SlideShare a Scribd company logo
Devashish Kumar
Faculty-IT
iNurture
Data Analysis
Data Analysis, also known as analysis of data or data analytics, is a
process of
 Inspecting,
 Cleansing,
 Transforming, and
 Modelling data with the goal of discovering useful information,
suggesting conclusions, and supporting decision-making.
Python as Data Science Tool?
Easy to learn
Scalability
Growing Data Analytics Libraries
Python community
Python Packages for Data Analysis
• Numpy and Scipy – fundamental scientific computing.
• Pandas – data manipulation and analysis.
• Matplotlib – plotting and visualization.
• Scikit-learn– machine learning and data mining.
• StatsModels – statistical modeling, testing, and analysis.
NumPY
The NumPy (Numeric Python) package required for high performance
computing and data analysis.
Low level library written in C (and FORTRAN) for high level
mathematical functions.
Overcomes the problem of running slower algorithms on Python by
using multidimensional arrays and functions that operate on arrays.
Allows concise and quick computations by VECTORIZATION.
To use NumPy module, we need to import it using:
Python in combination with NumPy,
Scipy and Matplotlib can be used as a
replacement for MATLAB.
Matplotlib module provides MATLAB-
like plotting functionality.
NumPy – A Replacement for MatLab
Operations Using NumPy
 Fast vectorized array operations for data munging and cleaning, subsetting and
filtering, transformation, and any other kinds of computations
 Common array algorithms like sorting, unique, and set operations
 Efficient descriptive statistics and aggregating/summarizing data
 Data alignment and relational data manipulations for merging and joining
together heterogeneous data sets
 Expressing conditional logic as array expressions instead of loops with if-elif-
else branches
 Group-wise data manipulations (aggregation, transformation, function
Core Python Vs NumPy
"Core Python", means Python without any special modules, i.e. especially without
NumPy.
Advantages of Core Python:
high-level number objects: integers, floating point
containers: lists with cheap insertion and append methods, dictionaries with fast
lookup
 Advantages of using NumPy with Python:
array oriented computing
efficiently implemented multi-dimensional arrays
Advantages of using NumPy with Python
 Array oriented computing
 Efficiently implemented multi-dimensional arrays
 Designed for scientific computation
 Standard mathematical functions for fast operations on entire arrays of data without
having to write loops
 Tools for reading / writing array data to disk and working with memory-mapped files
 Linear algebra, random number generation, and Fourier transform capabilities.
NumPy(Array)
 NumPy array is a grid of values.
 Similar to lists, except that every element of an array must be the same type.
 Alias for NumPy library is np.
 np.array() is used to convert a list into a NumPy array.
NumPy(Array)
SHAPE
Shape function gives a tuple of array dimensions and can be used to change the
dimensions of an array.
 Using shape to get array dimensions
 Using shape to change array dimensions
NumPy(Array)
RESHAPE
Gives a new shape to an array without changing its data.
Creates a new array and does not modify the original array itself.
NumPy(Array)
TRANSPOSE
Generates the transposition of an array using the function np.transpose.
Does not affect the original array, but it will create a new array.
NumPy(Array)
FLATTEN
Flatten creates a copy of the input array flattened to one dimension.
NumPy(Array)
 CONCATENATE
 Two or more arrays can be concatenated together using the concatenate function with a
tuple of the arrays to be joined:
 If an array has more than one dimension, it is possible to specify the axis along which
multiple arrays are concatenated. By default, it is along the first dimension.
NumPy(Array)
 ZEROS
The zeros tool returns a new array with a given shape and type filled with 0's.
 ONES
The ones tool returns a new array with a given shape and type filled with 1's.
NumPy(Array)
IDENTITY
Returns an identity array.
An identity array is a square matrix with all the main diagonal elements as 1 and the rest
as 0 . The default type of elements is float.
NumPy(Array)
EYE
 Returns a 2-D array with 1's as the diagonal and 0's elsewhere.
 The diagonal can be main, upper or lower depending on the optional parameter .
 Positive k is for the upper diagonal, a negative k is for the lower, and a 0k (default) is for the
main diagonal.
NumPy(Linear Algebra)
 The NumPy module also comes with a number of built-in routines for linear algebra
calculations.
 These can be found in the sub-module linalg.
 Some of the built in routines are:
 linalg.det
 linalg.eiv
 linalg.inv
NUMPY(LINEAR ALGEBRA)
 linalg.det: Computes the determinant of an array.
 linalg.eig: Computes the eigen values and right eigen vectors of a square array.
Operations On NumPy
We can perform operations on
numpy such as addition,
subtraction , multiplication and
even dot product of two or more
matrices
Operations On NumPy
 To transpose a matrix, use
matrix_name.T operation .
 To find what shape is of
transposed matrix is use
matrix_name.T.shape to find it.
TRANPOSE
Operations On NumPy
We can find the sum of matrices by
sum() operation.
We can find the maximum number in
the matrix by using max() operation.
We can find the position of the
element in the matrix where the
maximum or minimum value is in
place.
We can find the mean of a matrix
using mean() operation.
NumPy(Indexing/Slicing)
Fetches elements from 2nd to 7th
position of single dimensional array.
Fetches last 2 elements of single
dimensional array.
NumPy(Indexing/Slicing)
CONTRIBUTERS

More Related Content

What's hot (20)

Introduction to matplotlib
Introduction to matplotlibIntroduction to matplotlib
Introduction to matplotlib
Piyush rai
 
Introduction to numpy
Introduction to numpyIntroduction to numpy
Introduction to numpy
Gaurav Aggarwal
 
NumPy.pptx
NumPy.pptxNumPy.pptx
NumPy.pptx
EN1036VivekSingh
 
Data Structures in Python
Data Structures in PythonData Structures in Python
Data Structures in Python
Devashish Kumar
 
Functions in Python
Functions in PythonFunctions in Python
Functions in Python
Kamal Acharya
 
Numpy
NumpyNumpy
Numpy
Jyoti shukla
 
Python Scipy Numpy
Python Scipy NumpyPython Scipy Numpy
Python Scipy Numpy
Girish Khanzode
 
standard template library(STL) in C++
standard template library(STL) in C++standard template library(STL) in C++
standard template library(STL) in C++
•sreejith •sree
 
Python NumPy Tutorial | NumPy Array | Edureka
Python NumPy Tutorial | NumPy Array | EdurekaPython NumPy Tutorial | NumPy Array | Edureka
Python NumPy Tutorial | NumPy Array | Edureka
Edureka!
 
NumPy
NumPyNumPy
NumPy
AbhijeetAnand88
 
Python lambda functions with filter, map & reduce function
Python lambda functions with filter, map & reduce functionPython lambda functions with filter, map & reduce function
Python lambda functions with filter, map & reduce function
ARVIND PANDE
 
Introduction to pandas
Introduction to pandasIntroduction to pandas
Introduction to pandas
Piyush rai
 
Modules and packages in python
Modules and packages in pythonModules and packages in python
Modules and packages in python
TMARAGATHAM
 
Python - Numpy/Pandas/Matplot Machine Learning Libraries
Python - Numpy/Pandas/Matplot Machine Learning LibrariesPython - Numpy/Pandas/Matplot Machine Learning Libraries
Python - Numpy/Pandas/Matplot Machine Learning Libraries
Andrew Ferlitsch
 
Functions in python slide share
Functions in python slide shareFunctions in python slide share
Functions in python slide share
Devashish Kumar
 
Numpy tutorial
Numpy tutorialNumpy tutorial
Numpy tutorial
HarikaReddy115
 
Sorting in python
Sorting in python Sorting in python
Sorting in python
Simplilearn
 
Python Functions Tutorial | Working With Functions In Python | Python Trainin...
Python Functions Tutorial | Working With Functions In Python | Python Trainin...Python Functions Tutorial | Working With Functions In Python | Python Trainin...
Python Functions Tutorial | Working With Functions In Python | Python Trainin...
Edureka!
 
MatplotLib.pptx
MatplotLib.pptxMatplotLib.pptx
MatplotLib.pptx
Paras Intotech
 
Python recursion
Python recursionPython recursion
Python recursion
Prof. Dr. K. Adisesha
 
Introduction to matplotlib
Introduction to matplotlibIntroduction to matplotlib
Introduction to matplotlib
Piyush rai
 
Data Structures in Python
Data Structures in PythonData Structures in Python
Data Structures in Python
Devashish Kumar
 
standard template library(STL) in C++
standard template library(STL) in C++standard template library(STL) in C++
standard template library(STL) in C++
•sreejith •sree
 
Python NumPy Tutorial | NumPy Array | Edureka
Python NumPy Tutorial | NumPy Array | EdurekaPython NumPy Tutorial | NumPy Array | Edureka
Python NumPy Tutorial | NumPy Array | Edureka
Edureka!
 
Python lambda functions with filter, map & reduce function
Python lambda functions with filter, map & reduce functionPython lambda functions with filter, map & reduce function
Python lambda functions with filter, map & reduce function
ARVIND PANDE
 
Introduction to pandas
Introduction to pandasIntroduction to pandas
Introduction to pandas
Piyush rai
 
Modules and packages in python
Modules and packages in pythonModules and packages in python
Modules and packages in python
TMARAGATHAM
 
Python - Numpy/Pandas/Matplot Machine Learning Libraries
Python - Numpy/Pandas/Matplot Machine Learning LibrariesPython - Numpy/Pandas/Matplot Machine Learning Libraries
Python - Numpy/Pandas/Matplot Machine Learning Libraries
Andrew Ferlitsch
 
Functions in python slide share
Functions in python slide shareFunctions in python slide share
Functions in python slide share
Devashish Kumar
 
Sorting in python
Sorting in python Sorting in python
Sorting in python
Simplilearn
 
Python Functions Tutorial | Working With Functions In Python | Python Trainin...
Python Functions Tutorial | Working With Functions In Python | Python Trainin...Python Functions Tutorial | Working With Functions In Python | Python Trainin...
Python Functions Tutorial | Working With Functions In Python | Python Trainin...
Edureka!
 

Similar to Data Analysis in Python-NumPy (20)

Introduction-to-NumPy-in-Python (1).pptx
Introduction-to-NumPy-in-Python (1).pptxIntroduction-to-NumPy-in-Python (1).pptx
Introduction-to-NumPy-in-Python (1).pptx
disserdekabrcha
 
DATA ANALYSIS AND VISUALISATION using python
DATA ANALYSIS AND VISUALISATION using pythonDATA ANALYSIS AND VISUALISATION using python
DATA ANALYSIS AND VISUALISATION using python
ChiragNahata2
 
ACFrOgAabSLW3ZCRLJ0i-To_2fPk_pA9QThyDKNNlA3VK282MnXaLGJa7APKD15-TW9zT_QI98dAH...
ACFrOgAabSLW3ZCRLJ0i-To_2fPk_pA9QThyDKNNlA3VK282MnXaLGJa7APKD15-TW9zT_QI98dAH...ACFrOgAabSLW3ZCRLJ0i-To_2fPk_pA9QThyDKNNlA3VK282MnXaLGJa7APKD15-TW9zT_QI98dAH...
ACFrOgAabSLW3ZCRLJ0i-To_2fPk_pA9QThyDKNNlA3VK282MnXaLGJa7APKD15-TW9zT_QI98dAH...
DineshThallapelly
 
Chapter 5-Numpy-Pandas.pptx python programming
Chapter 5-Numpy-Pandas.pptx python programmingChapter 5-Numpy-Pandas.pptx python programming
Chapter 5-Numpy-Pandas.pptx python programming
ssuser77162c
 
data science for engineering reference pdf
data science for engineering reference pdfdata science for engineering reference pdf
data science for engineering reference pdf
fatehiaryaa
 
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python.pptx
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python.pptxQ-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python.pptx
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python.pptx
kalai75
 
L 5 Numpy final learning and Coding
L 5 Numpy final learning and CodingL 5 Numpy final learning and Coding
L 5 Numpy final learning and Coding
Kirti Verma
 
Introduction to numpy.pptx
Introduction to numpy.pptxIntroduction to numpy.pptx
Introduction to numpy.pptx
ssuser0e701a
 
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python.pptx
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python.pptxQ-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python.pptx
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python.pptx
Ogunsina1
 
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python (3).pptx
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python (3).pptxQ-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python (3).pptx
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python (3).pptx
smartashammari
 
lec08-numpy.pptx
lec08-numpy.pptxlec08-numpy.pptx
lec08-numpy.pptx
lekha572836
 
NUMPY [Autosaved] .pptx
NUMPY [Autosaved]                    .pptxNUMPY [Autosaved]                    .pptx
NUMPY [Autosaved] .pptx
coolmanbalu123
 
NumPy-python-27-9-24-we.pptxNumPy-python-27-9-24-we.pptx
NumPy-python-27-9-24-we.pptxNumPy-python-27-9-24-we.pptxNumPy-python-27-9-24-we.pptxNumPy-python-27-9-24-we.pptx
NumPy-python-27-9-24-we.pptxNumPy-python-27-9-24-we.pptx
tahirnaquash2
 
Arrays with Numpy, Computer Graphics
Arrays with Numpy, Computer GraphicsArrays with Numpy, Computer Graphics
Arrays with Numpy, Computer Graphics
Prabu U
 
Lecture 2 _Foundions foundions NumPyI.pptx
Lecture 2 _Foundions foundions NumPyI.pptxLecture 2 _Foundions foundions NumPyI.pptx
Lecture 2 _Foundions foundions NumPyI.pptx
disserdekabrcha
 
Numpy in python, Array operations using numpy and so on
Numpy in python, Array operations using numpy and so onNumpy in python, Array operations using numpy and so on
Numpy in python, Array operations using numpy and so on
SherinRappai
 
Numpy.pdf
Numpy.pdfNumpy.pdf
Numpy.pdf
Arvind Pathak
 
To understand the importance of Python libraries in data analysis.
To understand the importance of Python libraries in data analysis.To understand the importance of Python libraries in data analysis.
To understand the importance of Python libraries in data analysis.
GurpinderSingh98
 
L-30-35huujjjhgjnnjhggbjkiuuhhjkiiijj.pptx
L-30-35huujjjhgjnnjhggbjkiuuhhjkiiijj.pptxL-30-35huujjjhgjnnjhggbjkiuuhhjkiiijj.pptx
L-30-35huujjjhgjnnjhggbjkiuuhhjkiiijj.pptx
baadshahyash
 
Migrating from matlab to python
Migrating from matlab to pythonMigrating from matlab to python
Migrating from matlab to python
ActiveState
 
Introduction-to-NumPy-in-Python (1).pptx
Introduction-to-NumPy-in-Python (1).pptxIntroduction-to-NumPy-in-Python (1).pptx
Introduction-to-NumPy-in-Python (1).pptx
disserdekabrcha
 
DATA ANALYSIS AND VISUALISATION using python
DATA ANALYSIS AND VISUALISATION using pythonDATA ANALYSIS AND VISUALISATION using python
DATA ANALYSIS AND VISUALISATION using python
ChiragNahata2
 
ACFrOgAabSLW3ZCRLJ0i-To_2fPk_pA9QThyDKNNlA3VK282MnXaLGJa7APKD15-TW9zT_QI98dAH...
ACFrOgAabSLW3ZCRLJ0i-To_2fPk_pA9QThyDKNNlA3VK282MnXaLGJa7APKD15-TW9zT_QI98dAH...ACFrOgAabSLW3ZCRLJ0i-To_2fPk_pA9QThyDKNNlA3VK282MnXaLGJa7APKD15-TW9zT_QI98dAH...
ACFrOgAabSLW3ZCRLJ0i-To_2fPk_pA9QThyDKNNlA3VK282MnXaLGJa7APKD15-TW9zT_QI98dAH...
DineshThallapelly
 
Chapter 5-Numpy-Pandas.pptx python programming
Chapter 5-Numpy-Pandas.pptx python programmingChapter 5-Numpy-Pandas.pptx python programming
Chapter 5-Numpy-Pandas.pptx python programming
ssuser77162c
 
data science for engineering reference pdf
data science for engineering reference pdfdata science for engineering reference pdf
data science for engineering reference pdf
fatehiaryaa
 
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python.pptx
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python.pptxQ-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python.pptx
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python.pptx
kalai75
 
L 5 Numpy final learning and Coding
L 5 Numpy final learning and CodingL 5 Numpy final learning and Coding
L 5 Numpy final learning and Coding
Kirti Verma
 
Introduction to numpy.pptx
Introduction to numpy.pptxIntroduction to numpy.pptx
Introduction to numpy.pptx
ssuser0e701a
 
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python.pptx
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python.pptxQ-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python.pptx
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python.pptx
Ogunsina1
 
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python (3).pptx
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python (3).pptxQ-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python (3).pptx
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python (3).pptx
smartashammari
 
lec08-numpy.pptx
lec08-numpy.pptxlec08-numpy.pptx
lec08-numpy.pptx
lekha572836
 
NUMPY [Autosaved] .pptx
NUMPY [Autosaved]                    .pptxNUMPY [Autosaved]                    .pptx
NUMPY [Autosaved] .pptx
coolmanbalu123
 
NumPy-python-27-9-24-we.pptxNumPy-python-27-9-24-we.pptx
NumPy-python-27-9-24-we.pptxNumPy-python-27-9-24-we.pptxNumPy-python-27-9-24-we.pptxNumPy-python-27-9-24-we.pptx
NumPy-python-27-9-24-we.pptxNumPy-python-27-9-24-we.pptx
tahirnaquash2
 
Arrays with Numpy, Computer Graphics
Arrays with Numpy, Computer GraphicsArrays with Numpy, Computer Graphics
Arrays with Numpy, Computer Graphics
Prabu U
 
Lecture 2 _Foundions foundions NumPyI.pptx
Lecture 2 _Foundions foundions NumPyI.pptxLecture 2 _Foundions foundions NumPyI.pptx
Lecture 2 _Foundions foundions NumPyI.pptx
disserdekabrcha
 
Numpy in python, Array operations using numpy and so on
Numpy in python, Array operations using numpy and so onNumpy in python, Array operations using numpy and so on
Numpy in python, Array operations using numpy and so on
SherinRappai
 
To understand the importance of Python libraries in data analysis.
To understand the importance of Python libraries in data analysis.To understand the importance of Python libraries in data analysis.
To understand the importance of Python libraries in data analysis.
GurpinderSingh98
 
L-30-35huujjjhgjnnjhggbjkiuuhhjkiiijj.pptx
L-30-35huujjjhgjnnjhggbjkiuuhhjkiiijj.pptxL-30-35huujjjhgjnnjhggbjkiuuhhjkiiijj.pptx
L-30-35huujjjhgjnnjhggbjkiuuhhjkiiijj.pptx
baadshahyash
 
Migrating from matlab to python
Migrating from matlab to pythonMigrating from matlab to python
Migrating from matlab to python
ActiveState
 
Ad

Recently uploaded (20)

Search Engine Optimization (SEO) for Website Success
Search Engine Optimization (SEO) for Website SuccessSearch Engine Optimization (SEO) for Website Success
Search Engine Optimization (SEO) for Website Success
Muneeb Rana
 
Coleoptera: The Largest Insect Order.pptx
Coleoptera: The Largest Insect Order.pptxColeoptera: The Largest Insect Order.pptx
Coleoptera: The Largest Insect Order.pptx
Arshad Shaikh
 
POS Reporting in Odoo 18 - Odoo 18 Slides
POS Reporting in Odoo 18 - Odoo 18 SlidesPOS Reporting in Odoo 18 - Odoo 18 Slides
POS Reporting in Odoo 18 - Odoo 18 Slides
Celine George
 
Uterine Prolapse, causes type and classification,its managment
Uterine Prolapse, causes type and classification,its managmentUterine Prolapse, causes type and classification,its managment
Uterine Prolapse, causes type and classification,its managment
Ritu480198
 
Forestry Model Exit Exam_2025_Wollega University, Gimbi Campus.pdf
Forestry Model Exit Exam_2025_Wollega University, Gimbi Campus.pdfForestry Model Exit Exam_2025_Wollega University, Gimbi Campus.pdf
Forestry Model Exit Exam_2025_Wollega University, Gimbi Campus.pdf
ChalaKelbessa
 
TechSoup Microsoft Copilot Nonprofit Use Cases and Live Demo - 2025.05.28.pdf
TechSoup Microsoft Copilot Nonprofit Use Cases and Live Demo - 2025.05.28.pdfTechSoup Microsoft Copilot Nonprofit Use Cases and Live Demo - 2025.05.28.pdf
TechSoup Microsoft Copilot Nonprofit Use Cases and Live Demo - 2025.05.28.pdf
TechSoup
 
Writing Research Papers: Guidance for Research Community
Writing Research Papers: Guidance for Research CommunityWriting Research Papers: Guidance for Research Community
Writing Research Papers: Guidance for Research Community
Rishi Bankim Chandra Evening College, Naihati, North 24 Parganas, West Bengal, India
 
THE CHURCH AND ITS IMPACT: FOSTERING CHRISTIAN EDUCATION
THE CHURCH AND ITS IMPACT: FOSTERING CHRISTIAN EDUCATIONTHE CHURCH AND ITS IMPACT: FOSTERING CHRISTIAN EDUCATION
THE CHURCH AND ITS IMPACT: FOSTERING CHRISTIAN EDUCATION
PROF. PAUL ALLIEU KAMARA
 
Dashboard Overview in Odoo 18 - Odoo Slides
Dashboard Overview in Odoo 18 - Odoo SlidesDashboard Overview in Odoo 18 - Odoo Slides
Dashboard Overview in Odoo 18 - Odoo Slides
Celine George
 
K-Circle-Weekly-Quiz-May2025_12345678910
K-Circle-Weekly-Quiz-May2025_12345678910K-Circle-Weekly-Quiz-May2025_12345678910
K-Circle-Weekly-Quiz-May2025_12345678910
PankajRodey1
 
Types of Actions in Odoo 18 - Odoo Slides
Types of Actions in Odoo 18 - Odoo SlidesTypes of Actions in Odoo 18 - Odoo Slides
Types of Actions in Odoo 18 - Odoo Slides
Celine George
 
LDMMIA Free Reiki Yoga S7 Weekly Workshops
LDMMIA Free Reiki Yoga S7 Weekly WorkshopsLDMMIA Free Reiki Yoga S7 Weekly Workshops
LDMMIA Free Reiki Yoga S7 Weekly Workshops
LDM & Mia eStudios
 
LDMMIA Bonus GUEST GRAD Student Check-in
LDMMIA Bonus GUEST GRAD Student Check-inLDMMIA Bonus GUEST GRAD Student Check-in
LDMMIA Bonus GUEST GRAD Student Check-in
LDM & Mia eStudios
 
A Brief Introduction About Jack Lutkus
A Brief Introduction About  Jack  LutkusA Brief Introduction About  Jack  Lutkus
A Brief Introduction About Jack Lutkus
Jack Lutkus
 
Stewart Butler - OECD - How to design and deliver higher technical education ...
Stewart Butler - OECD - How to design and deliver higher technical education ...Stewart Butler - OECD - How to design and deliver higher technical education ...
Stewart Butler - OECD - How to design and deliver higher technical education ...
EduSkills OECD
 
How to Use Owl Slots in Odoo 17 - Odoo Slides
How to Use Owl Slots in Odoo 17 - Odoo SlidesHow to Use Owl Slots in Odoo 17 - Odoo Slides
How to Use Owl Slots in Odoo 17 - Odoo Slides
Celine George
 
LET´S PRACTICE GRAMMAR USING SIMPLE PAST TENSE
LET´S PRACTICE GRAMMAR USING SIMPLE PAST TENSELET´S PRACTICE GRAMMAR USING SIMPLE PAST TENSE
LET´S PRACTICE GRAMMAR USING SIMPLE PAST TENSE
OlgaLeonorTorresSnch
 
"Dictyoptera: The Order of Cockroaches and Mantises" Or, more specifically: ...
"Dictyoptera: The Order of Cockroaches and Mantises"  Or, more specifically: ..."Dictyoptera: The Order of Cockroaches and Mantises"  Or, more specifically: ...
"Dictyoptera: The Order of Cockroaches and Mantises" Or, more specifically: ...
Arshad Shaikh
 
How to Configure Add to Cart in Odoo 18 Website
How to Configure Add to Cart in Odoo 18 WebsiteHow to Configure Add to Cart in Odoo 18 Website
How to Configure Add to Cart in Odoo 18 Website
Celine George
 
Cloud Computing ..PPT ( Faizan ALTAF )..
Cloud Computing ..PPT ( Faizan ALTAF )..Cloud Computing ..PPT ( Faizan ALTAF )..
Cloud Computing ..PPT ( Faizan ALTAF )..
faizanaltaf231
 
Search Engine Optimization (SEO) for Website Success
Search Engine Optimization (SEO) for Website SuccessSearch Engine Optimization (SEO) for Website Success
Search Engine Optimization (SEO) for Website Success
Muneeb Rana
 
Coleoptera: The Largest Insect Order.pptx
Coleoptera: The Largest Insect Order.pptxColeoptera: The Largest Insect Order.pptx
Coleoptera: The Largest Insect Order.pptx
Arshad Shaikh
 
POS Reporting in Odoo 18 - Odoo 18 Slides
POS Reporting in Odoo 18 - Odoo 18 SlidesPOS Reporting in Odoo 18 - Odoo 18 Slides
POS Reporting in Odoo 18 - Odoo 18 Slides
Celine George
 
Uterine Prolapse, causes type and classification,its managment
Uterine Prolapse, causes type and classification,its managmentUterine Prolapse, causes type and classification,its managment
Uterine Prolapse, causes type and classification,its managment
Ritu480198
 
Forestry Model Exit Exam_2025_Wollega University, Gimbi Campus.pdf
Forestry Model Exit Exam_2025_Wollega University, Gimbi Campus.pdfForestry Model Exit Exam_2025_Wollega University, Gimbi Campus.pdf
Forestry Model Exit Exam_2025_Wollega University, Gimbi Campus.pdf
ChalaKelbessa
 
TechSoup Microsoft Copilot Nonprofit Use Cases and Live Demo - 2025.05.28.pdf
TechSoup Microsoft Copilot Nonprofit Use Cases and Live Demo - 2025.05.28.pdfTechSoup Microsoft Copilot Nonprofit Use Cases and Live Demo - 2025.05.28.pdf
TechSoup Microsoft Copilot Nonprofit Use Cases and Live Demo - 2025.05.28.pdf
TechSoup
 
THE CHURCH AND ITS IMPACT: FOSTERING CHRISTIAN EDUCATION
THE CHURCH AND ITS IMPACT: FOSTERING CHRISTIAN EDUCATIONTHE CHURCH AND ITS IMPACT: FOSTERING CHRISTIAN EDUCATION
THE CHURCH AND ITS IMPACT: FOSTERING CHRISTIAN EDUCATION
PROF. PAUL ALLIEU KAMARA
 
Dashboard Overview in Odoo 18 - Odoo Slides
Dashboard Overview in Odoo 18 - Odoo SlidesDashboard Overview in Odoo 18 - Odoo Slides
Dashboard Overview in Odoo 18 - Odoo Slides
Celine George
 
K-Circle-Weekly-Quiz-May2025_12345678910
K-Circle-Weekly-Quiz-May2025_12345678910K-Circle-Weekly-Quiz-May2025_12345678910
K-Circle-Weekly-Quiz-May2025_12345678910
PankajRodey1
 
Types of Actions in Odoo 18 - Odoo Slides
Types of Actions in Odoo 18 - Odoo SlidesTypes of Actions in Odoo 18 - Odoo Slides
Types of Actions in Odoo 18 - Odoo Slides
Celine George
 
LDMMIA Free Reiki Yoga S7 Weekly Workshops
LDMMIA Free Reiki Yoga S7 Weekly WorkshopsLDMMIA Free Reiki Yoga S7 Weekly Workshops
LDMMIA Free Reiki Yoga S7 Weekly Workshops
LDM & Mia eStudios
 
LDMMIA Bonus GUEST GRAD Student Check-in
LDMMIA Bonus GUEST GRAD Student Check-inLDMMIA Bonus GUEST GRAD Student Check-in
LDMMIA Bonus GUEST GRAD Student Check-in
LDM & Mia eStudios
 
A Brief Introduction About Jack Lutkus
A Brief Introduction About  Jack  LutkusA Brief Introduction About  Jack  Lutkus
A Brief Introduction About Jack Lutkus
Jack Lutkus
 
Stewart Butler - OECD - How to design and deliver higher technical education ...
Stewart Butler - OECD - How to design and deliver higher technical education ...Stewart Butler - OECD - How to design and deliver higher technical education ...
Stewart Butler - OECD - How to design and deliver higher technical education ...
EduSkills OECD
 
How to Use Owl Slots in Odoo 17 - Odoo Slides
How to Use Owl Slots in Odoo 17 - Odoo SlidesHow to Use Owl Slots in Odoo 17 - Odoo Slides
How to Use Owl Slots in Odoo 17 - Odoo Slides
Celine George
 
LET´S PRACTICE GRAMMAR USING SIMPLE PAST TENSE
LET´S PRACTICE GRAMMAR USING SIMPLE PAST TENSELET´S PRACTICE GRAMMAR USING SIMPLE PAST TENSE
LET´S PRACTICE GRAMMAR USING SIMPLE PAST TENSE
OlgaLeonorTorresSnch
 
"Dictyoptera: The Order of Cockroaches and Mantises" Or, more specifically: ...
"Dictyoptera: The Order of Cockroaches and Mantises"  Or, more specifically: ..."Dictyoptera: The Order of Cockroaches and Mantises"  Or, more specifically: ...
"Dictyoptera: The Order of Cockroaches and Mantises" Or, more specifically: ...
Arshad Shaikh
 
How to Configure Add to Cart in Odoo 18 Website
How to Configure Add to Cart in Odoo 18 WebsiteHow to Configure Add to Cart in Odoo 18 Website
How to Configure Add to Cart in Odoo 18 Website
Celine George
 
Cloud Computing ..PPT ( Faizan ALTAF )..
Cloud Computing ..PPT ( Faizan ALTAF )..Cloud Computing ..PPT ( Faizan ALTAF )..
Cloud Computing ..PPT ( Faizan ALTAF )..
faizanaltaf231
 
Ad

Data Analysis in Python-NumPy

  • 2. Data Analysis Data Analysis, also known as analysis of data or data analytics, is a process of  Inspecting,  Cleansing,  Transforming, and  Modelling data with the goal of discovering useful information, suggesting conclusions, and supporting decision-making.
  • 3. Python as Data Science Tool? Easy to learn Scalability Growing Data Analytics Libraries Python community
  • 4. Python Packages for Data Analysis • Numpy and Scipy – fundamental scientific computing. • Pandas – data manipulation and analysis. • Matplotlib – plotting and visualization. • Scikit-learn– machine learning and data mining. • StatsModels – statistical modeling, testing, and analysis.
  • 5. NumPY The NumPy (Numeric Python) package required for high performance computing and data analysis. Low level library written in C (and FORTRAN) for high level mathematical functions. Overcomes the problem of running slower algorithms on Python by using multidimensional arrays and functions that operate on arrays. Allows concise and quick computations by VECTORIZATION. To use NumPy module, we need to import it using:
  • 6. Python in combination with NumPy, Scipy and Matplotlib can be used as a replacement for MATLAB. Matplotlib module provides MATLAB- like plotting functionality. NumPy – A Replacement for MatLab
  • 7. Operations Using NumPy  Fast vectorized array operations for data munging and cleaning, subsetting and filtering, transformation, and any other kinds of computations  Common array algorithms like sorting, unique, and set operations  Efficient descriptive statistics and aggregating/summarizing data  Data alignment and relational data manipulations for merging and joining together heterogeneous data sets  Expressing conditional logic as array expressions instead of loops with if-elif- else branches  Group-wise data manipulations (aggregation, transformation, function
  • 8. Core Python Vs NumPy "Core Python", means Python without any special modules, i.e. especially without NumPy. Advantages of Core Python: high-level number objects: integers, floating point containers: lists with cheap insertion and append methods, dictionaries with fast lookup  Advantages of using NumPy with Python: array oriented computing efficiently implemented multi-dimensional arrays
  • 9. Advantages of using NumPy with Python  Array oriented computing  Efficiently implemented multi-dimensional arrays  Designed for scientific computation  Standard mathematical functions for fast operations on entire arrays of data without having to write loops  Tools for reading / writing array data to disk and working with memory-mapped files  Linear algebra, random number generation, and Fourier transform capabilities.
  • 10. NumPy(Array)  NumPy array is a grid of values.  Similar to lists, except that every element of an array must be the same type.  Alias for NumPy library is np.  np.array() is used to convert a list into a NumPy array.
  • 11. NumPy(Array) SHAPE Shape function gives a tuple of array dimensions and can be used to change the dimensions of an array.  Using shape to get array dimensions  Using shape to change array dimensions
  • 12. NumPy(Array) RESHAPE Gives a new shape to an array without changing its data. Creates a new array and does not modify the original array itself.
  • 13. NumPy(Array) TRANSPOSE Generates the transposition of an array using the function np.transpose. Does not affect the original array, but it will create a new array.
  • 14. NumPy(Array) FLATTEN Flatten creates a copy of the input array flattened to one dimension.
  • 15. NumPy(Array)  CONCATENATE  Two or more arrays can be concatenated together using the concatenate function with a tuple of the arrays to be joined:  If an array has more than one dimension, it is possible to specify the axis along which multiple arrays are concatenated. By default, it is along the first dimension.
  • 16. NumPy(Array)  ZEROS The zeros tool returns a new array with a given shape and type filled with 0's.  ONES The ones tool returns a new array with a given shape and type filled with 1's.
  • 17. NumPy(Array) IDENTITY Returns an identity array. An identity array is a square matrix with all the main diagonal elements as 1 and the rest as 0 . The default type of elements is float.
  • 18. NumPy(Array) EYE  Returns a 2-D array with 1's as the diagonal and 0's elsewhere.  The diagonal can be main, upper or lower depending on the optional parameter .  Positive k is for the upper diagonal, a negative k is for the lower, and a 0k (default) is for the main diagonal.
  • 19. NumPy(Linear Algebra)  The NumPy module also comes with a number of built-in routines for linear algebra calculations.  These can be found in the sub-module linalg.  Some of the built in routines are:  linalg.det  linalg.eiv  linalg.inv
  • 20. NUMPY(LINEAR ALGEBRA)  linalg.det: Computes the determinant of an array.  linalg.eig: Computes the eigen values and right eigen vectors of a square array.
  • 21. Operations On NumPy We can perform operations on numpy such as addition, subtraction , multiplication and even dot product of two or more matrices
  • 22. Operations On NumPy  To transpose a matrix, use matrix_name.T operation .  To find what shape is of transposed matrix is use matrix_name.T.shape to find it. TRANPOSE
  • 23. Operations On NumPy We can find the sum of matrices by sum() operation. We can find the maximum number in the matrix by using max() operation. We can find the position of the element in the matrix where the maximum or minimum value is in place. We can find the mean of a matrix using mean() operation.
  • 24. NumPy(Indexing/Slicing) Fetches elements from 2nd to 7th position of single dimensional array. Fetches last 2 elements of single dimensional array.