SlideShare a Scribd company logo
#dbts2017
https://www.facebook.com/dahatake/
https://twitter.com/dahatake/
https://github.com/dahatake/
https://daiyuhatakeyama.wordpress.com/
https://www.slideshare.net/dahatake/
データは
ビジネスを動かす
新しい原動力になる
1
2
データ利活用能力の評価ツール
このツールを使用し、現在の自社の能力を評価したり、競合他社と比較し格付けを実施したりすることができます
https://www.microsoft.com/ja-jp/sql-server/data-maturity-model-assessment
年間 100億円
相当の「格差」
(営業利益換算)
8%
$$$$$$
18%
10%
$$$
$
DB TechShowcase Tokyo - Intelligent Data Platform
DB TechShowcase Tokyo - Intelligent Data Platform
Microsoft Azure
Intelligent
Productive
Hybrid
Trusted
Productive
Hybrid
DB TechShowcase Tokyo - Intelligent Data Platform
DB TechShowcase Tokyo - Intelligent Data Platform
機械学習 深層学習 深層強化学習
画像解析
音声解析
データ分類
異常検知, 顧客グルーピング
数値予測
売上予測, 需要予測, 品質管理
ラベル分類
不良品分析, 故障予測, チャーン分析
より強力な分析
自律学習型ロボット
自動運転車
テキストや画像等の自動生成
活用例
主に多層のニューラルネットワーク
を用いた手法での分析
分析のためには、莫大なデータ量、
計算量、知識・スキルを要する
統計に基づいた手法での分析
そのため、比較的少ないデータ量と
計算量で分析を行うことができる
定義したあるべき姿に従い試行錯誤
をして自ら学習を行うための分析手
法である
強化学習と、深層学習を組み合わせ
た
分析
Azure Machine Learning Cognitive Toolkit / GPU Instance (N-Series)
マイクロソフトが提供する技術
DB TechShowcase Tokyo - Intelligent Data Platform
Switchboard
携帯電話の
Switchboard ミーティング
IBM,
Switchboard
ブロードなスピーチ
DB TechShowcase Tokyo - Intelligent Data Platform
Video Indexer
Cognitive Services Labs
Video Indexer
Cognitive Services Labs
Custom Custom CustomCustom Custom
従来の Database
+ App
Intelligence Database
+ App
Application +
Intelligence
Database
Application
Intelligence
+ Database
VS
Image
Video
Lang.
Predictive Deploy Training Data Process Gathering
Model
Model
Model
Lang. Image
Video
Developer Data Scientist Developer
Model
Training
Dataset
Azure Data Lake service
無限にデータをストア・管理
Row Data を保存
高スループット、低いレイテンシの分析ジョ
ブ
セキュリティ、アクセスコントロール Azure Data Lake store
HDInsight & Azure Data Lake Analytics
多くの SQL & .NET DEVELOPERS
宣言型言語の SQL と
逐次実行型である C# のパワーを融合
構造化、一部構造化、非構造化データの融合
全てのデータに分散クエリの実施
U-SQL
Big Data のための新しい言語
1. 顔の解析
2. 画像への タグ 付け
3. 顔の感情分析
4. OCR
5. テキストからの重要語句の抽出
6. テキストの感情分析
Azure Data Lake の 6つの Cognitive 機
能
• オブジェクト認識 (タグ)
• 顔認識、感情認識
• JOIN処理 – 幸せな人は誰なのか?
REFERENCE ASSEMBLY ImageCommon;
REFERENCE ASSEMBLY FaceSdk;
REFERENCE ASSEMBLY ImageEmotion;
REFERENCE ASSEMBLY ImageTagging;
@objects =
PROCESS MegaFaceView
PRODUCE FileName, NumObjects int, Tags string
READONLY FileName
USING new
Cognition.Vision.ImageTagger();
@tags =
SELECT FileName, T.Tag
FROM @objects
CROSS APPLY
EXPLODE(SqlArray.Create(Tags.Split(';')))
AS T(Tag)
WHERE T.Tag.ToString().Contains("dog") OR
T.Tag.ToString().Contains("cat");
@emotion_raw =
PROCESS MegaFaceView
PRODUCE FileName string, NumFaces int, Emotion string
READONLY FileName
USING new Cognition.Vision.EmotionAnalyzer();
@emotion =
SELECT FileName, T.Emotion
FROM @emotion_raw
CROSS APPLY
EXPLODE(SqlArray.Create(Emotion.Split(';')))
AS T(Emotion);
@correlation =
SELECT T.FileName, Emotion, Tag
FROM @emotion AS E
INNER JOIN
@tags AS T
ON E.FileName == T.FileName;
Images
Objects Emotions
filter
join
aggregate
付加価値を提供する
多くのパートナー
ソリューション
Streaming /
CDN
コンテンツ
保護
Processing取り込み
と保管
メディア 配信の コア 機能を
API として提供
Azure Media Services
PlayerAI
(Artificial
Intelligence)
Vision
Speech
Language
Face
画面上の文字
歴史的建造物
話している言葉
翻訳
話者
オブジェクト
シーン
感情
感情
感情キーワード
翻訳
感情 キー
ワード
DB TechShowcase Tokyo - Intelligent Data Platform
DB TechShowcase Tokyo - Intelligent Data Platform
R & Python ベースの
AI の ストアドプロシージャ
Graph モデルのサポートによる
より複雑な関係を分析
クエリ 処理の最適化による
比類なき パフォーマンス
AI を組み込んだ最初の商用データベース
SQL Server
2017
• SQL Server, CNTK & R/Python – それぞれの強い部分を連携させた
エンタープライズ グレードの AI アプリケーション
• データを移動させる必要がないため、セキュリティと効率化が向上
• GPU による、処理能力の向上
Featurization
classifier model
での スコアリング
Web App
Diagnosis: 35% certainty
Python / R で実装した ストアドプロシージャ ストアド
プロシージャ
の
呼び出し
Model table,
Features table,
New Images table
SQL Server
execute sp_execute_external_script
@language = N'R'
, @script = N'
x <- as.matrix(InputDataSet);
y <- array(dim1:dim2);
OutputDataSet <- as.data.frame(x %*% y);'
, @input_data_1 = N'SELECT [Col1] from MyData;'
, @params = N'@dim1 int, @dim2 int'
, @dim1 = 12, @dim2 = 15
WITH RESULT SETS (([Col1] int, [Col2] int, [Col3] int, [Col4] int));
‘R’ もしくは ‘Python’
R file や Python file の
読み込みも
入力データ。 T-SQL SELECT も使
えるスクリプト用のパラメーター。”OUTPUT” もサポー
ト。
トレーニング済みのモデルには varbinary(max) を
使用
Result set のバインド(Optional)
STDOUT や STDERR と一緒に
メッセージ文字列も
R dataframe もしくは
Python Pandas dataframe
sqlservr.exe
MSSQLSERVER Service
launchpad.exe
MSSQLLAUNCHPAD Service
pythonlauncher.dll
conhost.exe
process pool
入力データ
コンパイル
クエリ実行
パイプへメッセージ送
信
入力クエリの実行
結果の出力
結果を取得する
SNI/TCP – 低次元のコミュニケーション
(not TDS)
入力行と入力パラメーターの取得
結果の出力と出力パラメータの書き込み
stdout と stderr の設定
R script
pipe CreateProcess –
named pipe
Windows Job Object
CreateProcess
BxlServer.exe
sqlsatellite.dll
SQLOS
XEvent
ScaleR
“satellite”
processes
挟みこむ
Local User Account
低い実行権限
<<Service SID>><<Service SID>>
EXTERNAL_SCRIPT_NETWORK_IO
待ち
rlauncher.dll
rlauncher.dll
pythonlauncher.dll
Python
script
python.exe
python35.dll
pylink.dll
BxlServer.exe
sqlsatellite.dll
SQLOS
XEvent
ScaleR
Local User Account
低い実行権限
sp_execute_external_script
rterm.exe
Open R
rxlink.dll
conhost.exe
In-memory OLTPColumn Store
大量データの
書き込み処理
PowerBI Dashboardスケールする
Database 内の分析
R
業務ユーザー
分析の用意
Stored
Predictions
Visualize
SQL-R を使って、秒間100万件の機械学習の処理も
DB TechShowcase Tokyo - Intelligent Data Platform
DB TechShowcase Tokyo - Intelligent Data Platform
リモートモニタリング・制御
多数のIoTデバイスからの収集データ
をマージ
先進AIの適用を可能にする、
無限に近いコンピューティング
リソースとストレージ
リアルタイム応答に必要な
ローレーテンシーでタイトな
コントロールループ
プライバシーデータや知的財産の保護
Azure IoT Edge IoT Hub
Devices
Local Storage
Azure Machine
Learning
(Container)
Functions
RuntimeContainer
Management
Device
Twin
Device
Twin
Azure Stream
Analytics
(Container)
Azure Functions
(Container)
Cognitive Services
(Container)
Custom Code
(Container)
Module
Twin
Module
Twin
Module
Twin
Module
Twin
Module
Twin
Module
Twin
Module
Twin
Module
Twin
Module
Twin
Module
Twin
DB TechShowcase Tokyo - Intelligent Data Platform
DB TechShowcase Tokyo - Intelligent Data Platform
DB TechShowcase Tokyo - Intelligent Data Platform
日付 時間 セッションタイトル
9/5 15:30-16:20 C16 Azure SQL Database - Are you ready for the cloud?
9/6 9:30-10:20 D21 ついに Red Hat Enterprise Linuxで SQL Serverが使える!
~Dr. KによるSQL Server 2017 Linux版性能検証速報~
9/6 12:30-13:20 B23 Intelligent Data Platform の全容 – 何がIntelligentなの? -
9/6 15:30-16:20 E26 窓は開かれた! SQL Server on Linux で拡がる可能性
9/6 16:30-17:20 E27 SQL Server 2017で実現されるAI(ディープラーニング)のシステムモデルのご紹介
9/7 10:30-11:20 C32 Patterns for building hybrid scenarios with SQL Server and Azure
9/7 12:30-13:20 E33 Linux 対応だけじゃない!! SQL Server 2017、こんな機能が追加されています。
9/7 16:30-17:20 E37 AzureでOSS DB/データ処理基盤のPaaSサービスを使ってみよう
さあ、始めま
しょう!azure.com
© 2017 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

More Related Content

What's hot (20)

Microsoft Ignite 2019 最新アップデート - Azure Big Data Services を俯瞰的に眺める
Microsoft Ignite 2019 最新アップデート - Azure Big Data Services を俯瞰的に眺めるMicrosoft Ignite 2019 最新アップデート - Azure Big Data Services を俯瞰的に眺める
Microsoft Ignite 2019 最新アップデート - Azure Big Data Services を俯瞰的に眺める
Daiyu Hatakeyama
 
Spark Analytics - スケーラブルな分散処理
Spark Analytics - スケーラブルな分散処理Spark Analytics - スケーラブルな分散処理
Spark Analytics - スケーラブルな分散処理
Tusyoshi Matsuzaki
 
Azure Discovery Day - SQL Server 2019 + Azure Data Services
Azure Discovery Day - SQL Server 2019 + Azure Data ServicesAzure Discovery Day - SQL Server 2019 + Azure Data Services
Azure Discovery Day - SQL Server 2019 + Azure Data Services
Daiyu Hatakeyama
 
[DI12] あらゆるデータをビジネスに活用! Azure Data Lake を中心としたビックデータ処理基盤のアーキテクチャと実装
[DI12] あらゆるデータをビジネスに活用! Azure Data Lake を中心としたビックデータ処理基盤のアーキテクチャと実装[DI12] あらゆるデータをビジネスに活用! Azure Data Lake を中心としたビックデータ処理基盤のアーキテクチャと実装
[DI12] あらゆるデータをビジネスに活用! Azure Data Lake を中心としたビックデータ処理基盤のアーキテクチャと実装
de:code 2017
 
BrainPad - Doors - A-1 - Microsoft Data and AI
BrainPad - Doors - A-1 - Microsoft Data and AIBrainPad - Doors - A-1 - Microsoft Data and AI
BrainPad - Doors - A-1 - Microsoft Data and AI
Daiyu Hatakeyama
 
【ウェブ セミナー】AI 時代のクラウド データ ウェアハウス Azure SQL Data Warehouse [実践編]
【ウェブ セミナー】AI 時代のクラウド データ ウェアハウス Azure SQL Data Warehouse [実践編]【ウェブ セミナー】AI 時代のクラウド データ ウェアハウス Azure SQL Data Warehouse [実践編]
【ウェブ セミナー】AI 時代のクラウド データ ウェアハウス Azure SQL Data Warehouse [実践編]
Hideo Takagi
 
Graviton2プロセッサの性能特性と適用箇所/Supership株式会社 中野 豊
Graviton2プロセッサの性能特性と適用箇所/Supership株式会社 中野 豊Graviton2プロセッサの性能特性と適用箇所/Supership株式会社 中野 豊
Graviton2プロセッサの性能特性と適用箇所/Supership株式会社 中野 豊
Supership株式会社
 
やりたいことから考えるMicrosoft Azure 上の データストアの選び方とデータサイエンティスト向け活用法。KVSからDWHまで
やりたいことから考えるMicrosoft Azure 上の データストアの選び方とデータサイエンティスト向け活用法。KVSからDWHまでやりたいことから考えるMicrosoft Azure 上の データストアの選び方とデータサイエンティスト向け活用法。KVSからDWHまで
やりたいことから考えるMicrosoft Azure 上の データストアの選び方とデータサイエンティスト向け活用法。KVSからDWHまで
Daisuke Masubuchi
 
東北大学AIE - 機械学習中級編とAzure紹介
東北大学AIE - 機械学習中級編とAzure紹介東北大学AIE - 機械学習中級編とAzure紹介
東北大学AIE - 機械学習中級編とAzure紹介
Daiyu Hatakeyama
 
Azure Monitor Logで実現するモダンな管理手法
Azure Monitor Logで実現するモダンな管理手法Azure Monitor Logで実現するモダンな管理手法
Azure Monitor Logで実現するモダンな管理手法
Takeshi Fukuhara
 
第29回 SQL Server 勉強会 (JSSUG) - Azure Synapse Analytics 概要
第29回 SQL Server 勉強会 (JSSUG) - Azure Synapse Analytics 概要 第29回 SQL Server 勉強会 (JSSUG) - Azure Synapse Analytics 概要
第29回 SQL Server 勉強会 (JSSUG) - Azure Synapse Analytics 概要
Daiyu Hatakeyama
 
Japan SQL Server Users Group - 第31回 SQL Server 2019勉強会 - Azure Synapse Analyt...
Japan SQL Server Users Group - 第31回 SQL Server 2019勉強会 - Azure Synapse Analyt...Japan SQL Server Users Group - 第31回 SQL Server 2019勉強会 - Azure Synapse Analyt...
Japan SQL Server Users Group - 第31回 SQL Server 2019勉強会 - Azure Synapse Analyt...
Daiyu Hatakeyama
 
SQL Server 2019 とともに知る Microsoft Data Platform
SQL Server 2019 とともに知る Microsoft Data PlatformSQL Server 2019 とともに知る Microsoft Data Platform
SQL Server 2019 とともに知る Microsoft Data Platform
Daiyu Hatakeyama
 
Data x AI x API で考えるビジネスインフラ
Data x AI x API で考えるビジネスインフラData x AI x API で考えるビジネスインフラ
Data x AI x API で考えるビジネスインフラ
Daiyu Hatakeyama
 
ビッグデータ処理データベースの全体像と使い分け
2018年version
ビッグデータ処理データベースの全体像と使い分け
2018年versionビッグデータ処理データベースの全体像と使い分け
2018年version
ビッグデータ処理データベースの全体像と使い分け
2018年version
Tetsutaro Watanabe
 
[Azureビッグデータ関連サービスとHortonworks勉強会] Azureビッグデータ関連サービス最新情報
[Azureビッグデータ関連サービスとHortonworks勉強会] Azureビッグデータ関連サービス最新情報[Azureビッグデータ関連サービスとHortonworks勉強会] Azureビッグデータ関連サービス最新情報
[Azureビッグデータ関連サービスとHortonworks勉強会] Azureビッグデータ関連サービス最新情報
Naoki (Neo) SATO
 
Deep Learning Lab - Microsoft Machine Learning meetup 2018/06/27 - 推論編
Deep Learning Lab - Microsoft Machine Learning meetup 2018/06/27 - 推論編Deep Learning Lab - Microsoft Machine Learning meetup 2018/06/27 - 推論編
Deep Learning Lab - Microsoft Machine Learning meetup 2018/06/27 - 推論編
Daiyu Hatakeyama
 
[よくわかるクラウドデータベース] CassandraからAmazon DynamoDBへの移行事例
[よくわかるクラウドデータベース] CassandraからAmazon DynamoDBへの移行事例[よくわかるクラウドデータベース] CassandraからAmazon DynamoDBへの移行事例
[よくわかるクラウドデータベース] CassandraからAmazon DynamoDBへの移行事例
Amazon Web Services Japan
 
Azure Purview Linage for Dataflow/Spark
Azure Purview Linage for Dataflow/SparkAzure Purview Linage for Dataflow/Spark
Azure Purview Linage for Dataflow/Spark
Ryoma Nagata
 
ビッグデータ処理データベースの全体像と使い分け
ビッグデータ処理データベースの全体像と使い分けビッグデータ処理データベースの全体像と使い分け
ビッグデータ処理データベースの全体像と使い分け
Recruit Technologies
 
Microsoft Ignite 2019 最新アップデート - Azure Big Data Services を俯瞰的に眺める
Microsoft Ignite 2019 最新アップデート - Azure Big Data Services を俯瞰的に眺めるMicrosoft Ignite 2019 最新アップデート - Azure Big Data Services を俯瞰的に眺める
Microsoft Ignite 2019 最新アップデート - Azure Big Data Services を俯瞰的に眺める
Daiyu Hatakeyama
 
Spark Analytics - スケーラブルな分散処理
Spark Analytics - スケーラブルな分散処理Spark Analytics - スケーラブルな分散処理
Spark Analytics - スケーラブルな分散処理
Tusyoshi Matsuzaki
 
Azure Discovery Day - SQL Server 2019 + Azure Data Services
Azure Discovery Day - SQL Server 2019 + Azure Data ServicesAzure Discovery Day - SQL Server 2019 + Azure Data Services
Azure Discovery Day - SQL Server 2019 + Azure Data Services
Daiyu Hatakeyama
 
[DI12] あらゆるデータをビジネスに活用! Azure Data Lake を中心としたビックデータ処理基盤のアーキテクチャと実装
[DI12] あらゆるデータをビジネスに活用! Azure Data Lake を中心としたビックデータ処理基盤のアーキテクチャと実装[DI12] あらゆるデータをビジネスに活用! Azure Data Lake を中心としたビックデータ処理基盤のアーキテクチャと実装
[DI12] あらゆるデータをビジネスに活用! Azure Data Lake を中心としたビックデータ処理基盤のアーキテクチャと実装
de:code 2017
 
BrainPad - Doors - A-1 - Microsoft Data and AI
BrainPad - Doors - A-1 - Microsoft Data and AIBrainPad - Doors - A-1 - Microsoft Data and AI
BrainPad - Doors - A-1 - Microsoft Data and AI
Daiyu Hatakeyama
 
【ウェブ セミナー】AI 時代のクラウド データ ウェアハウス Azure SQL Data Warehouse [実践編]
【ウェブ セミナー】AI 時代のクラウド データ ウェアハウス Azure SQL Data Warehouse [実践編]【ウェブ セミナー】AI 時代のクラウド データ ウェアハウス Azure SQL Data Warehouse [実践編]
【ウェブ セミナー】AI 時代のクラウド データ ウェアハウス Azure SQL Data Warehouse [実践編]
Hideo Takagi
 
Graviton2プロセッサの性能特性と適用箇所/Supership株式会社 中野 豊
Graviton2プロセッサの性能特性と適用箇所/Supership株式会社 中野 豊Graviton2プロセッサの性能特性と適用箇所/Supership株式会社 中野 豊
Graviton2プロセッサの性能特性と適用箇所/Supership株式会社 中野 豊
Supership株式会社
 
やりたいことから考えるMicrosoft Azure 上の データストアの選び方とデータサイエンティスト向け活用法。KVSからDWHまで
やりたいことから考えるMicrosoft Azure 上の データストアの選び方とデータサイエンティスト向け活用法。KVSからDWHまでやりたいことから考えるMicrosoft Azure 上の データストアの選び方とデータサイエンティスト向け活用法。KVSからDWHまで
やりたいことから考えるMicrosoft Azure 上の データストアの選び方とデータサイエンティスト向け活用法。KVSからDWHまで
Daisuke Masubuchi
 
東北大学AIE - 機械学習中級編とAzure紹介
東北大学AIE - 機械学習中級編とAzure紹介東北大学AIE - 機械学習中級編とAzure紹介
東北大学AIE - 機械学習中級編とAzure紹介
Daiyu Hatakeyama
 
Azure Monitor Logで実現するモダンな管理手法
Azure Monitor Logで実現するモダンな管理手法Azure Monitor Logで実現するモダンな管理手法
Azure Monitor Logで実現するモダンな管理手法
Takeshi Fukuhara
 
第29回 SQL Server 勉強会 (JSSUG) - Azure Synapse Analytics 概要
第29回 SQL Server 勉強会 (JSSUG) - Azure Synapse Analytics 概要 第29回 SQL Server 勉強会 (JSSUG) - Azure Synapse Analytics 概要
第29回 SQL Server 勉強会 (JSSUG) - Azure Synapse Analytics 概要
Daiyu Hatakeyama
 
Japan SQL Server Users Group - 第31回 SQL Server 2019勉強会 - Azure Synapse Analyt...
Japan SQL Server Users Group - 第31回 SQL Server 2019勉強会 - Azure Synapse Analyt...Japan SQL Server Users Group - 第31回 SQL Server 2019勉強会 - Azure Synapse Analyt...
Japan SQL Server Users Group - 第31回 SQL Server 2019勉強会 - Azure Synapse Analyt...
Daiyu Hatakeyama
 
SQL Server 2019 とともに知る Microsoft Data Platform
SQL Server 2019 とともに知る Microsoft Data PlatformSQL Server 2019 とともに知る Microsoft Data Platform
SQL Server 2019 とともに知る Microsoft Data Platform
Daiyu Hatakeyama
 
Data x AI x API で考えるビジネスインフラ
Data x AI x API で考えるビジネスインフラData x AI x API で考えるビジネスインフラ
Data x AI x API で考えるビジネスインフラ
Daiyu Hatakeyama
 
ビッグデータ処理データベースの全体像と使い分け
2018年version
ビッグデータ処理データベースの全体像と使い分け
2018年versionビッグデータ処理データベースの全体像と使い分け
2018年version
ビッグデータ処理データベースの全体像と使い分け
2018年version
Tetsutaro Watanabe
 
[Azureビッグデータ関連サービスとHortonworks勉強会] Azureビッグデータ関連サービス最新情報
[Azureビッグデータ関連サービスとHortonworks勉強会] Azureビッグデータ関連サービス最新情報[Azureビッグデータ関連サービスとHortonworks勉強会] Azureビッグデータ関連サービス最新情報
[Azureビッグデータ関連サービスとHortonworks勉強会] Azureビッグデータ関連サービス最新情報
Naoki (Neo) SATO
 
Deep Learning Lab - Microsoft Machine Learning meetup 2018/06/27 - 推論編
Deep Learning Lab - Microsoft Machine Learning meetup 2018/06/27 - 推論編Deep Learning Lab - Microsoft Machine Learning meetup 2018/06/27 - 推論編
Deep Learning Lab - Microsoft Machine Learning meetup 2018/06/27 - 推論編
Daiyu Hatakeyama
 
[よくわかるクラウドデータベース] CassandraからAmazon DynamoDBへの移行事例
[よくわかるクラウドデータベース] CassandraからAmazon DynamoDBへの移行事例[よくわかるクラウドデータベース] CassandraからAmazon DynamoDBへの移行事例
[よくわかるクラウドデータベース] CassandraからAmazon DynamoDBへの移行事例
Amazon Web Services Japan
 
Azure Purview Linage for Dataflow/Spark
Azure Purview Linage for Dataflow/SparkAzure Purview Linage for Dataflow/Spark
Azure Purview Linage for Dataflow/Spark
Ryoma Nagata
 
ビッグデータ処理データベースの全体像と使い分け
ビッグデータ処理データベースの全体像と使い分けビッグデータ処理データベースの全体像と使い分け
ビッグデータ処理データベースの全体像と使い分け
Recruit Technologies
 

Similar to DB TechShowcase Tokyo - Intelligent Data Platform (20)

Talk 1「データインテグレーションとは何か」
Talk 1「データインテグレーションとは何か」Talk 1「データインテグレーションとは何か」
Talk 1「データインテグレーションとは何か」
Takeshi Akutsu
 
stapy_028_talk1
stapy_028_talk1stapy_028_talk1
stapy_028_talk1
Takeshi Akutsu
 
Dat011 hd insight_+_spark_+_r_を活用した
Dat011 hd insight_+_spark_+_r_を活用したDat011 hd insight_+_spark_+_r_を活用した
Dat011 hd insight_+_spark_+_r_を活用した
Tech Summit 2016
 
20160121 データサイエンティスト協会 木曜セミナー #5
20160121 データサイエンティスト協会 木曜セミナー #520160121 データサイエンティスト協会 木曜セミナー #5
20160121 データサイエンティスト協会 木曜セミナー #5
Koichiro Sasaki
 
リクルートを支える横断データ基盤と機械学習の適用事例
リクルートを支える横断データ基盤と機械学習の適用事例リクルートを支える横断データ基盤と機械学習の適用事例
リクルートを支える横断データ基盤と機械学習の適用事例
Tetsutaro Watanabe
 
Oracle Advanced Analytics 概要
Oracle Advanced Analytics 概要Oracle Advanced Analytics 概要
Oracle Advanced Analytics 概要
オラクルエンジニア通信
 
Oracle advanced analyticsによる機械学習full version
Oracle advanced analyticsによる機械学習full versionOracle advanced analyticsによる機械学習full version
Oracle advanced analyticsによる機械学習full version
幹雄 小川
 
20160220 MSのビッグデータ分析基盤 - データマイニング+WEB@東京
20160220 MSのビッグデータ分析基盤 - データマイニング+WEB@東京20160220 MSのビッグデータ分析基盤 - データマイニング+WEB@東京
20160220 MSのビッグデータ分析基盤 - データマイニング+WEB@東京
Koichiro Sasaki
 
RPALT_20200309Aomori
RPALT_20200309AomoriRPALT_20200309Aomori
RPALT_20200309Aomori
yoko tsushima
 
Oracle Data Minerハンズオンセミナー170927:①Oracle 機械学習概要
Oracle Data Minerハンズオンセミナー170927:①Oracle 機械学習概要Oracle Data Minerハンズオンセミナー170927:①Oracle 機械学習概要
Oracle Data Minerハンズオンセミナー170927:①Oracle 機械学習概要
オラクルエンジニア通信
 
ビッグデータ革命 クラウドがコモデティ化する「奇跡」
ビッグデータ革命 クラウドがコモデティ化する「奇跡」ビッグデータ革命 クラウドがコモデティ化する「奇跡」
ビッグデータ革命 クラウドがコモデティ化する「奇跡」
Atsushi Nakada
 
Jubatus: 分散協調をキーとした大規模リアルタイム機械学習プラットフォーム
Jubatus: 分散協調をキーとした大規模リアルタイム機械学習プラットフォームJubatus: 分散協調をキーとした大規模リアルタイム機械学習プラットフォーム
Jubatus: 分散協調をキーとした大規模リアルタイム機械学習プラットフォーム
Preferred Networks
 
Oracle Cloud Developers Meetup@東京
Oracle Cloud Developers Meetup@東京Oracle Cloud Developers Meetup@東京
Oracle Cloud Developers Meetup@東京
tuchimur
 
エンタープライズと機械学習技術
エンタープライズと機械学習技術エンタープライズと機械学習技術
エンタープライズと機械学習技術
maruyama097
 
[Japan Tech summit 2017] MAI 005
[Japan Tech summit 2017] MAI 005[Japan Tech summit 2017] MAI 005
[Japan Tech summit 2017] MAI 005
Microsoft Tech Summit 2017
 
SQL Server 2017 で実現される AIシステムモデル のご紹介
SQL Server 2017 で実現される AIシステムモデル のご紹介SQL Server 2017 で実現される AIシステムモデル のご紹介
SQL Server 2017 で実現される AIシステムモデル のご紹介
Tomoyuki Oota
 
データからビジネス変革をもたらすマイクロソフトの AI とは
データからビジネス変革をもたらすマイクロソフトの AI とはデータからビジネス変革をもたらすマイクロソフトの AI とは
データからビジネス変革をもたらすマイクロソフトの AI とは
Miho Yamamoto
 
MLOps NYC 2019 and Strata Data Conference NY 2019 report nttdata
MLOps NYC 2019 and Strata Data Conference NY 2019 report nttdataMLOps NYC 2019 and Strata Data Conference NY 2019 report nttdata
MLOps NYC 2019 and Strata Data Conference NY 2019 report nttdata
NTT DATA Technology & Innovation
 
Session4:「先進ビッグデータ応用を支える機械学習に求められる新技術」/比戸将平
Session4:「先進ビッグデータ応用を支える機械学習に求められる新技術」/比戸将平Session4:「先進ビッグデータ応用を支える機械学習に求められる新技術」/比戸将平
Session4:「先進ビッグデータ応用を支える機械学習に求められる新技術」/比戸将平
Preferred Networks
 
tut_pfi_2012
tut_pfi_2012tut_pfi_2012
tut_pfi_2012
Preferred Networks
 
Talk 1「データインテグレーションとは何か」
Talk 1「データインテグレーションとは何か」Talk 1「データインテグレーションとは何か」
Talk 1「データインテグレーションとは何か」
Takeshi Akutsu
 
Dat011 hd insight_+_spark_+_r_を活用した
Dat011 hd insight_+_spark_+_r_を活用したDat011 hd insight_+_spark_+_r_を活用した
Dat011 hd insight_+_spark_+_r_を活用した
Tech Summit 2016
 
20160121 データサイエンティスト協会 木曜セミナー #5
20160121 データサイエンティスト協会 木曜セミナー #520160121 データサイエンティスト協会 木曜セミナー #5
20160121 データサイエンティスト協会 木曜セミナー #5
Koichiro Sasaki
 
リクルートを支える横断データ基盤と機械学習の適用事例
リクルートを支える横断データ基盤と機械学習の適用事例リクルートを支える横断データ基盤と機械学習の適用事例
リクルートを支える横断データ基盤と機械学習の適用事例
Tetsutaro Watanabe
 
Oracle advanced analyticsによる機械学習full version
Oracle advanced analyticsによる機械学習full versionOracle advanced analyticsによる機械学習full version
Oracle advanced analyticsによる機械学習full version
幹雄 小川
 
20160220 MSのビッグデータ分析基盤 - データマイニング+WEB@東京
20160220 MSのビッグデータ分析基盤 - データマイニング+WEB@東京20160220 MSのビッグデータ分析基盤 - データマイニング+WEB@東京
20160220 MSのビッグデータ分析基盤 - データマイニング+WEB@東京
Koichiro Sasaki
 
RPALT_20200309Aomori
RPALT_20200309AomoriRPALT_20200309Aomori
RPALT_20200309Aomori
yoko tsushima
 
Oracle Data Minerハンズオンセミナー170927:①Oracle 機械学習概要
Oracle Data Minerハンズオンセミナー170927:①Oracle 機械学習概要Oracle Data Minerハンズオンセミナー170927:①Oracle 機械学習概要
Oracle Data Minerハンズオンセミナー170927:①Oracle 機械学習概要
オラクルエンジニア通信
 
ビッグデータ革命 クラウドがコモデティ化する「奇跡」
ビッグデータ革命 クラウドがコモデティ化する「奇跡」ビッグデータ革命 クラウドがコモデティ化する「奇跡」
ビッグデータ革命 クラウドがコモデティ化する「奇跡」
Atsushi Nakada
 
Jubatus: 分散協調をキーとした大規模リアルタイム機械学習プラットフォーム
Jubatus: 分散協調をキーとした大規模リアルタイム機械学習プラットフォームJubatus: 分散協調をキーとした大規模リアルタイム機械学習プラットフォーム
Jubatus: 分散協調をキーとした大規模リアルタイム機械学習プラットフォーム
Preferred Networks
 
Oracle Cloud Developers Meetup@東京
Oracle Cloud Developers Meetup@東京Oracle Cloud Developers Meetup@東京
Oracle Cloud Developers Meetup@東京
tuchimur
 
エンタープライズと機械学習技術
エンタープライズと機械学習技術エンタープライズと機械学習技術
エンタープライズと機械学習技術
maruyama097
 
SQL Server 2017 で実現される AIシステムモデル のご紹介
SQL Server 2017 で実現される AIシステムモデル のご紹介SQL Server 2017 で実現される AIシステムモデル のご紹介
SQL Server 2017 で実現される AIシステムモデル のご紹介
Tomoyuki Oota
 
データからビジネス変革をもたらすマイクロソフトの AI とは
データからビジネス変革をもたらすマイクロソフトの AI とはデータからビジネス変革をもたらすマイクロソフトの AI とは
データからビジネス変革をもたらすマイクロソフトの AI とは
Miho Yamamoto
 
MLOps NYC 2019 and Strata Data Conference NY 2019 report nttdata
MLOps NYC 2019 and Strata Data Conference NY 2019 report nttdataMLOps NYC 2019 and Strata Data Conference NY 2019 report nttdata
MLOps NYC 2019 and Strata Data Conference NY 2019 report nttdata
NTT DATA Technology & Innovation
 
Session4:「先進ビッグデータ応用を支える機械学習に求められる新技術」/比戸将平
Session4:「先進ビッグデータ応用を支える機械学習に求められる新技術」/比戸将平Session4:「先進ビッグデータ応用を支える機械学習に求められる新技術」/比戸将平
Session4:「先進ビッグデータ応用を支える機械学習に求められる新技術」/比戸将平
Preferred Networks
 
Ad

More from Daiyu Hatakeyama (20)

ChatGPT Impact - その社会的/ビジネス価値を考える -
ChatGPT Impact - その社会的/ビジネス価値を考える -ChatGPT Impact - その社会的/ビジネス価値を考える -
ChatGPT Impact - その社会的/ビジネス価値を考える -
Daiyu Hatakeyama
 
Ethics of AI - AIの倫理-
Ethics of AI - AIの倫理-Ethics of AI - AIの倫理-
Ethics of AI - AIの倫理-
Daiyu Hatakeyama
 
郡山 Connect 2022 ハッカソン 基調講演 - Hackathon からサービスインになったらデータを扱いましょう
郡山 Connect 2022 ハッカソン 基調講演 - Hackathon からサービスインになったらデータを扱いましょう郡山 Connect 2022 ハッカソン 基調講演 - Hackathon からサービスインになったらデータを扱いましょう
郡山 Connect 2022 ハッカソン 基調講演 - Hackathon からサービスインになったらデータを扱いましょう
Daiyu Hatakeyama
 
テクノアカデミー郡山 現役ソフトウェアエンジニアが語る。IT の今と未来
テクノアカデミー郡山 現役ソフトウェアエンジニアが語る。IT の今と未来テクノアカデミー郡山 現役ソフトウェアエンジニアが語る。IT の今と未来
テクノアカデミー郡山 現役ソフトウェアエンジニアが語る。IT の今と未来
Daiyu Hatakeyama
 
Webサイトの最適化
Webサイトの最適化Webサイトの最適化
Webサイトの最適化
Daiyu Hatakeyama
 
DXのための内製化のススメ
DXのための内製化のススメDXのための内製化のススメ
DXのための内製化のススメ
Daiyu Hatakeyama
 
JDMC Azureアプリ開発入門
JDMC Azureアプリ開発入門JDMC Azureアプリ開発入門
JDMC Azureアプリ開発入門
Daiyu Hatakeyama
 
JAZUG12周年 俺の Azure Cosmos DB
JAZUG12周年 俺の Azure Cosmos DBJAZUG12周年 俺の Azure Cosmos DB
JAZUG12周年 俺の Azure Cosmos DB
Daiyu Hatakeyama
 
Microsoft の変革
Microsoft の変革Microsoft の変革
Microsoft の変革
Daiyu Hatakeyama
 
データ分析概略
データ分析概略データ分析概略
データ分析概略
Daiyu Hatakeyama
 
法政大学 MBA 中小企業向けITとの付き合うコツ
法政大学 MBA 中小企業向けITとの付き合うコツ法政大学 MBA 中小企業向けITとの付き合うコツ
法政大学 MBA 中小企業向けITとの付き合うコツ
Daiyu Hatakeyama
 
明治大学 データサイエンス・AIに関するオムニバス授業 エバンジェリストというキャリア
明治大学 データサイエンス・AIに関するオムニバス授業 エバンジェリストというキャリア明治大学 データサイエンス・AIに関するオムニバス授業 エバンジェリストというキャリア
明治大学 データサイエンス・AIに関するオムニバス授業 エバンジェリストというキャリア
Daiyu Hatakeyama
 
Green Software Foundation Global Summit 2022 Tokyo グリーンソフトウェアとは?
Green Software Foundation Global Summit 2022 Tokyo グリーンソフトウェアとは?Green Software Foundation Global Summit 2022 Tokyo グリーンソフトウェアとは?
Green Software Foundation Global Summit 2022 Tokyo グリーンソフトウェアとは?
Daiyu Hatakeyama
 
コミュニケーション戦略を前提にしたOutlookやTeams活用
コミュニケーション戦略を前提にしたOutlookやTeams活用コミュニケーション戦略を前提にしたOutlookやTeams活用
コミュニケーション戦略を前提にしたOutlookやTeams活用
Daiyu Hatakeyama
 
Python に行く前に Excel で学ぶデータ分析のいろは
Python に行く前に Excel で学ぶデータ分析のいろはPython に行く前に Excel で学ぶデータ分析のいろは
Python に行く前に Excel で学ぶデータ分析のいろは
Daiyu Hatakeyama
 
AI の光と影
AI の光と影AI の光と影
AI の光と影
Daiyu Hatakeyama
 
東京大学 メディアコンテンツ特別講義 Sustainability
東京大学 メディアコンテンツ特別講義 Sustainability東京大学 メディアコンテンツ特別講義 Sustainability
東京大学 メディアコンテンツ特別講義 Sustainability
Daiyu Hatakeyama
 
Wiz国際情報工科自動車大学校 特別講演 Teams活用しよう!
Wiz国際情報工科自動車大学校 特別講演 Teams活用しよう!Wiz国際情報工科自動車大学校 特別講演 Teams活用しよう!
Wiz国際情報工科自動車大学校 特別講演 Teams活用しよう!
Daiyu Hatakeyama
 
Wiz国際情報工科自動車大学校_特別講演_ITの織り成す未来
Wiz国際情報工科自動車大学校_特別講演_ITの織り成す未来Wiz国際情報工科自動車大学校_特別講演_ITの織り成す未来
Wiz国際情報工科自動車大学校_特別講演_ITの織り成す未来
Daiyu Hatakeyama
 
東洋経済 製造業DXフォーラム 2022: 製造業のための Sustainability との 向き合い方
東洋経済 製造業DXフォーラム 2022: 製造業のための Sustainability との 向き合い方東洋経済 製造業DXフォーラム 2022: 製造業のための Sustainability との 向き合い方
東洋経済 製造業DXフォーラム 2022: 製造業のための Sustainability との 向き合い方
Daiyu Hatakeyama
 
ChatGPT Impact - その社会的/ビジネス価値を考える -
ChatGPT Impact - その社会的/ビジネス価値を考える -ChatGPT Impact - その社会的/ビジネス価値を考える -
ChatGPT Impact - その社会的/ビジネス価値を考える -
Daiyu Hatakeyama
 
Ethics of AI - AIの倫理-
Ethics of AI - AIの倫理-Ethics of AI - AIの倫理-
Ethics of AI - AIの倫理-
Daiyu Hatakeyama
 
郡山 Connect 2022 ハッカソン 基調講演 - Hackathon からサービスインになったらデータを扱いましょう
郡山 Connect 2022 ハッカソン 基調講演 - Hackathon からサービスインになったらデータを扱いましょう郡山 Connect 2022 ハッカソン 基調講演 - Hackathon からサービスインになったらデータを扱いましょう
郡山 Connect 2022 ハッカソン 基調講演 - Hackathon からサービスインになったらデータを扱いましょう
Daiyu Hatakeyama
 
テクノアカデミー郡山 現役ソフトウェアエンジニアが語る。IT の今と未来
テクノアカデミー郡山 現役ソフトウェアエンジニアが語る。IT の今と未来テクノアカデミー郡山 現役ソフトウェアエンジニアが語る。IT の今と未来
テクノアカデミー郡山 現役ソフトウェアエンジニアが語る。IT の今と未来
Daiyu Hatakeyama
 
DXのための内製化のススメ
DXのための内製化のススメDXのための内製化のススメ
DXのための内製化のススメ
Daiyu Hatakeyama
 
JDMC Azureアプリ開発入門
JDMC Azureアプリ開発入門JDMC Azureアプリ開発入門
JDMC Azureアプリ開発入門
Daiyu Hatakeyama
 
JAZUG12周年 俺の Azure Cosmos DB
JAZUG12周年 俺の Azure Cosmos DBJAZUG12周年 俺の Azure Cosmos DB
JAZUG12周年 俺の Azure Cosmos DB
Daiyu Hatakeyama
 
法政大学 MBA 中小企業向けITとの付き合うコツ
法政大学 MBA 中小企業向けITとの付き合うコツ法政大学 MBA 中小企業向けITとの付き合うコツ
法政大学 MBA 中小企業向けITとの付き合うコツ
Daiyu Hatakeyama
 
明治大学 データサイエンス・AIに関するオムニバス授業 エバンジェリストというキャリア
明治大学 データサイエンス・AIに関するオムニバス授業 エバンジェリストというキャリア明治大学 データサイエンス・AIに関するオムニバス授業 エバンジェリストというキャリア
明治大学 データサイエンス・AIに関するオムニバス授業 エバンジェリストというキャリア
Daiyu Hatakeyama
 
Green Software Foundation Global Summit 2022 Tokyo グリーンソフトウェアとは?
Green Software Foundation Global Summit 2022 Tokyo グリーンソフトウェアとは?Green Software Foundation Global Summit 2022 Tokyo グリーンソフトウェアとは?
Green Software Foundation Global Summit 2022 Tokyo グリーンソフトウェアとは?
Daiyu Hatakeyama
 
コミュニケーション戦略を前提にしたOutlookやTeams活用
コミュニケーション戦略を前提にしたOutlookやTeams活用コミュニケーション戦略を前提にしたOutlookやTeams活用
コミュニケーション戦略を前提にしたOutlookやTeams活用
Daiyu Hatakeyama
 
Python に行く前に Excel で学ぶデータ分析のいろは
Python に行く前に Excel で学ぶデータ分析のいろはPython に行く前に Excel で学ぶデータ分析のいろは
Python に行く前に Excel で学ぶデータ分析のいろは
Daiyu Hatakeyama
 
東京大学 メディアコンテンツ特別講義 Sustainability
東京大学 メディアコンテンツ特別講義 Sustainability東京大学 メディアコンテンツ特別講義 Sustainability
東京大学 メディアコンテンツ特別講義 Sustainability
Daiyu Hatakeyama
 
Wiz国際情報工科自動車大学校 特別講演 Teams活用しよう!
Wiz国際情報工科自動車大学校 特別講演 Teams活用しよう!Wiz国際情報工科自動車大学校 特別講演 Teams活用しよう!
Wiz国際情報工科自動車大学校 特別講演 Teams活用しよう!
Daiyu Hatakeyama
 
Wiz国際情報工科自動車大学校_特別講演_ITの織り成す未来
Wiz国際情報工科自動車大学校_特別講演_ITの織り成す未来Wiz国際情報工科自動車大学校_特別講演_ITの織り成す未来
Wiz国際情報工科自動車大学校_特別講演_ITの織り成す未来
Daiyu Hatakeyama
 
東洋経済 製造業DXフォーラム 2022: 製造業のための Sustainability との 向き合い方
東洋経済 製造業DXフォーラム 2022: 製造業のための Sustainability との 向き合い方東洋経済 製造業DXフォーラム 2022: 製造業のための Sustainability との 向き合い方
東洋経済 製造業DXフォーラム 2022: 製造業のための Sustainability との 向き合い方
Daiyu Hatakeyama
 
Ad

DB TechShowcase Tokyo - Intelligent Data Platform