The document discusses distances between data and similarity measures in data analysis. It introduces the concept of distance between data as a quantitative measure of how different two data points are, with smaller distances indicating greater similarity. Distances are useful for tasks like clustering data, detecting anomalies, data recognition, and measuring approximation errors. The most common distance measure, Euclidean distance, is explained for vectors of any dimension using the concept of norm from geometry. Caution is advised when calculating distances between data with differing scales.
The document discusses hyperparameter optimization in machine learning models. It introduces various hyperparameters that can affect model performance, and notes that as models become more complex, the number of hyperparameters increases, making manual tuning difficult. It formulates hyperparameter optimization as a black-box optimization problem to minimize validation loss and discusses challenges like high function evaluation costs and lack of gradient information.
1) Canonical correlation analysis (CCA) is a statistical method that analyzes the correlation relationship between two sets of multidimensional variables.
2) CCA finds linear transformations of the two sets of variables so that their correlation is maximized. This can be formulated as a generalized eigenvalue problem.
3) The number of dimensions of the transformed variables is determined using Bartlett's test, which tests the eigenvalues against a chi-squared distribution.
園田翔氏の博士論文を解説しました。
Integral Representation Theory of Deep Neural Networks
深層学習を数学的に定式化して解釈します。
3行でいうと、
ーニューラルネットワーク—(連続化)→双対リッジレット変換
ー双対リッジレット変換=輸送写像
ー輸送写像でNeural Networkを定式化し、解釈する。
目次
ー深層ニューラルネットワークの数学的定式化
ーリッジレット変換について
ー輸送写像について
The document discusses hyperparameter optimization in machine learning models. It introduces various hyperparameters that can affect model performance, and notes that as models become more complex, the number of hyperparameters increases, making manual tuning difficult. It formulates hyperparameter optimization as a black-box optimization problem to minimize validation loss and discusses challenges like high function evaluation costs and lack of gradient information.
1) Canonical correlation analysis (CCA) is a statistical method that analyzes the correlation relationship between two sets of multidimensional variables.
2) CCA finds linear transformations of the two sets of variables so that their correlation is maximized. This can be formulated as a generalized eigenvalue problem.
3) The number of dimensions of the transformed variables is determined using Bartlett's test, which tests the eigenvalues against a chi-squared distribution.
園田翔氏の博士論文を解説しました。
Integral Representation Theory of Deep Neural Networks
深層学習を数学的に定式化して解釈します。
3行でいうと、
ーニューラルネットワーク—(連続化)→双対リッジレット変換
ー双対リッジレット変換=輸送写像
ー輸送写像でNeural Networkを定式化し、解釈する。
目次
ー深層ニューラルネットワークの数学的定式化
ーリッジレット変換について
ー輸送写像について
ソフトウェア業界ではワクワクする新しいテクノロジーがどんどん生まれ、それが世の中で使われるまでも早くなっています。2018年に革新があった Deep Learning は、既に民主化・日常化もしてます。この講演では、そのソフトウェアの今を俯瞰し、今後どうなっていくのか? その未来予想とともに。職業として20年以上の経験を得た私の学びをお伝えします。
1. The document discusses using Outlook and Teams to efficiently handle multitasking. It provides tips for classifying and processing information and tasks in a timely manner.
2. It suggests using tools like Outlook, Teams, OneDrive for task management and sharing files and information. Smartphones are highly effective for initial processing of emails and tasks.
3. PCs are necessary for longer responses, document creation, coding, and research. Cloud services allow storing and accessing all work files and emails from any device.
This study aims to develop an interactive idea-generation support system that enables users to consider the potential side effects of realizing new ideas.
In idea generation, confirmation bias often leads to an excessive focus on ``convenience,'' which can result in the oversight of unintended consequences, referred to as the ``side effects of convenience.''
To address this, we explored methods to alleviate user biases and expand perspectives through system-supported dialogue, facilitating a broader consideration of potential side effects.
The proposed system employs a stepwise idea-generation process supported by large language models (LLMs), enabling users to refine their ideas interactively.
By dividing the ideation process into distinct stages, the system mitigates biases at each stage while promoting ideas' concretization and identifying side effects through visually supported dialogues.
Preliminary evaluation suggests that engaging with the proposed system fosters awareness of diverse perspectives on potential side effects and facilitates the generation of ideas that proactively address these issues.
論文紹介:「Amodal Completion via Progressive Mixed Context Diffusion」「Amodal Insta...Toru Tamaki
Katherine Xu, Lingzhi Zhang, Jianbo Shi; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, "Amodal Completion via Progressive Mixed Context Diffusion"CVPR2024
https://openaccess.thecvf.com/content/CVPR2024/html/Xu_Amodal_Completion_via_Progressive_Mixed_Context_Diffusion_CVPR_2024_paper.html
Minh Tran, Khoa Vo, Tri Nguyen, and Ngan Le,"Amodal Instance Segmentation with Diffusion Shape Prior Estimation"ACCV 2024
https://uark-aicv.github.io/AISDiff/
31. Is there a deer in
the image?
Where is the deer
in the image?
Where exactly is the
deer? What pixels?
Which images are similar
to the query image?
Image
Classification
Object
detection
Image
segmentation
Image
Similarity
Similar
image
Query
imageYes