8A M C - MN , ,8 – f dc ol g e – g21 1 O NAOe bf ] i – g f ujvon zf 21 1 ,POK KIKPN M C A DI MG oryk pmwzr n z h5 O / KR 8OAMAK 3 O D C 5 FA O AOA O K 7K 5 KIAOMS 8AI O 8ACIA O O K 0A CAM -: 7 2 I 1--: f f ec h a e [n zh 8PTPG 2 O KG -: 7
  • 152. 33 y T,9 irtjW • smhacf – _ E N N ND I – nklorVept I /O D I N W “ – uy i gbtd W “ , : I N G R I /O D I+ E N 5 . ND ND I 1N L ND P I /O D I S DI ,956 CNN + I NC P IN IN ,956 L : I I /O D I E N 5 . ND ND I 1N L NDP I /O D I ,956 L 0D I G N G R2 P L DI C , G ND I L D 8L FDI S DI ,956 http://openaccess.thecvf.com/content_CVPR_2019/papers/Giancola_Leveraging_Shape_Completion_for_3D_Sia mese_Tracking_CVPR_2019_paper.pdf i gbtd Wv
  • 153. /44 P.8 grshR S • l danst – l dans e ans – / 1 ABGF R S • / 1 ABGF v Y om – 1./- R S • 1./- v k ip VY f c_rs s 9 2 D / 1 ABGF , 8 I BD - F AE IC GI / BGF 5G 0 BE BGF E F BGF F 3 F B B BGF G .DG ABF 3E N BF .85 A G F A GE GF F :.85 : I 2 :/ 1 ABGF :,: 8 I BD :- F AE IC: GI:/ BGF:5G :0 BE BGF: E F BGF: F :.85 : : I H. Kataoka, K. Abe, M. Minoguchi, A. Nakamura, Y. Satoh, "Ten- million-order Human Database for World-wide Fashion Culture Analysis", in CVPR 2019 Workshop on FFSS-USAD. A G F A GE GF F :.85 : I 2 :/ 1 ABGF :,:8 I BD :- F AE IC: GI:/ BGF:5G :0 BE BGF: E F BGF: F :.85 : : I
  • 154. 166 tuW0 ckmd Z • t w s – t otie – p V rntv V Xhlgb a • t 1/ y Z 1 1 C C H TScaling Egocentric Vision: The EPIC-KITCHENS Dataset 200 E N- C A G AEC N D EP K 5 S C H T:EC 5 C AN 4P .A K BCK 1 NC - , E N- BCC B AK CNC AE K C NKP AC K C NKP AC B NC N G C AN 0 3P C H TAVA: A Video Dataset of Spatio- temporally Localized Atomic Visual Actions 0 78 E N- CNC AE DKKDHC AK BKR H K B E H M. Monfort et al. “Moments in Time Dataset: one million videos for event understanding,” in arXiv pre-print 1801.03150, 2018. http://moments.csail.mit.edu/ 4 E K C H THACS: Human Action Clips and Segments Dataset for Recognition and Temporal Localization C , E - E AN AN H CBP 9K C E D 9K C E D B NC E N- AK B NC N NK C E D NK C E D
  • 155. 055 L/ nu oN & • / nu o, gtis r – ea aS S • l h T e – pmn • y DC 3 C # E FD : 3. /D E DC A 6 D D F E .0. mn – pmn • 0 0 C C A C . D 3 2.81 – pmn V M • f X XP
  • 156. 22d T-8dw} V W • # # -8 dw} – vUsd {y n Zif • d N pU urtz k S • F N evUs vUs – vUs d U U • 7F C 5 E 5 D R 5L 1 F F • : 3F 0 N R A D F F • E F , F E F F E F 5OF A , D 1 F F ,L E F F 2,5 / F 6 F F h lk hamoS chg g g
  • 157. 22c U,8cmstnW ,8 5 w d w e – ,8d lVkv Zc u f“ • ,8 5 c L d b hy C I F R 0.N/ S ,8 5 B L LBNHLN L C I AC BN CI 0.N/ N F R7HLN OCL 1 HCHA I I F C I F 3 D L I 0 A L CH B CF S ,8 5 W L P : B IO F R N IF FCHA 3 D L S ,8 5 ba itp Vkojrtd c h gw e
  • 158. 8 : : - . 5 1 -
  • 159. 6 5 7 6 5 7 97 P - C – 3 ;7 a P o • /412 E . l. • /412 ,E-+- . l. • 0//4 ,E++ . l. • /412 -E - . - l. • /412 E + . l. – pv i g rnh • ;8 crn TV 7 t P R P R lE e lE +f
  • 160. + +. 00 – i m e p – h t r al e / 6 b G e ug alH e / 6 b . 10vn e i c https://github.com/cvpaperchallenge/ECCV201 8_Survey/blob/master/ECCV2018_Survey.md http://xpaperchallenge.org/cv/survey /cvpr2019_summaries/
  • 161. 52 2 . 00 1- 6 – @ • • – n • j e cg – 7 j • v – t v 7 p / – t l 7 ag r h h •h h h h h h
  • 162. 1 < 61 • x = {cv, nl, robot} – x N RN LV h P eg 1 < 61 + . /:2:> ab c Ni C robotpaper.challenge
  • 163. T V SK N P R K / 2 0 / 2 2 : 0 2 0 . / 2 20 / , / : / C : / / / /
  • 165. _g N • . .;7 N . F 7 N – Zl lb wy – . .;7 N • b R Wi _ Y • R Ul ZP R • t r b tm a S – . F 7 p o N • a T h S R _W – a c 0 ;v a 1 – FFC F ; 9 9 7 ; 1 977 6 / :; • R Vl tu b nt ws cWi – nt ws b5 a Rde
  • 166. S • .2 5 .2 – Pe – .2 u • u r • b T Y v Y – .2 • v P o – v r W • lab l i Y S ; – s R / V .2P V – tW Y b Pe b i CY W ;
  • 167. O & • /-. .1 3 5 /-. / 3 – .1 3 / 3 • / v C e • lae 9 t iu I V e P RC • V e s t iu D r e OC
  • 168. I DF * T A 55 3 E3 F 5 5 34 3 X3 /
  • 169. / 5* * * * *
  • 170. @ C / . . /