SlideShare a Scribd company logo
Perl Engineer & Evangelist, 10gen
Mike Friedman
#MongoDBdays
Schema Design
Four Real-World Use
Cases
Single Table En
Agenda
• Why is schema design important
• 4 Real World Schemas
– Inbox
– History
– IndexedAttributes
– Multiple Identities
• Conclusions
Why is Schema Design
important?
• Largest factor for a performant system
• Schema design with MongoDB is different
• RDBMS – "What answers do I have?"
• MongoDB – "What question will I have?"
#1 - Message Inbox
Let’s get
Social
Sending Messages
?
Design Goals
• Efficiently send new messages to recipients
• Efficiently read inbox
Reading my Inbox
?
3 Approaches (there are
more)
• Fan out on Read
• Fan out on Write
• Fan out on Write with Bucketing
// Shard on "from"
db.shardCollection( "mongodbdays.inbox", { from: 1 } )
// Make sure we have an index to handle inbox reads
db.inbox.ensureIndex( { to: 1, sent: 1 } )
msg = {
from: "Joe",
to: [ "Bob", "Jane" ],
sent: new Date(),
message: "Hi!",
}
// Send a message
db.inbox.save( msg )
// Read my inbox
db.inbox.find( { to: "Joe" } ).sort( { sent: -1 } )
Fan out on read
Fan out on read – Send
Message
Shard 1 Shard 2 Shard 3
Send
Message
Fan out on read – Inbox Read
Shard 1 Shard 2 Shard 3
Read
Inbox
Considerations
• One document per message sent
• Reading an inbox means finding all messages
with my own name in the recipient field
• Requires scatter-gather on sharded cluster
• Then a lot of random IO on a shard to find
everything
// Shard on “recipient” and “sent”
db.shardCollection( "mongodbdays.inbox", { ”recipient”: 1, ”sent”: 1 } )
msg = {
from: "Joe",
to: [ "Bob", "Jane" ],
sent: new Date(),
message: "Hi!",
}
// Send a message
for ( recipient in msg.to ) {
msg.recipient = msg.to[recipient]
db.inbox.save( msg );
}
// Read my inbox
db.inbox.find( { recipient: "Joe" } ).sort( { sent: -1 } )
Fan out on write
Fan out on write – Send
Message
Shard 1 Shard 2 Shard 3
Send
Message
Fan out on write– Read Inbox
Shard 1 Shard 2 Shard 3
Read
Inbox
Considerations
• One document per recipient
• Reading my inbox is just finding all of the
messages with me as the recipient
• Can shard on recipient, so inbox reads hit one
shard
• But still lots of random IO on the shard
// Shard on “owner / sequence”
db.shardCollection( "mongodbdays.inbox", { owner: 1, sequence: 1 } )
db.shardCollection( "mongodbdays.users", { user_name: 1 } )
msg = {
from: "Joe",
to: [ "Bob", "Jane" ],
sent: new Date(),
message: "Hi!",
}
Fan out on write with buckets
// Send a message
for( recipient in msg.to) {
count = db.users.findAndModify({
query: { user_name: msg.to[recipient] },
update: { "$inc": { "msg_count": 1 } },
upsert: true,
new: true }).msg_count;
sequence = Math.floor(count / 50);
db.inbox.update({
owner: msg.to[recipient], sequence: sequence },
{ $push: { "messages": msg } },
{ upsert: true } );
}
// Read my inbox
db.inbox.find( { owner: "Joe" } ).sort ( { sequence: -1 } ).limit( 2 )
Fan out on write with buckets
Fan out on write with buckets
• Each “inbox” document is an array of messages
• Append a message onto “inbox” of recipient
• Bucket inboxes so there’s not too many
messages per document
• Can shard on recipient, so inbox reads hit one
shard
• 1 or 2 documents to read the whole inbox
Fan out on write with buckets -
Send
Shard 1 Shard 2 Shard 3
Send
Message
Fan out on write with buckets -
Read
Shard 1 Shard 2 Shard 3
Read
Inbox
#2 – History
MongoDB Schema Design: Four Real-World Examples
Design Goals
• Need to retain a limited amount of history e.g.
– Hours, Days, Weeks
– May be legislative requirement (e.g. HIPPA, SOX, DPA)
• Need to query efficiently by
– match
– ranges
3 Approaches (there are
more)
• Bucket by Number of messages
• Fixed size Array
• Bucket by Date + TTL Collections
db.inbox.find()
{ owner: "Joe", sequence: 25,
messages: [
{ from: "Joe",
to: [ "Bob", "Jane" ],
sent: ISODate("2013-03-01T09:59:42.689Z"),
message: "Hi!"
},
…
] }
// Query with a date range
db.inbox.find ({owner: "friend1",
messages: {
$elemMatch: {sent:{$gte: ISODate("…") }}}})
// Remove elements based on a date
db.inbox.update({owner: "friend1" },
{ $pull: { messages: {
sent: { $gte: ISODate("…") } } } } )
Inbox – Bucket by #
messages
Considerations
• Shrinking documents, space can be reclaimed
with
– db.runCommand ( { compact: '<collection>' } )
• Removing the document after the last element in
the array as been removed
– { "_id" : …, "messages" : [ ], "owner" : "friend1",
"sequence" : 0 }
msg = {
from: "Your Boss",
to: [ "Bob" ],
sent: new Date(),
message: "CALL ME NOW!"
}
// 2.4 Introduces $each, $sort and $slice for $push
db.messages.update(
{ _id: 1 },
{ $push: { messages: { $each: [ msg ],
$sort: { sent: 1 },
$slice: -50 }
}
}
)
Maintain the latest – Fixed
Size Array
Considerations
• Need to compute the size of the array based on
retention period
// messages: one doc per user per day
db.inbox.findOne()
{
_id: 1,
to: "Joe",
sequence: ISODate("2013-02-04T00:00:00.392Z"),
messages: [ ]
}
// Auto expires data after 31536000 seconds = 1 year
db.messages.ensureIndex( { sequence: 1 },
{ expireAfterSeconds: 31536000 } )
TTL Collections
#3 – Indexed Attributes
Design Goal
• Application needs to stored a variable number of
attributes e.g.
– User defined Form
– Meta Data tags
• Queries needed
– Equality
– Range based
• Need to be efficient, regardless of the number of
attributes
2 Approaches (there are
more)
• Attributes as Embedded Document
• Attributes as Objects in an Array
db.files.insert( { _id: "local.0",
attr: { type: "text", size: 64,
created: ISODate("..." } } )
db.files.insert( { _id: "local.1",
attr: { type: "text", size: 128} } )
db.files.insert( { _id: "mongod",
attr: { type: "binary", size: 256,
created: ISODate("...") } } )
// Need to create an index for each item in the sub-document
db.files.ensureIndex( { "attr.type": 1 } )
db.files.find( { "attr.type": "text"} )
// Can perform range queries
db.files.ensureIndex( { "attr.size": 1 } )
db.files.find( { "attr.size": { $gt: 64, $lte: 16384 } } )
Attributes as a Sub-
Document
Considerations
• Each attribute needs an Index
• Each time you extend, you add an index
• Lots and lots of indexes
db.files.insert( {_id: "local.0",
attr: [ { type: "text" },
{ size: 64 },
{ created: ISODate("...") } ] } )
db.files.insert( { _id: "local.1",
attr: [ { type: "text" },
{ size: 128 } ] } )
db.files.insert( { _id: "mongod",
attr: [ { type: "binary" },
{ size: 256 },
{ created: ISODate("...") } ] } )
db.files.ensureIndex( { attr: 1 } )
Attributes as Objects in Array
Considerations
• Only one index needed on attr
• Can support range queries, etc.
• Index can be used only once per query
#4 – Multiple Identities
Design Goal
• Ability to look up by a number of different
identities e.g.
• Username
• Email address
• FB Handle
• LinkedIn URL
2 Approaches (there are
more)
• Identifiers in a single document
• Separate Identifiers from Content
db.users.findOne()
{ _id: "joe",
email: "joe@example.com,
fb: "joe.smith", // facebook
li: "joe.e.smith", // linkedin
other: {…}
}
// Shard collection by _id
db.shardCollection("mongodbdays.users", { _id: 1 } )
// Create indexes on each key
db.users.ensureIndex( { email: 1} )
db.users.ensureIndex( { fb: 1 } )
db.users.ensureIndex( { li: 1 } )
Single Document by User
Read by _id (shard key)
Shard 1 Shard 2 Shard 3
find( { _id: "joe"} )
Read by email (non-shard
key)
Shard 1 Shard 2 Shard 3
find ( { email: joe@example.com }
)
Considerations
• Lookup by shard key is routed to 1 shard
• Lookup by other identifier is scatter gathered
across all shards
• Secondary keys cannot have a unique index
// Create unique index
db.identities.ensureIndex( { identifier : 1} , { unique: true} )
// Create a document for each users document
db.identities.save(
{ identifier : { hndl: "joe" }, user: "1200-42" } )
db.identities.save(
{ identifier : { email: "joe@abc.com" }, user: "1200-42" } )
db.identities.save(
{ identifier : { li: "joe.e.smith" }, user: "1200-42" } )
// Shard collection by _id
db.shardCollection( "mydb.identities", { identifier : 1 } )
// Create unique index
db.users.ensureIndex( { _id: 1} , { unique: true} )
// Shard collection by _id
db.shardCollection( "mydb.users", { _id: 1 } )
Document per Identity
Read requires 2 reads
Shard 1 Shard 2 Shard 3
db.identities.find({"identifier" : {
"hndl" : "joe" }})
db.users.find( { _id: "1200-42"}
)
Considerations
• Lookup to Identities is a routed query
• Lookup to Users is a routed query
• Unique indexes available
Conclusion
Summary
• Multiple ways to model a domain problem
• Understand the key uses cases of your app
• Balance between ease of query vs. ease of write
• Random IO should be avoided
Perl Engineer & Evangelist, 10gen
Mike Friedman
#MongoDBdays
Thank You

More Related Content

What's hot (20)

ClickHouse Data Warehouse 101: The First Billion Rows, by Alexander Zaitsev a...
ClickHouse Data Warehouse 101: The First Billion Rows, by Alexander Zaitsev a...ClickHouse Data Warehouse 101: The First Billion Rows, by Alexander Zaitsev a...
ClickHouse Data Warehouse 101: The First Billion Rows, by Alexander Zaitsev a...
Altinity Ltd
 
MongoDB GeoSpatial Feature
MongoDB GeoSpatial FeatureMongoDB GeoSpatial Feature
MongoDB GeoSpatial Feature
Hüseyin BABAL
 
MongoDB
MongoDBMongoDB
MongoDB
nikhil2807
 
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDBMongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB
 
Data Modeling for MongoDB
Data Modeling for MongoDBData Modeling for MongoDB
Data Modeling for MongoDB
MongoDB
 
MongoDB Schema Design: Practical Applications and Implications
MongoDB Schema Design: Practical Applications and ImplicationsMongoDB Schema Design: Practical Applications and Implications
MongoDB Schema Design: Practical Applications and Implications
MongoDB
 
Naver속도의, 속도에 의한, 속도를 위한 몽고DB (네이버 컨텐츠검색과 몽고DB) [Naver]
Naver속도의, 속도에 의한, 속도를 위한 몽고DB (네이버 컨텐츠검색과 몽고DB) [Naver]Naver속도의, 속도에 의한, 속도를 위한 몽고DB (네이버 컨텐츠검색과 몽고DB) [Naver]
Naver속도의, 속도에 의한, 속도를 위한 몽고DB (네이버 컨텐츠검색과 몽고DB) [Naver]
MongoDB
 
Introduction to mongodb
Introduction to mongodbIntroduction to mongodb
Introduction to mongodb
neela madheswari
 
Introduction to MongoDB
Introduction to MongoDBIntroduction to MongoDB
Introduction to MongoDB
MongoDB
 
CouchDB
CouchDBCouchDB
CouchDB
Rashmi Agale
 
MongoDB (Advanced)
MongoDB (Advanced)MongoDB (Advanced)
MongoDB (Advanced)
TO THE NEW | Technology
 
Basics of MongoDB
Basics of MongoDB Basics of MongoDB
Basics of MongoDB
HabileLabs
 
Cassandra 101
Cassandra 101Cassandra 101
Cassandra 101
Nader Ganayem
 
When to Use MongoDB
When to Use MongoDBWhen to Use MongoDB
When to Use MongoDB
MongoDB
 
NoSQL databases
NoSQL databasesNoSQL databases
NoSQL databases
Harri Kauhanen
 
Mongo db intro.pptx
Mongo db intro.pptxMongo db intro.pptx
Mongo db intro.pptx
JWORKS powered by Ordina
 
An Enterprise Architect's View of MongoDB
An Enterprise Architect's View of MongoDBAn Enterprise Architect's View of MongoDB
An Enterprise Architect's View of MongoDB
MongoDB
 
The Aggregation Framework
The Aggregation FrameworkThe Aggregation Framework
The Aggregation Framework
MongoDB
 
Apache Spark - Dataframes & Spark SQL - Part 1 | Big Data Hadoop Spark Tutori...
Apache Spark - Dataframes & Spark SQL - Part 1 | Big Data Hadoop Spark Tutori...Apache Spark - Dataframes & Spark SQL - Part 1 | Big Data Hadoop Spark Tutori...
Apache Spark - Dataframes & Spark SQL - Part 1 | Big Data Hadoop Spark Tutori...
CloudxLab
 
An introduction to MongoDB
An introduction to MongoDBAn introduction to MongoDB
An introduction to MongoDB
César Trigo
 
ClickHouse Data Warehouse 101: The First Billion Rows, by Alexander Zaitsev a...
ClickHouse Data Warehouse 101: The First Billion Rows, by Alexander Zaitsev a...ClickHouse Data Warehouse 101: The First Billion Rows, by Alexander Zaitsev a...
ClickHouse Data Warehouse 101: The First Billion Rows, by Alexander Zaitsev a...
Altinity Ltd
 
MongoDB GeoSpatial Feature
MongoDB GeoSpatial FeatureMongoDB GeoSpatial Feature
MongoDB GeoSpatial Feature
Hüseyin BABAL
 
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDBMongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB
 
Data Modeling for MongoDB
Data Modeling for MongoDBData Modeling for MongoDB
Data Modeling for MongoDB
MongoDB
 
MongoDB Schema Design: Practical Applications and Implications
MongoDB Schema Design: Practical Applications and ImplicationsMongoDB Schema Design: Practical Applications and Implications
MongoDB Schema Design: Practical Applications and Implications
MongoDB
 
Naver속도의, 속도에 의한, 속도를 위한 몽고DB (네이버 컨텐츠검색과 몽고DB) [Naver]
Naver속도의, 속도에 의한, 속도를 위한 몽고DB (네이버 컨텐츠검색과 몽고DB) [Naver]Naver속도의, 속도에 의한, 속도를 위한 몽고DB (네이버 컨텐츠검색과 몽고DB) [Naver]
Naver속도의, 속도에 의한, 속도를 위한 몽고DB (네이버 컨텐츠검색과 몽고DB) [Naver]
MongoDB
 
Introduction to MongoDB
Introduction to MongoDBIntroduction to MongoDB
Introduction to MongoDB
MongoDB
 
Basics of MongoDB
Basics of MongoDB Basics of MongoDB
Basics of MongoDB
HabileLabs
 
When to Use MongoDB
When to Use MongoDBWhen to Use MongoDB
When to Use MongoDB
MongoDB
 
An Enterprise Architect's View of MongoDB
An Enterprise Architect's View of MongoDBAn Enterprise Architect's View of MongoDB
An Enterprise Architect's View of MongoDB
MongoDB
 
The Aggregation Framework
The Aggregation FrameworkThe Aggregation Framework
The Aggregation Framework
MongoDB
 
Apache Spark - Dataframes & Spark SQL - Part 1 | Big Data Hadoop Spark Tutori...
Apache Spark - Dataframes & Spark SQL - Part 1 | Big Data Hadoop Spark Tutori...Apache Spark - Dataframes & Spark SQL - Part 1 | Big Data Hadoop Spark Tutori...
Apache Spark - Dataframes & Spark SQL - Part 1 | Big Data Hadoop Spark Tutori...
CloudxLab
 
An introduction to MongoDB
An introduction to MongoDBAn introduction to MongoDB
An introduction to MongoDB
César Trigo
 

Viewers also liked (17)

Advanced Schema Design Patterns
Advanced Schema Design Patterns Advanced Schema Design Patterns
Advanced Schema Design Patterns
MongoDB
 
Building your first app with mongo db
Building your first app with mongo dbBuilding your first app with mongo db
Building your first app with mongo db
MongoDB
 
MongoDB Schema Design (Richard Kreuter's Mongo Berlin preso)
MongoDB Schema Design (Richard Kreuter's Mongo Berlin preso)MongoDB Schema Design (Richard Kreuter's Mongo Berlin preso)
MongoDB Schema Design (Richard Kreuter's Mongo Berlin preso)
MongoDB
 
Agile Schema Design: An introduction to MongoDB
Agile Schema Design: An introduction to MongoDBAgile Schema Design: An introduction to MongoDB
Agile Schema Design: An introduction to MongoDB
Stennie Steneker
 
Business Metrics and Web Marketing
Business Metrics and Web MarketingBusiness Metrics and Web Marketing
Business Metrics and Web Marketing
Alper AKBAS
 
World-Class Web Metrics by Dan Olsen
World-Class Web Metrics by Dan OlsenWorld-Class Web Metrics by Dan Olsen
World-Class Web Metrics by Dan Olsen
Dan Olsen
 
Web analytics 101: Web Metrics
Web analytics 101: Web MetricsWeb analytics 101: Web Metrics
Web analytics 101: Web Metrics
Society_Consulting
 
Web Metrics vs Web Behavioral Analytics and Why You Need to Know the Difference
Web Metrics vs Web Behavioral Analytics and Why You Need to Know the DifferenceWeb Metrics vs Web Behavioral Analytics and Why You Need to Know the Difference
Web Metrics vs Web Behavioral Analytics and Why You Need to Know the Difference
Alterian
 
Schema Design with MongoDB
Schema Design with MongoDBSchema Design with MongoDB
Schema Design with MongoDB
rogerbodamer
 
Dimensional Modeling
Dimensional ModelingDimensional Modeling
Dimensional Modeling
Sunita Sahu
 
Dimensional Modeling Basic Concept with Example
Dimensional Modeling Basic Concept with ExampleDimensional Modeling Basic Concept with Example
Dimensional Modeling Basic Concept with Example
Sajjad Zaheer
 
Data Visualization and Dashboard Design
Data Visualization and Dashboard DesignData Visualization and Dashboard Design
Data Visualization and Dashboard Design
Jacques Warren
 
Oltp vs olap
Oltp vs olapOltp vs olap
Oltp vs olap
Mr. Fmhyudin
 
Dimensional Modeling
Dimensional ModelingDimensional Modeling
Dimensional Modeling
aksrauf
 
OLAP & DATA WAREHOUSE
OLAP & DATA WAREHOUSEOLAP & DATA WAREHOUSE
OLAP & DATA WAREHOUSE
Zalpa Rathod
 
Data warehouse-dimensional-modeling-and-design
Data warehouse-dimensional-modeling-and-designData warehouse-dimensional-modeling-and-design
Data warehouse-dimensional-modeling-and-design
Sarita Kataria
 
Multi dimensional model vs (1)
Multi dimensional model vs (1)Multi dimensional model vs (1)
Multi dimensional model vs (1)
JamesDempsey1
 
Advanced Schema Design Patterns
Advanced Schema Design Patterns Advanced Schema Design Patterns
Advanced Schema Design Patterns
MongoDB
 
Building your first app with mongo db
Building your first app with mongo dbBuilding your first app with mongo db
Building your first app with mongo db
MongoDB
 
MongoDB Schema Design (Richard Kreuter's Mongo Berlin preso)
MongoDB Schema Design (Richard Kreuter's Mongo Berlin preso)MongoDB Schema Design (Richard Kreuter's Mongo Berlin preso)
MongoDB Schema Design (Richard Kreuter's Mongo Berlin preso)
MongoDB
 
Agile Schema Design: An introduction to MongoDB
Agile Schema Design: An introduction to MongoDBAgile Schema Design: An introduction to MongoDB
Agile Schema Design: An introduction to MongoDB
Stennie Steneker
 
Business Metrics and Web Marketing
Business Metrics and Web MarketingBusiness Metrics and Web Marketing
Business Metrics and Web Marketing
Alper AKBAS
 
World-Class Web Metrics by Dan Olsen
World-Class Web Metrics by Dan OlsenWorld-Class Web Metrics by Dan Olsen
World-Class Web Metrics by Dan Olsen
Dan Olsen
 
Web analytics 101: Web Metrics
Web analytics 101: Web MetricsWeb analytics 101: Web Metrics
Web analytics 101: Web Metrics
Society_Consulting
 
Web Metrics vs Web Behavioral Analytics and Why You Need to Know the Difference
Web Metrics vs Web Behavioral Analytics and Why You Need to Know the DifferenceWeb Metrics vs Web Behavioral Analytics and Why You Need to Know the Difference
Web Metrics vs Web Behavioral Analytics and Why You Need to Know the Difference
Alterian
 
Schema Design with MongoDB
Schema Design with MongoDBSchema Design with MongoDB
Schema Design with MongoDB
rogerbodamer
 
Dimensional Modeling
Dimensional ModelingDimensional Modeling
Dimensional Modeling
Sunita Sahu
 
Dimensional Modeling Basic Concept with Example
Dimensional Modeling Basic Concept with ExampleDimensional Modeling Basic Concept with Example
Dimensional Modeling Basic Concept with Example
Sajjad Zaheer
 
Data Visualization and Dashboard Design
Data Visualization and Dashboard DesignData Visualization and Dashboard Design
Data Visualization and Dashboard Design
Jacques Warren
 
Dimensional Modeling
Dimensional ModelingDimensional Modeling
Dimensional Modeling
aksrauf
 
OLAP & DATA WAREHOUSE
OLAP & DATA WAREHOUSEOLAP & DATA WAREHOUSE
OLAP & DATA WAREHOUSE
Zalpa Rathod
 
Data warehouse-dimensional-modeling-and-design
Data warehouse-dimensional-modeling-and-designData warehouse-dimensional-modeling-and-design
Data warehouse-dimensional-modeling-and-design
Sarita Kataria
 
Multi dimensional model vs (1)
Multi dimensional model vs (1)Multi dimensional model vs (1)
Multi dimensional model vs (1)
JamesDempsey1
 
Ad

Similar to MongoDB Schema Design: Four Real-World Examples (20)

Choosing a Shard key
Choosing a Shard keyChoosing a Shard key
Choosing a Shard key
MongoDB
 
Data Modeling Examples from the Real World
Data Modeling Examples from the Real WorldData Modeling Examples from the Real World
Data Modeling Examples from the Real World
MongoDB
 
Data Modeling for the Real World
Data Modeling for the Real WorldData Modeling for the Real World
Data Modeling for the Real World
Mike Friedman
 
Webinar: Data Modeling Examples in the Real World
Webinar: Data Modeling Examples in the Real WorldWebinar: Data Modeling Examples in the Real World
Webinar: Data Modeling Examples in the Real World
MongoDB
 
MongoDB London 2013: Data Modeling Examples from the Real World presented by ...
MongoDB London 2013: Data Modeling Examples from the Real World presented by ...MongoDB London 2013: Data Modeling Examples from the Real World presented by ...
MongoDB London 2013: Data Modeling Examples from the Real World presented by ...
MongoDB
 
Data Modeling Deep Dive
Data Modeling Deep DiveData Modeling Deep Dive
Data Modeling Deep Dive
MongoDB
 
MongoDB San Francisco 2013: Data Modeling Examples From the Real World presen...
MongoDB San Francisco 2013: Data Modeling Examples From the Real World presen...MongoDB San Francisco 2013: Data Modeling Examples From the Real World presen...
MongoDB San Francisco 2013: Data Modeling Examples From the Real World presen...
MongoDB
 
Schema Design - Real world use case
Schema Design - Real world use caseSchema Design - Real world use case
Schema Design - Real world use case
Matias Cascallares
 
10gen Presents Schema Design and Data Modeling
10gen Presents Schema Design and Data Modeling10gen Presents Schema Design and Data Modeling
10gen Presents Schema Design and Data Modeling
DATAVERSITY
 
MongoDB Strange Loop 2009
MongoDB Strange Loop 2009MongoDB Strange Loop 2009
MongoDB Strange Loop 2009
Mike Dirolf
 
Managing Social Content with MongoDB
Managing Social Content with MongoDBManaging Social Content with MongoDB
Managing Social Content with MongoDB
MongoDB
 
Schema Design (Mongo Austin)
Schema Design (Mongo Austin)Schema Design (Mongo Austin)
Schema Design (Mongo Austin)
MongoDB
 
Mongodb intro
Mongodb introMongodb intro
Mongodb intro
christkv
 
Intro to MongoDB and datamodeling
Intro to MongoDB and datamodeling Intro to MongoDB and datamodeling
Intro to MongoDB and datamodeling
rogerbodamer
 
Full metal mongo
Full metal mongoFull metal mongo
Full metal mongo
Israel Gutiérrez
 
MongoDB for Coder Training (Coding Serbia 2013)
MongoDB for Coder Training (Coding Serbia 2013)MongoDB for Coder Training (Coding Serbia 2013)
MongoDB for Coder Training (Coding Serbia 2013)
Uwe Printz
 
MongoDB at GUL
MongoDB at GULMongoDB at GUL
MongoDB at GUL
Israel Gutiérrez
 
MongoDB at RuPy
MongoDB at RuPyMongoDB at RuPy
MongoDB at RuPy
Mike Dirolf
 
Schema design
Schema designSchema design
Schema design
christkv
 
MongoDB NYC Python
MongoDB NYC PythonMongoDB NYC Python
MongoDB NYC Python
Mike Dirolf
 
Choosing a Shard key
Choosing a Shard keyChoosing a Shard key
Choosing a Shard key
MongoDB
 
Data Modeling Examples from the Real World
Data Modeling Examples from the Real WorldData Modeling Examples from the Real World
Data Modeling Examples from the Real World
MongoDB
 
Data Modeling for the Real World
Data Modeling for the Real WorldData Modeling for the Real World
Data Modeling for the Real World
Mike Friedman
 
Webinar: Data Modeling Examples in the Real World
Webinar: Data Modeling Examples in the Real WorldWebinar: Data Modeling Examples in the Real World
Webinar: Data Modeling Examples in the Real World
MongoDB
 
MongoDB London 2013: Data Modeling Examples from the Real World presented by ...
MongoDB London 2013: Data Modeling Examples from the Real World presented by ...MongoDB London 2013: Data Modeling Examples from the Real World presented by ...
MongoDB London 2013: Data Modeling Examples from the Real World presented by ...
MongoDB
 
Data Modeling Deep Dive
Data Modeling Deep DiveData Modeling Deep Dive
Data Modeling Deep Dive
MongoDB
 
MongoDB San Francisco 2013: Data Modeling Examples From the Real World presen...
MongoDB San Francisco 2013: Data Modeling Examples From the Real World presen...MongoDB San Francisco 2013: Data Modeling Examples From the Real World presen...
MongoDB San Francisco 2013: Data Modeling Examples From the Real World presen...
MongoDB
 
Schema Design - Real world use case
Schema Design - Real world use caseSchema Design - Real world use case
Schema Design - Real world use case
Matias Cascallares
 
10gen Presents Schema Design and Data Modeling
10gen Presents Schema Design and Data Modeling10gen Presents Schema Design and Data Modeling
10gen Presents Schema Design and Data Modeling
DATAVERSITY
 
MongoDB Strange Loop 2009
MongoDB Strange Loop 2009MongoDB Strange Loop 2009
MongoDB Strange Loop 2009
Mike Dirolf
 
Managing Social Content with MongoDB
Managing Social Content with MongoDBManaging Social Content with MongoDB
Managing Social Content with MongoDB
MongoDB
 
Schema Design (Mongo Austin)
Schema Design (Mongo Austin)Schema Design (Mongo Austin)
Schema Design (Mongo Austin)
MongoDB
 
Mongodb intro
Mongodb introMongodb intro
Mongodb intro
christkv
 
Intro to MongoDB and datamodeling
Intro to MongoDB and datamodeling Intro to MongoDB and datamodeling
Intro to MongoDB and datamodeling
rogerbodamer
 
MongoDB for Coder Training (Coding Serbia 2013)
MongoDB for Coder Training (Coding Serbia 2013)MongoDB for Coder Training (Coding Serbia 2013)
MongoDB for Coder Training (Coding Serbia 2013)
Uwe Printz
 
Schema design
Schema designSchema design
Schema design
christkv
 
MongoDB NYC Python
MongoDB NYC PythonMongoDB NYC Python
MongoDB NYC Python
Mike Dirolf
 
Ad

More from Mike Friedman (8)

Basic Symbolic Computation in Perl
Basic Symbolic Computation in PerlBasic Symbolic Computation in Perl
Basic Symbolic Computation in Perl
Mike Friedman
 
Make Your Own Perl with Moops
Make Your Own Perl with MoopsMake Your Own Perl with Moops
Make Your Own Perl with Moops
Mike Friedman
 
The Perl API for the Mortally Terrified (beta)
The Perl API for the Mortally Terrified (beta)The Perl API for the Mortally Terrified (beta)
The Perl API for the Mortally Terrified (beta)
Mike Friedman
 
21st Century CPAN Testing: CPANci
21st Century CPAN Testing: CPANci21st Century CPAN Testing: CPANci
21st Century CPAN Testing: CPANci
Mike Friedman
 
CPANci: Continuous Integration for CPAN
CPANci: Continuous Integration for CPANCPANci: Continuous Integration for CPAN
CPANci: Continuous Integration for CPAN
Mike Friedman
 
Building a MongoDB App with Perl
Building a MongoDB App with PerlBuilding a MongoDB App with Perl
Building a MongoDB App with Perl
Mike Friedman
 
Building Your First App with MongoDB
Building Your First App with MongoDBBuilding Your First App with MongoDB
Building Your First App with MongoDB
Mike Friedman
 
Building Scalable, Distributed Job Queues with Redis and Redis::Client
Building Scalable, Distributed Job Queues with Redis and Redis::ClientBuilding Scalable, Distributed Job Queues with Redis and Redis::Client
Building Scalable, Distributed Job Queues with Redis and Redis::Client
Mike Friedman
 
Basic Symbolic Computation in Perl
Basic Symbolic Computation in PerlBasic Symbolic Computation in Perl
Basic Symbolic Computation in Perl
Mike Friedman
 
Make Your Own Perl with Moops
Make Your Own Perl with MoopsMake Your Own Perl with Moops
Make Your Own Perl with Moops
Mike Friedman
 
The Perl API for the Mortally Terrified (beta)
The Perl API for the Mortally Terrified (beta)The Perl API for the Mortally Terrified (beta)
The Perl API for the Mortally Terrified (beta)
Mike Friedman
 
21st Century CPAN Testing: CPANci
21st Century CPAN Testing: CPANci21st Century CPAN Testing: CPANci
21st Century CPAN Testing: CPANci
Mike Friedman
 
CPANci: Continuous Integration for CPAN
CPANci: Continuous Integration for CPANCPANci: Continuous Integration for CPAN
CPANci: Continuous Integration for CPAN
Mike Friedman
 
Building a MongoDB App with Perl
Building a MongoDB App with PerlBuilding a MongoDB App with Perl
Building a MongoDB App with Perl
Mike Friedman
 
Building Your First App with MongoDB
Building Your First App with MongoDBBuilding Your First App with MongoDB
Building Your First App with MongoDB
Mike Friedman
 
Building Scalable, Distributed Job Queues with Redis and Redis::Client
Building Scalable, Distributed Job Queues with Redis and Redis::ClientBuilding Scalable, Distributed Job Queues with Redis and Redis::Client
Building Scalable, Distributed Job Queues with Redis and Redis::Client
Mike Friedman
 

Recently uploaded (20)

Introducing the OSA 3200 SP and OSA 3250 ePRC
Introducing the OSA 3200 SP and OSA 3250 ePRCIntroducing the OSA 3200 SP and OSA 3250 ePRC
Introducing the OSA 3200 SP and OSA 3250 ePRC
Adtran
 
Grannie’s Journey to Using Healthcare AI Experiences
Grannie’s Journey to Using Healthcare AI ExperiencesGrannie’s Journey to Using Healthcare AI Experiences
Grannie’s Journey to Using Healthcare AI Experiences
Lauren Parr
 
Co-Constructing Explanations for AI Systems using Provenance
Co-Constructing Explanations for AI Systems using ProvenanceCo-Constructing Explanations for AI Systems using Provenance
Co-Constructing Explanations for AI Systems using Provenance
Paul Groth
 
European Accessibility Act & Integrated Accessibility Testing
European Accessibility Act & Integrated Accessibility TestingEuropean Accessibility Act & Integrated Accessibility Testing
European Accessibility Act & Integrated Accessibility Testing
Julia Undeutsch
 
Dev Dives: System-to-system integration with UiPath API Workflows
Dev Dives: System-to-system integration with UiPath API WorkflowsDev Dives: System-to-system integration with UiPath API Workflows
Dev Dives: System-to-system integration with UiPath API Workflows
UiPathCommunity
 
Introducing FME Realize: A New Era of Spatial Computing and AR
Introducing FME Realize: A New Era of Spatial Computing and ARIntroducing FME Realize: A New Era of Spatial Computing and AR
Introducing FME Realize: A New Era of Spatial Computing and AR
Safe Software
 
New Ways to Reduce Database Costs with ScyllaDB
New Ways to Reduce Database Costs with ScyllaDBNew Ways to Reduce Database Costs with ScyllaDB
New Ways to Reduce Database Costs with ScyllaDB
ScyllaDB
 
Dr Jimmy Schwarzkopf presentation on the SUMMIT 2025 A
Dr Jimmy Schwarzkopf presentation on the SUMMIT 2025 ADr Jimmy Schwarzkopf presentation on the SUMMIT 2025 A
Dr Jimmy Schwarzkopf presentation on the SUMMIT 2025 A
Dr. Jimmy Schwarzkopf
 
Supercharge Your AI Development with Local LLMs
Supercharge Your AI Development with Local LLMsSupercharge Your AI Development with Local LLMs
Supercharge Your AI Development with Local LLMs
Francesco Corti
 
6th Power Grid Model Meetup - 21 May 2025
6th Power Grid Model Meetup - 21 May 20256th Power Grid Model Meetup - 21 May 2025
6th Power Grid Model Meetup - 21 May 2025
DanBrown980551
 
Maxx nft market place new generation nft marketing place
Maxx nft market place new generation nft marketing placeMaxx nft market place new generation nft marketing place
Maxx nft market place new generation nft marketing place
usersalmanrazdelhi
 
Cyber security cyber security cyber security cyber security cyber security cy...
Cyber security cyber security cyber security cyber security cyber security cy...Cyber security cyber security cyber security cyber security cyber security cy...
Cyber security cyber security cyber security cyber security cyber security cy...
pranavbodhak
 
UiPath Community Zurich: Release Management and Build Pipelines
UiPath Community Zurich: Release Management and Build PipelinesUiPath Community Zurich: Release Management and Build Pipelines
UiPath Community Zurich: Release Management and Build Pipelines
UiPathCommunity
 
Microsoft Build 2025 takeaways in one presentation
Microsoft Build 2025 takeaways in one presentationMicrosoft Build 2025 takeaways in one presentation
Microsoft Build 2025 takeaways in one presentation
Digitalmara
 
Contributing to WordPress With & Without Code.pptx
Contributing to WordPress With & Without Code.pptxContributing to WordPress With & Without Code.pptx
Contributing to WordPress With & Without Code.pptx
Patrick Lumumba
 
Jeremy Millul - A Talented Software Developer
Jeremy Millul - A Talented Software DeveloperJeremy Millul - A Talented Software Developer
Jeremy Millul - A Talented Software Developer
Jeremy Millul
 
Palo Alto Networks Cybersecurity Foundation
Palo Alto Networks Cybersecurity FoundationPalo Alto Networks Cybersecurity Foundation
Palo Alto Networks Cybersecurity Foundation
VICTOR MAESTRE RAMIREZ
 
Cybersecurity Fundamentals: Apprentice - Palo Alto Certificate
Cybersecurity Fundamentals: Apprentice - Palo Alto CertificateCybersecurity Fundamentals: Apprentice - Palo Alto Certificate
Cybersecurity Fundamentals: Apprentice - Palo Alto Certificate
VICTOR MAESTRE RAMIREZ
 
Agentic AI Explained: The Next Frontier of Autonomous Intelligence & Generati...
Agentic AI Explained: The Next Frontier of Autonomous Intelligence & Generati...Agentic AI Explained: The Next Frontier of Autonomous Intelligence & Generati...
Agentic AI Explained: The Next Frontier of Autonomous Intelligence & Generati...
Aaryan Kansari
 
Kubernetes Cloud Native Indonesia Meetup - May 2025
Kubernetes Cloud Native Indonesia Meetup - May 2025Kubernetes Cloud Native Indonesia Meetup - May 2025
Kubernetes Cloud Native Indonesia Meetup - May 2025
Prasta Maha
 
Introducing the OSA 3200 SP and OSA 3250 ePRC
Introducing the OSA 3200 SP and OSA 3250 ePRCIntroducing the OSA 3200 SP and OSA 3250 ePRC
Introducing the OSA 3200 SP and OSA 3250 ePRC
Adtran
 
Grannie’s Journey to Using Healthcare AI Experiences
Grannie’s Journey to Using Healthcare AI ExperiencesGrannie’s Journey to Using Healthcare AI Experiences
Grannie’s Journey to Using Healthcare AI Experiences
Lauren Parr
 
Co-Constructing Explanations for AI Systems using Provenance
Co-Constructing Explanations for AI Systems using ProvenanceCo-Constructing Explanations for AI Systems using Provenance
Co-Constructing Explanations for AI Systems using Provenance
Paul Groth
 
European Accessibility Act & Integrated Accessibility Testing
European Accessibility Act & Integrated Accessibility TestingEuropean Accessibility Act & Integrated Accessibility Testing
European Accessibility Act & Integrated Accessibility Testing
Julia Undeutsch
 
Dev Dives: System-to-system integration with UiPath API Workflows
Dev Dives: System-to-system integration with UiPath API WorkflowsDev Dives: System-to-system integration with UiPath API Workflows
Dev Dives: System-to-system integration with UiPath API Workflows
UiPathCommunity
 
Introducing FME Realize: A New Era of Spatial Computing and AR
Introducing FME Realize: A New Era of Spatial Computing and ARIntroducing FME Realize: A New Era of Spatial Computing and AR
Introducing FME Realize: A New Era of Spatial Computing and AR
Safe Software
 
New Ways to Reduce Database Costs with ScyllaDB
New Ways to Reduce Database Costs with ScyllaDBNew Ways to Reduce Database Costs with ScyllaDB
New Ways to Reduce Database Costs with ScyllaDB
ScyllaDB
 
Dr Jimmy Schwarzkopf presentation on the SUMMIT 2025 A
Dr Jimmy Schwarzkopf presentation on the SUMMIT 2025 ADr Jimmy Schwarzkopf presentation on the SUMMIT 2025 A
Dr Jimmy Schwarzkopf presentation on the SUMMIT 2025 A
Dr. Jimmy Schwarzkopf
 
Supercharge Your AI Development with Local LLMs
Supercharge Your AI Development with Local LLMsSupercharge Your AI Development with Local LLMs
Supercharge Your AI Development with Local LLMs
Francesco Corti
 
6th Power Grid Model Meetup - 21 May 2025
6th Power Grid Model Meetup - 21 May 20256th Power Grid Model Meetup - 21 May 2025
6th Power Grid Model Meetup - 21 May 2025
DanBrown980551
 
Maxx nft market place new generation nft marketing place
Maxx nft market place new generation nft marketing placeMaxx nft market place new generation nft marketing place
Maxx nft market place new generation nft marketing place
usersalmanrazdelhi
 
Cyber security cyber security cyber security cyber security cyber security cy...
Cyber security cyber security cyber security cyber security cyber security cy...Cyber security cyber security cyber security cyber security cyber security cy...
Cyber security cyber security cyber security cyber security cyber security cy...
pranavbodhak
 
UiPath Community Zurich: Release Management and Build Pipelines
UiPath Community Zurich: Release Management and Build PipelinesUiPath Community Zurich: Release Management and Build Pipelines
UiPath Community Zurich: Release Management and Build Pipelines
UiPathCommunity
 
Microsoft Build 2025 takeaways in one presentation
Microsoft Build 2025 takeaways in one presentationMicrosoft Build 2025 takeaways in one presentation
Microsoft Build 2025 takeaways in one presentation
Digitalmara
 
Contributing to WordPress With & Without Code.pptx
Contributing to WordPress With & Without Code.pptxContributing to WordPress With & Without Code.pptx
Contributing to WordPress With & Without Code.pptx
Patrick Lumumba
 
Jeremy Millul - A Talented Software Developer
Jeremy Millul - A Talented Software DeveloperJeremy Millul - A Talented Software Developer
Jeremy Millul - A Talented Software Developer
Jeremy Millul
 
Palo Alto Networks Cybersecurity Foundation
Palo Alto Networks Cybersecurity FoundationPalo Alto Networks Cybersecurity Foundation
Palo Alto Networks Cybersecurity Foundation
VICTOR MAESTRE RAMIREZ
 
Cybersecurity Fundamentals: Apprentice - Palo Alto Certificate
Cybersecurity Fundamentals: Apprentice - Palo Alto CertificateCybersecurity Fundamentals: Apprentice - Palo Alto Certificate
Cybersecurity Fundamentals: Apprentice - Palo Alto Certificate
VICTOR MAESTRE RAMIREZ
 
Agentic AI Explained: The Next Frontier of Autonomous Intelligence & Generati...
Agentic AI Explained: The Next Frontier of Autonomous Intelligence & Generati...Agentic AI Explained: The Next Frontier of Autonomous Intelligence & Generati...
Agentic AI Explained: The Next Frontier of Autonomous Intelligence & Generati...
Aaryan Kansari
 
Kubernetes Cloud Native Indonesia Meetup - May 2025
Kubernetes Cloud Native Indonesia Meetup - May 2025Kubernetes Cloud Native Indonesia Meetup - May 2025
Kubernetes Cloud Native Indonesia Meetup - May 2025
Prasta Maha
 

MongoDB Schema Design: Four Real-World Examples

  • 1. Perl Engineer & Evangelist, 10gen Mike Friedman #MongoDBdays Schema Design Four Real-World Use Cases
  • 2. Single Table En Agenda • Why is schema design important • 4 Real World Schemas – Inbox – History – IndexedAttributes – Multiple Identities • Conclusions
  • 3. Why is Schema Design important? • Largest factor for a performant system • Schema design with MongoDB is different • RDBMS – "What answers do I have?" • MongoDB – "What question will I have?"
  • 4. #1 - Message Inbox
  • 7. Design Goals • Efficiently send new messages to recipients • Efficiently read inbox
  • 9. 3 Approaches (there are more) • Fan out on Read • Fan out on Write • Fan out on Write with Bucketing
  • 10. // Shard on "from" db.shardCollection( "mongodbdays.inbox", { from: 1 } ) // Make sure we have an index to handle inbox reads db.inbox.ensureIndex( { to: 1, sent: 1 } ) msg = { from: "Joe", to: [ "Bob", "Jane" ], sent: new Date(), message: "Hi!", } // Send a message db.inbox.save( msg ) // Read my inbox db.inbox.find( { to: "Joe" } ).sort( { sent: -1 } ) Fan out on read
  • 11. Fan out on read – Send Message Shard 1 Shard 2 Shard 3 Send Message
  • 12. Fan out on read – Inbox Read Shard 1 Shard 2 Shard 3 Read Inbox
  • 13. Considerations • One document per message sent • Reading an inbox means finding all messages with my own name in the recipient field • Requires scatter-gather on sharded cluster • Then a lot of random IO on a shard to find everything
  • 14. // Shard on “recipient” and “sent” db.shardCollection( "mongodbdays.inbox", { ”recipient”: 1, ”sent”: 1 } ) msg = { from: "Joe", to: [ "Bob", "Jane" ], sent: new Date(), message: "Hi!", } // Send a message for ( recipient in msg.to ) { msg.recipient = msg.to[recipient] db.inbox.save( msg ); } // Read my inbox db.inbox.find( { recipient: "Joe" } ).sort( { sent: -1 } ) Fan out on write
  • 15. Fan out on write – Send Message Shard 1 Shard 2 Shard 3 Send Message
  • 16. Fan out on write– Read Inbox Shard 1 Shard 2 Shard 3 Read Inbox
  • 17. Considerations • One document per recipient • Reading my inbox is just finding all of the messages with me as the recipient • Can shard on recipient, so inbox reads hit one shard • But still lots of random IO on the shard
  • 18. // Shard on “owner / sequence” db.shardCollection( "mongodbdays.inbox", { owner: 1, sequence: 1 } ) db.shardCollection( "mongodbdays.users", { user_name: 1 } ) msg = { from: "Joe", to: [ "Bob", "Jane" ], sent: new Date(), message: "Hi!", } Fan out on write with buckets
  • 19. // Send a message for( recipient in msg.to) { count = db.users.findAndModify({ query: { user_name: msg.to[recipient] }, update: { "$inc": { "msg_count": 1 } }, upsert: true, new: true }).msg_count; sequence = Math.floor(count / 50); db.inbox.update({ owner: msg.to[recipient], sequence: sequence }, { $push: { "messages": msg } }, { upsert: true } ); } // Read my inbox db.inbox.find( { owner: "Joe" } ).sort ( { sequence: -1 } ).limit( 2 ) Fan out on write with buckets
  • 20. Fan out on write with buckets • Each “inbox” document is an array of messages • Append a message onto “inbox” of recipient • Bucket inboxes so there’s not too many messages per document • Can shard on recipient, so inbox reads hit one shard • 1 or 2 documents to read the whole inbox
  • 21. Fan out on write with buckets - Send Shard 1 Shard 2 Shard 3 Send Message
  • 22. Fan out on write with buckets - Read Shard 1 Shard 2 Shard 3 Read Inbox
  • 25. Design Goals • Need to retain a limited amount of history e.g. – Hours, Days, Weeks – May be legislative requirement (e.g. HIPPA, SOX, DPA) • Need to query efficiently by – match – ranges
  • 26. 3 Approaches (there are more) • Bucket by Number of messages • Fixed size Array • Bucket by Date + TTL Collections
  • 27. db.inbox.find() { owner: "Joe", sequence: 25, messages: [ { from: "Joe", to: [ "Bob", "Jane" ], sent: ISODate("2013-03-01T09:59:42.689Z"), message: "Hi!" }, … ] } // Query with a date range db.inbox.find ({owner: "friend1", messages: { $elemMatch: {sent:{$gte: ISODate("…") }}}}) // Remove elements based on a date db.inbox.update({owner: "friend1" }, { $pull: { messages: { sent: { $gte: ISODate("…") } } } } ) Inbox – Bucket by # messages
  • 28. Considerations • Shrinking documents, space can be reclaimed with – db.runCommand ( { compact: '<collection>' } ) • Removing the document after the last element in the array as been removed – { "_id" : …, "messages" : [ ], "owner" : "friend1", "sequence" : 0 }
  • 29. msg = { from: "Your Boss", to: [ "Bob" ], sent: new Date(), message: "CALL ME NOW!" } // 2.4 Introduces $each, $sort and $slice for $push db.messages.update( { _id: 1 }, { $push: { messages: { $each: [ msg ], $sort: { sent: 1 }, $slice: -50 } } } ) Maintain the latest – Fixed Size Array
  • 30. Considerations • Need to compute the size of the array based on retention period
  • 31. // messages: one doc per user per day db.inbox.findOne() { _id: 1, to: "Joe", sequence: ISODate("2013-02-04T00:00:00.392Z"), messages: [ ] } // Auto expires data after 31536000 seconds = 1 year db.messages.ensureIndex( { sequence: 1 }, { expireAfterSeconds: 31536000 } ) TTL Collections
  • 32. #3 – Indexed Attributes
  • 33. Design Goal • Application needs to stored a variable number of attributes e.g. – User defined Form – Meta Data tags • Queries needed – Equality – Range based • Need to be efficient, regardless of the number of attributes
  • 34. 2 Approaches (there are more) • Attributes as Embedded Document • Attributes as Objects in an Array
  • 35. db.files.insert( { _id: "local.0", attr: { type: "text", size: 64, created: ISODate("..." } } ) db.files.insert( { _id: "local.1", attr: { type: "text", size: 128} } ) db.files.insert( { _id: "mongod", attr: { type: "binary", size: 256, created: ISODate("...") } } ) // Need to create an index for each item in the sub-document db.files.ensureIndex( { "attr.type": 1 } ) db.files.find( { "attr.type": "text"} ) // Can perform range queries db.files.ensureIndex( { "attr.size": 1 } ) db.files.find( { "attr.size": { $gt: 64, $lte: 16384 } } ) Attributes as a Sub- Document
  • 36. Considerations • Each attribute needs an Index • Each time you extend, you add an index • Lots and lots of indexes
  • 37. db.files.insert( {_id: "local.0", attr: [ { type: "text" }, { size: 64 }, { created: ISODate("...") } ] } ) db.files.insert( { _id: "local.1", attr: [ { type: "text" }, { size: 128 } ] } ) db.files.insert( { _id: "mongod", attr: [ { type: "binary" }, { size: 256 }, { created: ISODate("...") } ] } ) db.files.ensureIndex( { attr: 1 } ) Attributes as Objects in Array
  • 38. Considerations • Only one index needed on attr • Can support range queries, etc. • Index can be used only once per query
  • 39. #4 – Multiple Identities
  • 40. Design Goal • Ability to look up by a number of different identities e.g. • Username • Email address • FB Handle • LinkedIn URL
  • 41. 2 Approaches (there are more) • Identifiers in a single document • Separate Identifiers from Content
  • 42. db.users.findOne() { _id: "joe", email: "[email protected], fb: "joe.smith", // facebook li: "joe.e.smith", // linkedin other: {…} } // Shard collection by _id db.shardCollection("mongodbdays.users", { _id: 1 } ) // Create indexes on each key db.users.ensureIndex( { email: 1} ) db.users.ensureIndex( { fb: 1 } ) db.users.ensureIndex( { li: 1 } ) Single Document by User
  • 43. Read by _id (shard key) Shard 1 Shard 2 Shard 3 find( { _id: "joe"} )
  • 44. Read by email (non-shard key) Shard 1 Shard 2 Shard 3 find ( { email: [email protected] } )
  • 45. Considerations • Lookup by shard key is routed to 1 shard • Lookup by other identifier is scatter gathered across all shards • Secondary keys cannot have a unique index
  • 46. // Create unique index db.identities.ensureIndex( { identifier : 1} , { unique: true} ) // Create a document for each users document db.identities.save( { identifier : { hndl: "joe" }, user: "1200-42" } ) db.identities.save( { identifier : { email: "[email protected]" }, user: "1200-42" } ) db.identities.save( { identifier : { li: "joe.e.smith" }, user: "1200-42" } ) // Shard collection by _id db.shardCollection( "mydb.identities", { identifier : 1 } ) // Create unique index db.users.ensureIndex( { _id: 1} , { unique: true} ) // Shard collection by _id db.shardCollection( "mydb.users", { _id: 1 } ) Document per Identity
  • 47. Read requires 2 reads Shard 1 Shard 2 Shard 3 db.identities.find({"identifier" : { "hndl" : "joe" }}) db.users.find( { _id: "1200-42"} )
  • 48. Considerations • Lookup to Identities is a routed query • Lookup to Users is a routed query • Unique indexes available
  • 50. Summary • Multiple ways to model a domain problem • Understand the key uses cases of your app • Balance between ease of query vs. ease of write • Random IO should be avoided
  • 51. Perl Engineer & Evangelist, 10gen Mike Friedman #MongoDBdays Thank You