IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE)
e-ISSN: 2278-1676,p-ISSN: 2320-3331, Volume 7, Issue 6 (Sep. - Oct. 2013), PP 26-31
www.iosrjournals.org
www.iosrjournals.org 26 | Page
A Solution to Optimal Power Flow Problem using Artificial Bee
Colony Algorithm Incorporating FACTS device
T L V Naga Lathish1
, A.V.Naresh Babu2
, S.Sivanagaraju3
1
(PG Student [P.E], Dept. of EEE, DVR & Dr. HS MIC College of Technology, Andhra Pradesh, India)
2
(Associate Professor, Dept. of EEE, DVR & Dr. HS MIC College of Technology, Andhra Pradesh, India )
3
(Professor, Dept. of EEE, University College of Engineering, JNTUK, Kakinada, Andhra Pradesh, India)
Abstract : This paper presents an intelligent foraging behaviour based optimization approach i.e. artificial
bee colony (ABC) algorithm for achieving the optimal power flow (OPF) problem solution incorporating the
flexible alternating current transmission system (FACTS) device which is static synchronous series compensator
(SSSC). The SSSC consists of a solid-state voltage source converter with gate turn off (GTO) device, a dc link
capacitor, a magnetic circuit and a controller. The injected voltage is in quadrature with the line current and
emulates an inductive or a capacitive reactance so as to influence the power flow in the transmission lines. The
effectiveness of the approach has been tested on IEEE 14-bus system with and without SSSC. Results show that
the ABC algorithm gives better solution to enhance the system performance with SSSC compared to without
SSSC.
Keywords: Artificial Bee Colony Algorithm, Foraging Behaviour, Optimal Power Flow, Power Loss, SSSC.
I. INTRODUCTION
The electric power industry over the worldwide becoming complex day to day and continuous
requirements are coming for stable, secured, controlled, economic and better quality power. These requirements
become more essential when environment becoming more vital and important deregulation. Power transfer
capacity in transmission system is limited due to various factors such as steady state stability limit, thermal
limit, transient stability limit and system damping or even negative damping. The transmission system become
increasingly subject several constraints and difficulties to operate. To meet these requirements number of
applications linked with FACTS devices has been increased in recent years. A.Edris et.al. [1] defined FACTS is
a system composed of static equipment used for the AC transmission of electrical energy. It is meant to enhance
controllability and increase power transfer capability of the network. It is generally a power electronics based
system. FACTS technology [2] provides feasible and cost-effective solution to these problems and these devices
are required to use worldwide for improving performance of power system [3].
Recently, several FACTS devices have been implemented and installed in practical power systems
such as static VAR compensator (SVC), thyristor controlled series capacitor (TCSC), and thyristor controlled
phase shifter (TCPS) [4]. Some FACTS devices which operates based on the synchronous voltage source (SVS)
include the SSSC [5] and the unified power flow controller (UPFC) [6]. The SSSC provides a compensating
voltage over both a capacitive and inductive range irrespective of the line current. The magnitude and phase of
this inserted ac compensating voltage can be rapidly adjusted by SSSC controls.
Several population-based methods have been proposed for solving the OPF problem successfully such
as evolutionary algorithms [7] and swarm intelligence-based algorithms [8]. Although genetic algorithm (GA)
[9], genetic programming (GP) [10], evolution strategy (ES) and evolutionary programming (EP) [11] are
popular evolutionary algorithms, GA is the most widely used one in the literature. GA is based on genetic
science and natural selection and it attempts to simulate the phenomenon of natural evolution at genotype level
while ES and EP simulate the phenomenon of natural evolution at phenotype level. One of the evolutionary
algorithms which have been introduced recently is differential evolution (DE) algorithm. A popular swarm-
intelligence-based algorithm is the particle swarm optimization (PSO) algorithm which was introduced by
Eberhart and Kennedy in 1995 [12]. A.V.Naresh Babu and S.Sivanagaraju [13] proposed a new approach based
on two step initialization to solve the OPF problem. Methods to find the solution for OPF problem have been
discussed in [14, 15]. The ABC algorithm [16, 17] is a new metaheuristic, population-based optimization
technique inspired by the intelligent foraging behavior of the honeybee swarm. The OPF problem was
formulated as an optimization problem and solved using ABC algorithm. The objective function is to minimize
the fuel cost. A load flow model is used i.e. newton-rapson (NR) method. This model is further modified to
incorporate SSSC into the network and ABC technique is applied to the model to enhance the performance of
the power system. The effectiveness of the method was tested on standard IEEE 14-bus test system and the
results are presented.
A Solution to Optimal Power Flow Problem using Artificial Bee Colony Algorithm Incorporating
www.iosrjournals.org 27 | Page
II. STATIC SYNCHRONOUS SERIES COMPENSATOR
The voltage source converter based series compensator, called static synchronous series compensator
was proposed by Gyugyi in 1989. An SSSC comprises of voltage source converter, capacitor and a coupling
transformer that is used to insert the ac output voltage of the inverter in series with the transmission line. This is
equivalent to providing controllable capacitive or inductive reactance compensation independent of the line
current. The magnitude and phase of this inserted ac compensating voltage can be rapidly adjusted by the SSSC
controls [18]. The VSC is triggered by the SSSC control which itself receives setpoint values. The VSC is
protected against unacceptable high fault currents by a mechanical bypass which can be closed if necessary. In
this way, the SSSC controls the power flow of the transmission line or the voltage of the bus.
Fig. 1 Schematic diagram of SSSC
III. MATHEMATICAL FORMULATION OF OPF WITH SSSC
Mathematically, the OPF problem with FACTS to minimize fuel cost generation is solved by
maintaining thermal and voltage constraints can be formulated as follows
Minimize hcPbPa
xgen
l
lgenllgenll /$)(
1
2

 (1)
where lll cba ,, are cost co-efficient of generator at bus l
xgen is the number of generator buses.
Power flow equalities in the optimal power flow are given as follows
  0cos ,
1
 
ninjmllmlmm
xb
m
lll PYVVPdemPgen  (2)
  0sin ,
1
 
ninjmllmlmm
xb
m
lll QYVVQdemQgen  (3)
l lPgen and Qgen is the active and reactive power of generation at bus l,
l lPdem and Qdem is the active and reactive load demand at the same bus, and elements of the bus
admittance matrix are represented by andlm lmY  is the angle difference of transmission line connected
between l & m buses.
Active power outputs, reactive power outputs, and generation bus voltages are restricted by their lower and
upper limits and the generator constraints are given as follows
xgenlPgenPgenPgen lll ,..,3,2,1
maxmin
 (4)
xgenlQgenQgenQgen lll ,..,3,2,1
maxmin
 (5)
xblVVV lll ,..,3,2,1
maxmin
 (6)
xb is the number of buses
Transformer tap settings are restricted by their lower and upper limits and the transformer constraints are given
as follows
xtlTTT lll ,..,3,2,1
maxmin
 (7)
xt is the number of transformers.
A Solution to Optimal Power Flow Problem using Artificial Bee Colony Algorithm Incorporating
www.iosrjournals.org 28 | Page
Shunt VAR compensations due to capacitor banks are restricted by their limits and the shunt VAR constraints
are given as follows
var,..,3,2,1varvarvar
maxmin
xlQQQ lll  (8)
x var is the number of shunt VAR compensators.
SSSC device constraints are restricted by their limits as follows
maxmin
VserVserVser  (9)
maxmin
serserser   (10)
Vser and ser are the Series voltage source magnitude and Series voltage source angle respectively.
The load of l th
transmission line is restricted by its limits are given as follows
xtltlSS tltl ,..,3,2,1
max
 (11)
xtl is the number of transmission lines.
IV. ARTIFICIAL BEE COLONY ALGORITHM
The Artificial Bee Colony algorithm proposed by Dervis Karaboga in 2005 for real-parameter
optimization is a recently introduced optimization algorithm which simulates the foraging behaviour of bee
colony. In the ABC algorithm, the foraging artificial bees are divided into three groups: employed bees,
unemployed bees and scout bees. One half of the colony size of the ABC algorithm represents the number of
employed bees, and the second half stands for the number of unemployed bees. The employed bees are
responsible for exploiting the explored food sources and passing their food information to onlooker bees. The
onlooker bees will make a move to choose a food source on this information, and then further exploit the foods
around the chosen food source. The employed bee change to a scout bee when it abandons a food source and
search the environment surrounding the nest (up to a 14 km radius) for the new food sources. The details of the
algorithm are as follows
.
4.1 Food source sites initialization
In the initialization of the algorithm, a set of food source sites ( eb ) are created randomly. Let’s
consider uth
food source in the population as
nuuuuu ddddd ,3,2,1, ,....,,, (12)
And each food source site is created as per the Eq. (13)
))(1,0(
minmaxmin
, uuuvu ddranddd  (13)
Where u signifies the size of food source sites, u=1, 2, 3... eb , v signifies the parameters to be optimized,
v =1, 2, 3,…, ncv ,
minmax
& uu dd are the upper and lower bounds for the dimension u. After initialization of
the food source sites ufit amounts are calculated.
4.2. Employed bee forager
A new candidate food sources is created by modification of ud of its current position and then
calculate nectar or ufit amount. The position of the new food source is defined as
)( ,,,,, vqvuvuvuvu dddw   (14)
Where q = 1, 2,3, ..., eb is a randomly chosen index that has to be different from u, vu, is a uniformly
distributed real random number in the range [-1, 1].
1
0
1
1 ( ) 0
u
uu
u u
if obj
objfit
abs obj if obj


 
  
(15)
Where uobj is the cost value or objective value of the solution uw . If the ufit of uw is equal or better than
that of ud , it will be replaced by the new candidate food source position uw , otherwise the previous position is
kept in memory.
A Solution to Optimal Power Flow Problem using Artificial Bee Colony Algorithm Incorporating
www.iosrjournals.org 29 | Page
4.3 Onlooker probabilities
After all employed bees complete the search process, each onlooker bee chooses a food source. The
probability that a food source will be chosen by the onlooker bee is calculated by the following expression
 
 eb
u u
u
u
fit
fit
prob
1
(16)
4.4 Onlooker bee forager
This is also similar to employed bee forager step. Here, candidate food source is created of its current
position as per Eq. (14) and calculate ufit value. If the new candidate food source has equal or better ufit
value than the old source, it is replaced with the old one in the memory. Otherwise, the old one is retained in the
memory. This process is repeated until all onlookers are distributed onto food source sites.
4.5 Scout bee forager
If the ufit value of the employed bees does not improved by a continuous predetermined number of
iterations, those food sources are abandoned. The food source abandoned by its bee is replaced with a new food
source discovered by the scout as per Eq. (13)
V. RESULTS AND DISCUSSIONS
Simulation studies are carried out in this section to investigate the effects of the SSSC on the power
system. The method is implemented using MATLAB software package on a personal computer with Intel
Pentium dual core 2.6 GHz processor and 2 GB RAM. The ABC algorithm is employed to solve OPF problem
by incorporating SSSC for enhancement of system performance. The ABC parameters used for the simulation
are summarized in Table 1.
Table 1 ABC parameters
S.No Control variables of ABC algorithm values
1 Swarm size 20
2 Number of employed bees foragers 50% of swarm size
3 Number of onlooker bees foragers 50% of swarm size
4 Number of iterations 10
5 Number of scouts per cycle 1
Table 2 Optimal settings of control variables for IEEE-14 Bus test system
S.No Parameters Case 1 Case 2
1 Pg1 74.015 82.213
2 Pg2 113.467 93.966
3 Pg3 27.634 36.403
4 Pg6 37.317 40.109
5 Pg8 11.448 10.963
6 Vg1 1.050 1.064
7 Vg2 1.037 1.058
8 Vg3 1.023 1.018
9 Vg6 0.995 1.023
10 Vg8 1.023 1.024
11 T 1 1.007 1.002
12 T 2 0.918 0.926
13 T 3 1.037 0.994
14 QC1 2.63 3.274
15 Total real power generation 263.881 263.654
16 Total Cost 927.300 917.392
17 Real power loss 4.881 4.654
18 Vse(p.u) - - 0.095
19 θse(deg) - - 91.312
Table 3 Bus voltages of IEEE-14 Bus system
Bus
No.
Case 1 Case 2
Voltage magnitude
(p.u)
Voltage
angle
(deg.)
Voltage magnitude
(p.u)
Voltage angle
(deg.)
1 1.050 0.000 1.064 0.000
2 1.037 -1.341 1.058 -1.131
3 1.023 -6.568 1.018 -6.437
4 1.001 -5.104 1.026 -5.004
A Solution to Optimal Power Flow Problem using Artificial Bee Colony Algorithm Incorporating
www.iosrjournals.org 30 | Page
5 1.016 -4.048 1.038 -4.062
6 0.995 -5.735 1.023 -6.062
7 1.005 -6.801 1.015 -6.644
8 1.023 -5.725 1.024 -5.532
9 0.993 -8.399 1.007 -8.225
10 0.985 -8.268 1.002 -8.158
11 0.986 -7.178 1.008 -7.094
12 0.979 -6.850 1.008 -7.094
13 0.974 -7.081 1.002 -7.280
14 0.969 -8.959 0.986 -8.917
The network and load data for this system is taken from [19]. To test the ability of the ABC algorithm one
objective function is considered that is minimization of cost of generation. In order to show the effect of power
flow control capability of the SSSC in ABC OPF algorithm, two case studies are carried out on the standard
IEEE 14-bus system.
Case 1: OPF without SSSC,
Case 2: OPF with SSSC.
Fig. 2 Cost vs. iterations of IEEE 14 bus system
From the Table 2 and Table 3, it can be seen that the installation of SSSC in the network gives the good
performance of the system in terms of reduction in cost of generation, power loss reduction and better voltages.
It also gives that ABC algorithm is able to enhance the system performance while maintaining all control
variables and reactive power outputs within their limits. The convergence characteristics with and without SSSC
by using ABC algorithm is shown in Fig 2. From the characteristics it can be seen that the convergence
tendency is better with SSSC compared to without SSSC.
VI. CONCLUSION
This paper incorporates the SSSC in OPF problem to minimize the fuel cost of generation and enhance
the system performance. The ABC algorithm is used for solving the OPF problem. The OPF problem is
formulated as a nonlinear optimization problem with equality and inequality constraints. The results of the ABC
algorithm were compared with and without SSSC. Among the two test cases, test case 2 had the less fuel cost of
generation, power loss reduction as well as voltage improvements. The convergence tendency of the ABC
algorithm shows that the algorithm relatively converges in less number of cycles.
REFERENCES
[1]. A. Edris, R. Adapa, M.H. Baker, L. Bohmann, K. Clark, K. Habashi, L Gyugyi, J. Lemay, A.S. Mehraban, A.K. Myers, J. Reeve,
F. Sener, D.R.Torgerson, R.R. Wood, Proposed Terms and Definitions for Flexible AC Transmission System (FACTS), IEEE Trans
Power Delivery, Vol. 12, No.4, pp. 1848-1853, Oct. 1997.
[2]. N. G. Hingorani, L. Gyugyi, Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems, (IEEE
Press, New-York, 2000).
[3]. R.M. Mathur and R.K. Varma, Thyristor-Based FACTS Controllers for Electrical Transmission Systems, (IEEE Press and Wiley
Interscience, New York, USA, Feb. 2002).
[4]. M. A. Abido and Y. L. Abdel-Magid, Analysis and Design of Power System Stabilizers and FACTS Based Stabilizers Using
Genetic Algorithms, 14th Power Systems Computation Conference PSCC2002, Session 14, Paper 4, Seville, Spain, June 24-28,
2002, CD-ROM.
[5]. L. Gyugyi, C.D. Schauder, K.K. Sen, Static Synchronous Series Compensator: A Solid-State Approach to the Series Compensation
of Transmission Lines, IEEE Transactions on Power Delivery, Vol. 12, No. 1, Jan. 1997.
[6]. L. Gyugyi, C.D. Schauder, S.L. Williams, T.R. Rietman, D.R. Torgerson, A. Edris, The Unified Power Flow Controller: A New
Approach to Power Transmission Control, IEEE Transactions on Power Delivery, Vol. 10, No. 2, Apr. 1995.
[7]. A.E. Eiben, J.E. Smith, Introduction to Evolutionary Computing, Springer, 2003.
[8]. R.C. Eberhart, Y. Shi, J. Kennedy, Swarm Intelligence, Morgan Kaufmann, 2001.
A Solution to Optimal Power Flow Problem using Artificial Bee Colony Algorithm Incorporating
www.iosrjournals.org 31 | Page
[9]. J.H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI, 1975.
[10]. J.R. Koza, Genetic programming: a paradigm for genetically breeding populations of computer programs to solve problems,
Technical Report STAN-CS- 90-1314, Stanford University Computer Science Department, 1990.
[11]. L.J. Fogel, A.J. Owens, M.J. Walsh, Artificial Intelligence through Simulated Evolution (John Wiley & Son, New York, NY,
1966).
[12]. Abido MA. Optimal power flow using particle swarm optimization, Electr Power Energy Syst, Vol.24, pp.563–71, 2002.
[13]. A.V.Naresh Babu and S.Sivanagaraju, A solution to the optimal power flow problem: A new approach based on two step
initialization, Proc. of IEEE India International Conference (INDICON) on Engineering Sustainable Solutions, BITS, Hyderabad,
India, Dec. 2011.
[14]. Claudio Cañizares, William Rosehart, Alberto Berizzi, Cristian Bovo, Comparison of Voltage Security Constrained Optimal Power
Flow Techniques, Proc. 2001 IEEE-PES Summer Meeting, Vancouver, BC, July 2001.
[15]. Florin Capitanescu, Mevludin Glavic, Damien Ernst, Louis Wehenkel, Interior-point based algorithms for the solution of optimal
power flow problems, Electric Power Systems Research Vol. 77 (2007) 508–517
[16]. Kursat Ayan, Ulas Kilic, Artificial Bee Colony algorithm Solution for Optimal reactive Power flow, Applied soft computing Vol.
12 (2012)1477-1482
[17]. Fahad S. Abu-Mouti, M. E. El-Hawary, Optimal Distributed Generation Allocation and Sizing in Distribution Systems via Artificial
Bee Colony Algorithm, IEEE Transactions on Power Delivery, Vol. 26, No. 4, Oct 2011
[18]. A.V.Naresh Babu, S.Sivanagaraju and T.Ramana, Mathematical modelling, analysis and effects of static synchronous series
compensator (SSSC) parameters in power flow studies, Proc. of Int. Conf. on Machine Intelligence Application to Power Signal
Processing Communication and Control (MIPSCCON), GMRIT, Rajam, Andhra Pradesh, India, April 2011.
[19]. IEEE 14-bus system data available at http://www.ee.washington.edu/research/pstca

A Solution to Optimal Power Flow Problem using Artificial Bee Colony Algorithm Incorporating FACTS device

  • 1.
    IOSR Journal ofElectrical and Electronics Engineering (IOSR-JEEE) e-ISSN: 2278-1676,p-ISSN: 2320-3331, Volume 7, Issue 6 (Sep. - Oct. 2013), PP 26-31 www.iosrjournals.org www.iosrjournals.org 26 | Page A Solution to Optimal Power Flow Problem using Artificial Bee Colony Algorithm Incorporating FACTS device T L V Naga Lathish1 , A.V.Naresh Babu2 , S.Sivanagaraju3 1 (PG Student [P.E], Dept. of EEE, DVR & Dr. HS MIC College of Technology, Andhra Pradesh, India) 2 (Associate Professor, Dept. of EEE, DVR & Dr. HS MIC College of Technology, Andhra Pradesh, India ) 3 (Professor, Dept. of EEE, University College of Engineering, JNTUK, Kakinada, Andhra Pradesh, India) Abstract : This paper presents an intelligent foraging behaviour based optimization approach i.e. artificial bee colony (ABC) algorithm for achieving the optimal power flow (OPF) problem solution incorporating the flexible alternating current transmission system (FACTS) device which is static synchronous series compensator (SSSC). The SSSC consists of a solid-state voltage source converter with gate turn off (GTO) device, a dc link capacitor, a magnetic circuit and a controller. The injected voltage is in quadrature with the line current and emulates an inductive or a capacitive reactance so as to influence the power flow in the transmission lines. The effectiveness of the approach has been tested on IEEE 14-bus system with and without SSSC. Results show that the ABC algorithm gives better solution to enhance the system performance with SSSC compared to without SSSC. Keywords: Artificial Bee Colony Algorithm, Foraging Behaviour, Optimal Power Flow, Power Loss, SSSC. I. INTRODUCTION The electric power industry over the worldwide becoming complex day to day and continuous requirements are coming for stable, secured, controlled, economic and better quality power. These requirements become more essential when environment becoming more vital and important deregulation. Power transfer capacity in transmission system is limited due to various factors such as steady state stability limit, thermal limit, transient stability limit and system damping or even negative damping. The transmission system become increasingly subject several constraints and difficulties to operate. To meet these requirements number of applications linked with FACTS devices has been increased in recent years. A.Edris et.al. [1] defined FACTS is a system composed of static equipment used for the AC transmission of electrical energy. It is meant to enhance controllability and increase power transfer capability of the network. It is generally a power electronics based system. FACTS technology [2] provides feasible and cost-effective solution to these problems and these devices are required to use worldwide for improving performance of power system [3]. Recently, several FACTS devices have been implemented and installed in practical power systems such as static VAR compensator (SVC), thyristor controlled series capacitor (TCSC), and thyristor controlled phase shifter (TCPS) [4]. Some FACTS devices which operates based on the synchronous voltage source (SVS) include the SSSC [5] and the unified power flow controller (UPFC) [6]. The SSSC provides a compensating voltage over both a capacitive and inductive range irrespective of the line current. The magnitude and phase of this inserted ac compensating voltage can be rapidly adjusted by SSSC controls. Several population-based methods have been proposed for solving the OPF problem successfully such as evolutionary algorithms [7] and swarm intelligence-based algorithms [8]. Although genetic algorithm (GA) [9], genetic programming (GP) [10], evolution strategy (ES) and evolutionary programming (EP) [11] are popular evolutionary algorithms, GA is the most widely used one in the literature. GA is based on genetic science and natural selection and it attempts to simulate the phenomenon of natural evolution at genotype level while ES and EP simulate the phenomenon of natural evolution at phenotype level. One of the evolutionary algorithms which have been introduced recently is differential evolution (DE) algorithm. A popular swarm- intelligence-based algorithm is the particle swarm optimization (PSO) algorithm which was introduced by Eberhart and Kennedy in 1995 [12]. A.V.Naresh Babu and S.Sivanagaraju [13] proposed a new approach based on two step initialization to solve the OPF problem. Methods to find the solution for OPF problem have been discussed in [14, 15]. The ABC algorithm [16, 17] is a new metaheuristic, population-based optimization technique inspired by the intelligent foraging behavior of the honeybee swarm. The OPF problem was formulated as an optimization problem and solved using ABC algorithm. The objective function is to minimize the fuel cost. A load flow model is used i.e. newton-rapson (NR) method. This model is further modified to incorporate SSSC into the network and ABC technique is applied to the model to enhance the performance of the power system. The effectiveness of the method was tested on standard IEEE 14-bus test system and the results are presented.
  • 2.
    A Solution toOptimal Power Flow Problem using Artificial Bee Colony Algorithm Incorporating www.iosrjournals.org 27 | Page II. STATIC SYNCHRONOUS SERIES COMPENSATOR The voltage source converter based series compensator, called static synchronous series compensator was proposed by Gyugyi in 1989. An SSSC comprises of voltage source converter, capacitor and a coupling transformer that is used to insert the ac output voltage of the inverter in series with the transmission line. This is equivalent to providing controllable capacitive or inductive reactance compensation independent of the line current. The magnitude and phase of this inserted ac compensating voltage can be rapidly adjusted by the SSSC controls [18]. The VSC is triggered by the SSSC control which itself receives setpoint values. The VSC is protected against unacceptable high fault currents by a mechanical bypass which can be closed if necessary. In this way, the SSSC controls the power flow of the transmission line or the voltage of the bus. Fig. 1 Schematic diagram of SSSC III. MATHEMATICAL FORMULATION OF OPF WITH SSSC Mathematically, the OPF problem with FACTS to minimize fuel cost generation is solved by maintaining thermal and voltage constraints can be formulated as follows Minimize hcPbPa xgen l lgenllgenll /$)( 1 2   (1) where lll cba ,, are cost co-efficient of generator at bus l xgen is the number of generator buses. Power flow equalities in the optimal power flow are given as follows   0cos , 1   ninjmllmlmm xb m lll PYVVPdemPgen  (2)   0sin , 1   ninjmllmlmm xb m lll QYVVQdemQgen  (3) l lPgen and Qgen is the active and reactive power of generation at bus l, l lPdem and Qdem is the active and reactive load demand at the same bus, and elements of the bus admittance matrix are represented by andlm lmY  is the angle difference of transmission line connected between l & m buses. Active power outputs, reactive power outputs, and generation bus voltages are restricted by their lower and upper limits and the generator constraints are given as follows xgenlPgenPgenPgen lll ,..,3,2,1 maxmin  (4) xgenlQgenQgenQgen lll ,..,3,2,1 maxmin  (5) xblVVV lll ,..,3,2,1 maxmin  (6) xb is the number of buses Transformer tap settings are restricted by their lower and upper limits and the transformer constraints are given as follows xtlTTT lll ,..,3,2,1 maxmin  (7) xt is the number of transformers.
  • 3.
    A Solution toOptimal Power Flow Problem using Artificial Bee Colony Algorithm Incorporating www.iosrjournals.org 28 | Page Shunt VAR compensations due to capacitor banks are restricted by their limits and the shunt VAR constraints are given as follows var,..,3,2,1varvarvar maxmin xlQQQ lll  (8) x var is the number of shunt VAR compensators. SSSC device constraints are restricted by their limits as follows maxmin VserVserVser  (9) maxmin serserser   (10) Vser and ser are the Series voltage source magnitude and Series voltage source angle respectively. The load of l th transmission line is restricted by its limits are given as follows xtltlSS tltl ,..,3,2,1 max  (11) xtl is the number of transmission lines. IV. ARTIFICIAL BEE COLONY ALGORITHM The Artificial Bee Colony algorithm proposed by Dervis Karaboga in 2005 for real-parameter optimization is a recently introduced optimization algorithm which simulates the foraging behaviour of bee colony. In the ABC algorithm, the foraging artificial bees are divided into three groups: employed bees, unemployed bees and scout bees. One half of the colony size of the ABC algorithm represents the number of employed bees, and the second half stands for the number of unemployed bees. The employed bees are responsible for exploiting the explored food sources and passing their food information to onlooker bees. The onlooker bees will make a move to choose a food source on this information, and then further exploit the foods around the chosen food source. The employed bee change to a scout bee when it abandons a food source and search the environment surrounding the nest (up to a 14 km radius) for the new food sources. The details of the algorithm are as follows . 4.1 Food source sites initialization In the initialization of the algorithm, a set of food source sites ( eb ) are created randomly. Let’s consider uth food source in the population as nuuuuu ddddd ,3,2,1, ,....,,, (12) And each food source site is created as per the Eq. (13) ))(1,0( minmaxmin , uuuvu ddranddd  (13) Where u signifies the size of food source sites, u=1, 2, 3... eb , v signifies the parameters to be optimized, v =1, 2, 3,…, ncv , minmax & uu dd are the upper and lower bounds for the dimension u. After initialization of the food source sites ufit amounts are calculated. 4.2. Employed bee forager A new candidate food sources is created by modification of ud of its current position and then calculate nectar or ufit amount. The position of the new food source is defined as )( ,,,,, vqvuvuvuvu dddw   (14) Where q = 1, 2,3, ..., eb is a randomly chosen index that has to be different from u, vu, is a uniformly distributed real random number in the range [-1, 1]. 1 0 1 1 ( ) 0 u uu u u if obj objfit abs obj if obj        (15) Where uobj is the cost value or objective value of the solution uw . If the ufit of uw is equal or better than that of ud , it will be replaced by the new candidate food source position uw , otherwise the previous position is kept in memory.
  • 4.
    A Solution toOptimal Power Flow Problem using Artificial Bee Colony Algorithm Incorporating www.iosrjournals.org 29 | Page 4.3 Onlooker probabilities After all employed bees complete the search process, each onlooker bee chooses a food source. The probability that a food source will be chosen by the onlooker bee is calculated by the following expression    eb u u u u fit fit prob 1 (16) 4.4 Onlooker bee forager This is also similar to employed bee forager step. Here, candidate food source is created of its current position as per Eq. (14) and calculate ufit value. If the new candidate food source has equal or better ufit value than the old source, it is replaced with the old one in the memory. Otherwise, the old one is retained in the memory. This process is repeated until all onlookers are distributed onto food source sites. 4.5 Scout bee forager If the ufit value of the employed bees does not improved by a continuous predetermined number of iterations, those food sources are abandoned. The food source abandoned by its bee is replaced with a new food source discovered by the scout as per Eq. (13) V. RESULTS AND DISCUSSIONS Simulation studies are carried out in this section to investigate the effects of the SSSC on the power system. The method is implemented using MATLAB software package on a personal computer with Intel Pentium dual core 2.6 GHz processor and 2 GB RAM. The ABC algorithm is employed to solve OPF problem by incorporating SSSC for enhancement of system performance. The ABC parameters used for the simulation are summarized in Table 1. Table 1 ABC parameters S.No Control variables of ABC algorithm values 1 Swarm size 20 2 Number of employed bees foragers 50% of swarm size 3 Number of onlooker bees foragers 50% of swarm size 4 Number of iterations 10 5 Number of scouts per cycle 1 Table 2 Optimal settings of control variables for IEEE-14 Bus test system S.No Parameters Case 1 Case 2 1 Pg1 74.015 82.213 2 Pg2 113.467 93.966 3 Pg3 27.634 36.403 4 Pg6 37.317 40.109 5 Pg8 11.448 10.963 6 Vg1 1.050 1.064 7 Vg2 1.037 1.058 8 Vg3 1.023 1.018 9 Vg6 0.995 1.023 10 Vg8 1.023 1.024 11 T 1 1.007 1.002 12 T 2 0.918 0.926 13 T 3 1.037 0.994 14 QC1 2.63 3.274 15 Total real power generation 263.881 263.654 16 Total Cost 927.300 917.392 17 Real power loss 4.881 4.654 18 Vse(p.u) - - 0.095 19 θse(deg) - - 91.312 Table 3 Bus voltages of IEEE-14 Bus system Bus No. Case 1 Case 2 Voltage magnitude (p.u) Voltage angle (deg.) Voltage magnitude (p.u) Voltage angle (deg.) 1 1.050 0.000 1.064 0.000 2 1.037 -1.341 1.058 -1.131 3 1.023 -6.568 1.018 -6.437 4 1.001 -5.104 1.026 -5.004
  • 5.
    A Solution toOptimal Power Flow Problem using Artificial Bee Colony Algorithm Incorporating www.iosrjournals.org 30 | Page 5 1.016 -4.048 1.038 -4.062 6 0.995 -5.735 1.023 -6.062 7 1.005 -6.801 1.015 -6.644 8 1.023 -5.725 1.024 -5.532 9 0.993 -8.399 1.007 -8.225 10 0.985 -8.268 1.002 -8.158 11 0.986 -7.178 1.008 -7.094 12 0.979 -6.850 1.008 -7.094 13 0.974 -7.081 1.002 -7.280 14 0.969 -8.959 0.986 -8.917 The network and load data for this system is taken from [19]. To test the ability of the ABC algorithm one objective function is considered that is minimization of cost of generation. In order to show the effect of power flow control capability of the SSSC in ABC OPF algorithm, two case studies are carried out on the standard IEEE 14-bus system. Case 1: OPF without SSSC, Case 2: OPF with SSSC. Fig. 2 Cost vs. iterations of IEEE 14 bus system From the Table 2 and Table 3, it can be seen that the installation of SSSC in the network gives the good performance of the system in terms of reduction in cost of generation, power loss reduction and better voltages. It also gives that ABC algorithm is able to enhance the system performance while maintaining all control variables and reactive power outputs within their limits. The convergence characteristics with and without SSSC by using ABC algorithm is shown in Fig 2. From the characteristics it can be seen that the convergence tendency is better with SSSC compared to without SSSC. VI. CONCLUSION This paper incorporates the SSSC in OPF problem to minimize the fuel cost of generation and enhance the system performance. The ABC algorithm is used for solving the OPF problem. The OPF problem is formulated as a nonlinear optimization problem with equality and inequality constraints. The results of the ABC algorithm were compared with and without SSSC. Among the two test cases, test case 2 had the less fuel cost of generation, power loss reduction as well as voltage improvements. The convergence tendency of the ABC algorithm shows that the algorithm relatively converges in less number of cycles. REFERENCES [1]. A. Edris, R. Adapa, M.H. Baker, L. Bohmann, K. Clark, K. Habashi, L Gyugyi, J. Lemay, A.S. Mehraban, A.K. Myers, J. Reeve, F. Sener, D.R.Torgerson, R.R. Wood, Proposed Terms and Definitions for Flexible AC Transmission System (FACTS), IEEE Trans Power Delivery, Vol. 12, No.4, pp. 1848-1853, Oct. 1997. [2]. N. G. Hingorani, L. Gyugyi, Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems, (IEEE Press, New-York, 2000). [3]. R.M. Mathur and R.K. Varma, Thyristor-Based FACTS Controllers for Electrical Transmission Systems, (IEEE Press and Wiley Interscience, New York, USA, Feb. 2002). [4]. M. A. Abido and Y. L. Abdel-Magid, Analysis and Design of Power System Stabilizers and FACTS Based Stabilizers Using Genetic Algorithms, 14th Power Systems Computation Conference PSCC2002, Session 14, Paper 4, Seville, Spain, June 24-28, 2002, CD-ROM. [5]. L. Gyugyi, C.D. Schauder, K.K. Sen, Static Synchronous Series Compensator: A Solid-State Approach to the Series Compensation of Transmission Lines, IEEE Transactions on Power Delivery, Vol. 12, No. 1, Jan. 1997. [6]. L. Gyugyi, C.D. Schauder, S.L. Williams, T.R. Rietman, D.R. Torgerson, A. Edris, The Unified Power Flow Controller: A New Approach to Power Transmission Control, IEEE Transactions on Power Delivery, Vol. 10, No. 2, Apr. 1995. [7]. A.E. Eiben, J.E. Smith, Introduction to Evolutionary Computing, Springer, 2003. [8]. R.C. Eberhart, Y. Shi, J. Kennedy, Swarm Intelligence, Morgan Kaufmann, 2001.
  • 6.
    A Solution toOptimal Power Flow Problem using Artificial Bee Colony Algorithm Incorporating www.iosrjournals.org 31 | Page [9]. J.H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI, 1975. [10]. J.R. Koza, Genetic programming: a paradigm for genetically breeding populations of computer programs to solve problems, Technical Report STAN-CS- 90-1314, Stanford University Computer Science Department, 1990. [11]. L.J. Fogel, A.J. Owens, M.J. Walsh, Artificial Intelligence through Simulated Evolution (John Wiley & Son, New York, NY, 1966). [12]. Abido MA. Optimal power flow using particle swarm optimization, Electr Power Energy Syst, Vol.24, pp.563–71, 2002. [13]. A.V.Naresh Babu and S.Sivanagaraju, A solution to the optimal power flow problem: A new approach based on two step initialization, Proc. of IEEE India International Conference (INDICON) on Engineering Sustainable Solutions, BITS, Hyderabad, India, Dec. 2011. [14]. Claudio Cañizares, William Rosehart, Alberto Berizzi, Cristian Bovo, Comparison of Voltage Security Constrained Optimal Power Flow Techniques, Proc. 2001 IEEE-PES Summer Meeting, Vancouver, BC, July 2001. [15]. Florin Capitanescu, Mevludin Glavic, Damien Ernst, Louis Wehenkel, Interior-point based algorithms for the solution of optimal power flow problems, Electric Power Systems Research Vol. 77 (2007) 508–517 [16]. Kursat Ayan, Ulas Kilic, Artificial Bee Colony algorithm Solution for Optimal reactive Power flow, Applied soft computing Vol. 12 (2012)1477-1482 [17]. Fahad S. Abu-Mouti, M. E. El-Hawary, Optimal Distributed Generation Allocation and Sizing in Distribution Systems via Artificial Bee Colony Algorithm, IEEE Transactions on Power Delivery, Vol. 26, No. 4, Oct 2011 [18]. A.V.Naresh Babu, S.Sivanagaraju and T.Ramana, Mathematical modelling, analysis and effects of static synchronous series compensator (SSSC) parameters in power flow studies, Proc. of Int. Conf. on Machine Intelligence Application to Power Signal Processing Communication and Control (MIPSCCON), GMRIT, Rajam, Andhra Pradesh, India, April 2011. [19]. IEEE 14-bus system data available at http://www.ee.washington.edu/research/pstca