Binary search trees (BSTs) are data structures that allow for efficient searching, insertion, and deletion. Nodes in a BST are organized so that all left descendants of a node are less than the node's value and all right descendants are greater. This property allows values to be found, inserted, or deleted in O(log n) time on average. Searching involves recursively checking if the target value is less than or greater than the current node's value. Insertion follows the search process and adds the new node in the appropriate place. Deletion handles three cases: removing a leaf, node with one child, or node with two children.