SlideShare a Scribd company logo
#dllab
Reinforcement Learning
on Azure Machine Learning
畠山 大有 | Daiyu Hatakeyama | @dahatake
Architect && Software Engineer && Applied Data Scientist (目指している)
Microsoft Japan
Reinforcement Learning
基礎
蒸気 や 電気 ソフトウェア
(+AI)
AI
Machine
Learning
教師あり
学習
教師無し
学習
強化学習
Classification
Regression
Clustering
Reward-based
種類 カテゴリ アルゴリズムの例
機械学習の手法
・故障分類
・販促効果分類
利用例
・売上予測
・需要予測
・セグメンテー
ション
・顧客グルーピン
グ
・メール キャン
ペーン
・自動運転
・自立型ビル管理
Reinforcement Learning
Environment
Agent
 Agent のゴール: 報酬を最大化するアクションを選択
する
 Modeling の方法:通常は、これを MDP としてモデル
化する (Markov Decision Process)
 Markov: 過去の状態の限られた数のみに応じて、
現在の状態を考慮する
 Decision: エージェントは、その目標を達成するため
に
どのアクションを取る必要があるかを決定する
 Process: 我々は環境のダイナミクスを定常であると
仮定する。それは、時間の経過と同時に変更されな
い
(または非常にゆっくりと変更される)
ユースケース
RL Platform
2つの Platform を提供
Azure Machine Learning
RLlib
Dopamine
ReAgent
RL Frameworks
RLlib
Source: RLlib: Scalable Reinforcement Learning
RLlib:複雑な RL アーキテクチャの例
Source: RLlib: Abstractions for Distributed Reinforcement Learning
Ray
Source: Ray: A Distributed Framework for Emerging AI Applications
notebook
• ReinforcementLearningEstimator
AzureML RL
Data Scientist Submits
Experiment
Azure Machine Learning
Ray Cluster
Head Node (Training)
Worker Node
Worker Node
Worker Worker
Worker Worker
Simulator Cluster
Simulator Node
Simulator Node
Sim Sim
Sim Sim
Training Results
Ray on Azure Machine Learning
Bonsai – preview.bons.ai
例: Advanced robotic control
17
開発生産性の高い GUI 提供
Azure 上でのユーザー管理リソース
始めるために
https://docs.microsoft.com
/ja-jp/azure/machine-
learning/how-to-use-
reinforcement-learning
https://docs.microsoft.com
/ja-jp/bonsai/
© 2018 Microsoft Corporation. All rights reserved.
本情報の内容(添付文書、リンク先などを含む)は、作成日時点でのものであり、予告なく変更される場合があります。
© 2020 Microsoft Corporation. All rights reserved.
本情報の内容 (添付文書、リンク先などを含む) は、公開日時点のものであり、予告なく変更される場合があります。
本コンテンツの著作権、および本コンテンツ中に出てくる商標権、団体名、ロゴ、製品、サービスなどはそれぞれ、各権利保有者に帰属しま
す。

More Related Content

What's hot (20)

Azure Machine Learning Services 概要 - 2019年3月版
Azure Machine Learning Services 概要 - 2019年3月版Azure Machine Learning Services 概要 - 2019年3月版
Azure Machine Learning Services 概要 - 2019年3月版
Daiyu Hatakeyama
 
Connect 2018 in Koriyama, with UDC - Microsoft AI Session
Connect 2018 in Koriyama, with UDC - Microsoft AI SessionConnect 2018 in Koriyama, with UDC - Microsoft AI Session
Connect 2018 in Koriyama, with UDC - Microsoft AI Session
Daiyu Hatakeyama
 
機械学習 / Deep Learning 大全 (5) Tool編
機械学習 / Deep Learning 大全 (5) Tool編機械学習 / Deep Learning 大全 (5) Tool編
機械学習 / Deep Learning 大全 (5) Tool編
Daiyu Hatakeyama
 
Neural Network Intelligence 概要 (AutoML Platform)
Neural Network Intelligence 概要 (AutoML Platform)Neural Network Intelligence 概要 (AutoML Platform)
Neural Network Intelligence 概要 (AutoML Platform)
Keita Onabuta
 
Azure Machine Learning Services 概要 - 2019年2月版
Azure Machine Learning Services 概要 - 2019年2月版Azure Machine Learning Services 概要 - 2019年2月版
Azure Machine Learning Services 概要 - 2019年2月版
Daiyu Hatakeyama
 
AutoML & InterpretML (2019/11/27 Deep Learning Lab 講演資料)
AutoML & InterpretML (2019/11/27 Deep Learning Lab 講演資料)AutoML & InterpretML (2019/11/27 Deep Learning Lab 講演資料)
AutoML & InterpretML (2019/11/27 Deep Learning Lab 講演資料)
Keita Onabuta
 
Azure Machine Learning services 2019年6月版
Azure Machine Learning services 2019年6月版Azure Machine Learning services 2019年6月版
Azure Machine Learning services 2019年6月版
Daiyu Hatakeyama
 
2021/6/3 Deep Learning Lab - Azure Synapse Analytics Ignite & Build アップデートake
2021/6/3 Deep Learning Lab - Azure Synapse Analytics Ignite & Build アップデートake2021/6/3 Deep Learning Lab - Azure Synapse Analytics Ignite & Build アップデートake
2021/6/3 Deep Learning Lab - Azure Synapse Analytics Ignite & Build アップデートake
Daiyu Hatakeyama
 
エンタープライズと機械学習技術
エンタープライズと機械学習技術エンタープライズと機械学習技術
エンタープライズと機械学習技術
maruyama097
 
Azure Machine Learning アップデートセミナー 20191127
Azure Machine Learning アップデートセミナー 20191127Azure Machine Learning アップデートセミナー 20191127
Azure Machine Learning アップデートセミナー 20191127
Keita Onabuta
 
AI を道具として使うための基礎知識 - Microsoft AI
AI を道具として使うための基礎知識 - Microsoft AIAI を道具として使うための基礎知識 - Microsoft AI
AI を道具として使うための基礎知識 - Microsoft AI
Daiyu Hatakeyama
 
デジタルトランスフォーメーション時代を生き抜くためのビジネス力 ~ AI、Advanced Analytics の使いどころ ~
デジタルトランスフォーメーション時代を生き抜くためのビジネス力 ~ AI、Advanced Analytics の使いどころ ~デジタルトランスフォーメーション時代を生き抜くためのビジネス力 ~ AI、Advanced Analytics の使いどころ ~
デジタルトランスフォーメーション時代を生き抜くためのビジネス力 ~ AI、Advanced Analytics の使いどころ ~
Daiyu Hatakeyama
 
Chainerと実験管理と私
Chainerと実験管理と私Chainerと実験管理と私
Chainerと実験管理と私
Toshinori Hanya
 
Automated ML (Azure) で始める機械学習の民主化
Automated ML (Azure) で始める機械学習の民主化Automated ML (Azure) で始める機械学習の民主化
Automated ML (Azure) で始める機械学習の民主化
Atsushi Yokohama (BEACHSIDE)
 
Useful Overfitting pattern
Useful Overfitting patternUseful Overfitting pattern
Useful Overfitting pattern
yohei okawa
 
明治大学講演資料「機械学習と自動ハイパーパラメタ最適化」 佐野正太郎
明治大学講演資料「機械学習と自動ハイパーパラメタ最適化」  佐野正太郎明治大学講演資料「機械学習と自動ハイパーパラメタ最適化」  佐野正太郎
明治大学講演資料「機械学習と自動ハイパーパラメタ最適化」 佐野正太郎
Preferred Networks
 
DLLab 2018 - Azure Machine Learning update
DLLab 2018 - Azure Machine Learning updateDLLab 2018 - Azure Machine Learning update
DLLab 2018 - Azure Machine Learning update
Daiyu Hatakeyama
 
MANABIYA Machine Learning Hands-On
MANABIYA Machine Learning Hands-OnMANABIYA Machine Learning Hands-On
MANABIYA Machine Learning Hands-On
陽平 山口
 
初心者歓迎 機械学習Chalk Talk (de:codeリバイバル) in Osaka -
初心者歓迎 機械学習Chalk Talk (de:codeリバイバル) in Osaka  - 初心者歓迎 機械学習Chalk Talk (de:codeリバイバル) in Osaka  -
初心者歓迎 機械学習Chalk Talk (de:codeリバイバル) in Osaka -
Daiyu Hatakeyama
 
Teratail Study  ~機械学習編#1~
Teratail Study  ~機械学習編#1~Teratail Study  ~機械学習編#1~
Teratail Study  ~機械学習編#1~
Kosuke Fujimoto
 
Azure Machine Learning Services 概要 - 2019年3月版
Azure Machine Learning Services 概要 - 2019年3月版Azure Machine Learning Services 概要 - 2019年3月版
Azure Machine Learning Services 概要 - 2019年3月版
Daiyu Hatakeyama
 
Connect 2018 in Koriyama, with UDC - Microsoft AI Session
Connect 2018 in Koriyama, with UDC - Microsoft AI SessionConnect 2018 in Koriyama, with UDC - Microsoft AI Session
Connect 2018 in Koriyama, with UDC - Microsoft AI Session
Daiyu Hatakeyama
 
機械学習 / Deep Learning 大全 (5) Tool編
機械学習 / Deep Learning 大全 (5) Tool編機械学習 / Deep Learning 大全 (5) Tool編
機械学習 / Deep Learning 大全 (5) Tool編
Daiyu Hatakeyama
 
Neural Network Intelligence 概要 (AutoML Platform)
Neural Network Intelligence 概要 (AutoML Platform)Neural Network Intelligence 概要 (AutoML Platform)
Neural Network Intelligence 概要 (AutoML Platform)
Keita Onabuta
 
Azure Machine Learning Services 概要 - 2019年2月版
Azure Machine Learning Services 概要 - 2019年2月版Azure Machine Learning Services 概要 - 2019年2月版
Azure Machine Learning Services 概要 - 2019年2月版
Daiyu Hatakeyama
 
AutoML & InterpretML (2019/11/27 Deep Learning Lab 講演資料)
AutoML & InterpretML (2019/11/27 Deep Learning Lab 講演資料)AutoML & InterpretML (2019/11/27 Deep Learning Lab 講演資料)
AutoML & InterpretML (2019/11/27 Deep Learning Lab 講演資料)
Keita Onabuta
 
Azure Machine Learning services 2019年6月版
Azure Machine Learning services 2019年6月版Azure Machine Learning services 2019年6月版
Azure Machine Learning services 2019年6月版
Daiyu Hatakeyama
 
2021/6/3 Deep Learning Lab - Azure Synapse Analytics Ignite & Build アップデートake
2021/6/3 Deep Learning Lab - Azure Synapse Analytics Ignite & Build アップデートake2021/6/3 Deep Learning Lab - Azure Synapse Analytics Ignite & Build アップデートake
2021/6/3 Deep Learning Lab - Azure Synapse Analytics Ignite & Build アップデートake
Daiyu Hatakeyama
 
エンタープライズと機械学習技術
エンタープライズと機械学習技術エンタープライズと機械学習技術
エンタープライズと機械学習技術
maruyama097
 
Azure Machine Learning アップデートセミナー 20191127
Azure Machine Learning アップデートセミナー 20191127Azure Machine Learning アップデートセミナー 20191127
Azure Machine Learning アップデートセミナー 20191127
Keita Onabuta
 
AI を道具として使うための基礎知識 - Microsoft AI
AI を道具として使うための基礎知識 - Microsoft AIAI を道具として使うための基礎知識 - Microsoft AI
AI を道具として使うための基礎知識 - Microsoft AI
Daiyu Hatakeyama
 
デジタルトランスフォーメーション時代を生き抜くためのビジネス力 ~ AI、Advanced Analytics の使いどころ ~
デジタルトランスフォーメーション時代を生き抜くためのビジネス力 ~ AI、Advanced Analytics の使いどころ ~デジタルトランスフォーメーション時代を生き抜くためのビジネス力 ~ AI、Advanced Analytics の使いどころ ~
デジタルトランスフォーメーション時代を生き抜くためのビジネス力 ~ AI、Advanced Analytics の使いどころ ~
Daiyu Hatakeyama
 
Chainerと実験管理と私
Chainerと実験管理と私Chainerと実験管理と私
Chainerと実験管理と私
Toshinori Hanya
 
Automated ML (Azure) で始める機械学習の民主化
Automated ML (Azure) で始める機械学習の民主化Automated ML (Azure) で始める機械学習の民主化
Automated ML (Azure) で始める機械学習の民主化
Atsushi Yokohama (BEACHSIDE)
 
Useful Overfitting pattern
Useful Overfitting patternUseful Overfitting pattern
Useful Overfitting pattern
yohei okawa
 
明治大学講演資料「機械学習と自動ハイパーパラメタ最適化」 佐野正太郎
明治大学講演資料「機械学習と自動ハイパーパラメタ最適化」  佐野正太郎明治大学講演資料「機械学習と自動ハイパーパラメタ最適化」  佐野正太郎
明治大学講演資料「機械学習と自動ハイパーパラメタ最適化」 佐野正太郎
Preferred Networks
 
DLLab 2018 - Azure Machine Learning update
DLLab 2018 - Azure Machine Learning updateDLLab 2018 - Azure Machine Learning update
DLLab 2018 - Azure Machine Learning update
Daiyu Hatakeyama
 
MANABIYA Machine Learning Hands-On
MANABIYA Machine Learning Hands-OnMANABIYA Machine Learning Hands-On
MANABIYA Machine Learning Hands-On
陽平 山口
 
初心者歓迎 機械学習Chalk Talk (de:codeリバイバル) in Osaka -
初心者歓迎 機械学習Chalk Talk (de:codeリバイバル) in Osaka  - 初心者歓迎 機械学習Chalk Talk (de:codeリバイバル) in Osaka  -
初心者歓迎 機械学習Chalk Talk (de:codeリバイバル) in Osaka -
Daiyu Hatakeyama
 
Teratail Study  ~機械学習編#1~
Teratail Study  ~機械学習編#1~Teratail Study  ~機械学習編#1~
Teratail Study  ~機械学習編#1~
Kosuke Fujimoto
 

Similar to Deep Learning Lab : Build 2020 Update - Reinforcement Learning on Azure Machine Learning (20)

Azure における強化学習への取り組み
Azure における強化学習への取り組みAzure における強化学習への取り組み
Azure における強化学習への取り組み
Keita Onabuta
 
20210122 rl day_tahiguch
20210122 rl day_tahiguch20210122 rl day_tahiguch
20210122 rl day_tahiguch
Takuto Higuchi
 
Azure Machine Learning Build 2020
Azure Machine Learning Build 2020Azure Machine Learning Build 2020
Azure Machine Learning Build 2020
Keita Onabuta
 
AIビジネスクリエーションワークショップ@東京
AIビジネスクリエーションワークショップ@東京AIビジネスクリエーションワークショップ@東京
AIビジネスクリエーションワークショップ@東京
Deep Learning Lab(ディープラーニング・ラボ)
 
強化学習1章
強化学習1章強化学習1章
強化学習1章
hiroki yamaoka
 
Azure Machine Learning getting started
Azure Machine Learning getting startedAzure Machine Learning getting started
Azure Machine Learning getting started
Masayuki Ota
 
Start Deep Reinforcement Learning with RL4J
Start Deep Reinforcement Learning with RL4JStart Deep Reinforcement Learning with RL4J
Start Deep Reinforcement Learning with RL4J
Yuki Tagami
 
東北大学AIE - 機械学習中級編とAzure紹介
東北大学AIE - 機械学習中級編とAzure紹介東北大学AIE - 機械学習中級編とAzure紹介
東北大学AIE - 機械学習中級編とAzure紹介
Daiyu Hatakeyama
 
【de:code 2020】 AutoML ではじめる機械学習の民主化
【de:code 2020】 AutoML ではじめる機械学習の民主化【de:code 2020】 AutoML ではじめる機械学習の民主化
【de:code 2020】 AutoML ではじめる機械学習の民主化
日本マイクロソフト株式会社
 
Hands on-ml section1-1st-half-20210317
Hands on-ml section1-1st-half-20210317Hands on-ml section1-1st-half-20210317
Hands on-ml section1-1st-half-20210317
Nagi Kataoka
 
[Dl輪読会]introduction of reinforcement learning
[Dl輪読会]introduction of reinforcement learning[Dl輪読会]introduction of reinforcement learning
[Dl輪読会]introduction of reinforcement learning
Deep Learning JP
 
エンジニアのための機械学習の基礎
エンジニアのための機械学習の基礎エンジニアのための機械学習の基礎
エンジニアのための機械学習の基礎
Daiyu Hatakeyama
 
[Japan Tech summit 2017] MAI 003
[Japan Tech summit 2017] MAI 003[Japan Tech summit 2017] MAI 003
[Japan Tech summit 2017] MAI 003
Microsoft Tech Summit 2017
 
Try Azure Machine Learning
Try Azure Machine LearningTry Azure Machine Learning
Try Azure Machine Learning
sady_nitro
 
【de:code 2020】 学生諸君! Azure であそぼう! ~Microsoft の AI を自作アプリに取り入れるまで~
【de:code 2020】 学生諸君! Azure であそぼう! ~Microsoft の AI を自作アプリに取り入れるまで~【de:code 2020】 学生諸君! Azure であそぼう! ~Microsoft の AI を自作アプリに取り入れるまで~
【de:code 2020】 学生諸君! Azure であそぼう! ~Microsoft の AI を自作アプリに取り入れるまで~
日本マイクロソフト株式会社
 
ビジネスアイディアを考えるときに 押さえておきたい機械学習4種類
ビジネスアイディアを考えるときに 押さえておきたい機械学習4種類ビジネスアイディアを考えるときに 押さえておきたい機械学習4種類
ビジネスアイディアを考えるときに 押さえておきたい機械学習4種類
西岡 賢一郎
 
[DL輪読会]Meta Reinforcement Learning
[DL輪読会]Meta Reinforcement Learning[DL輪読会]Meta Reinforcement Learning
[DL輪読会]Meta Reinforcement Learning
Deep Learning JP
 
Azure machine learning
Azure machine learningAzure machine learning
Azure machine learning
池田 直哉
 
RL_chapter1_to_chapter4
RL_chapter1_to_chapter4RL_chapter1_to_chapter4
RL_chapter1_to_chapter4
hiroki yamaoka
 
DLLAB COMMUNITY UPDATE 201804
DLLAB COMMUNITY UPDATE 201804DLLAB COMMUNITY UPDATE 201804
DLLAB COMMUNITY UPDATE 201804
Hirono Jumpei
 
Azure における強化学習への取り組み
Azure における強化学習への取り組みAzure における強化学習への取り組み
Azure における強化学習への取り組み
Keita Onabuta
 
20210122 rl day_tahiguch
20210122 rl day_tahiguch20210122 rl day_tahiguch
20210122 rl day_tahiguch
Takuto Higuchi
 
Azure Machine Learning Build 2020
Azure Machine Learning Build 2020Azure Machine Learning Build 2020
Azure Machine Learning Build 2020
Keita Onabuta
 
Azure Machine Learning getting started
Azure Machine Learning getting startedAzure Machine Learning getting started
Azure Machine Learning getting started
Masayuki Ota
 
Start Deep Reinforcement Learning with RL4J
Start Deep Reinforcement Learning with RL4JStart Deep Reinforcement Learning with RL4J
Start Deep Reinforcement Learning with RL4J
Yuki Tagami
 
東北大学AIE - 機械学習中級編とAzure紹介
東北大学AIE - 機械学習中級編とAzure紹介東北大学AIE - 機械学習中級編とAzure紹介
東北大学AIE - 機械学習中級編とAzure紹介
Daiyu Hatakeyama
 
Hands on-ml section1-1st-half-20210317
Hands on-ml section1-1st-half-20210317Hands on-ml section1-1st-half-20210317
Hands on-ml section1-1st-half-20210317
Nagi Kataoka
 
[Dl輪読会]introduction of reinforcement learning
[Dl輪読会]introduction of reinforcement learning[Dl輪読会]introduction of reinforcement learning
[Dl輪読会]introduction of reinforcement learning
Deep Learning JP
 
エンジニアのための機械学習の基礎
エンジニアのための機械学習の基礎エンジニアのための機械学習の基礎
エンジニアのための機械学習の基礎
Daiyu Hatakeyama
 
Try Azure Machine Learning
Try Azure Machine LearningTry Azure Machine Learning
Try Azure Machine Learning
sady_nitro
 
【de:code 2020】 学生諸君! Azure であそぼう! ~Microsoft の AI を自作アプリに取り入れるまで~
【de:code 2020】 学生諸君! Azure であそぼう! ~Microsoft の AI を自作アプリに取り入れるまで~【de:code 2020】 学生諸君! Azure であそぼう! ~Microsoft の AI を自作アプリに取り入れるまで~
【de:code 2020】 学生諸君! Azure であそぼう! ~Microsoft の AI を自作アプリに取り入れるまで~
日本マイクロソフト株式会社
 
ビジネスアイディアを考えるときに 押さえておきたい機械学習4種類
ビジネスアイディアを考えるときに 押さえておきたい機械学習4種類ビジネスアイディアを考えるときに 押さえておきたい機械学習4種類
ビジネスアイディアを考えるときに 押さえておきたい機械学習4種類
西岡 賢一郎
 
[DL輪読会]Meta Reinforcement Learning
[DL輪読会]Meta Reinforcement Learning[DL輪読会]Meta Reinforcement Learning
[DL輪読会]Meta Reinforcement Learning
Deep Learning JP
 
Azure machine learning
Azure machine learningAzure machine learning
Azure machine learning
池田 直哉
 
RL_chapter1_to_chapter4
RL_chapter1_to_chapter4RL_chapter1_to_chapter4
RL_chapter1_to_chapter4
hiroki yamaoka
 
DLLAB COMMUNITY UPDATE 201804
DLLAB COMMUNITY UPDATE 201804DLLAB COMMUNITY UPDATE 201804
DLLAB COMMUNITY UPDATE 201804
Hirono Jumpei
 
Ad

More from Daiyu Hatakeyama (20)

ChatGPT Impact - その社会的/ビジネス価値を考える -
ChatGPT Impact - その社会的/ビジネス価値を考える -ChatGPT Impact - その社会的/ビジネス価値を考える -
ChatGPT Impact - その社会的/ビジネス価値を考える -
Daiyu Hatakeyama
 
Ethics of AI - AIの倫理-
Ethics of AI - AIの倫理-Ethics of AI - AIの倫理-
Ethics of AI - AIの倫理-
Daiyu Hatakeyama
 
郡山 Connect 2022 ハッカソン 基調講演 - Hackathon からサービスインになったらデータを扱いましょう
郡山 Connect 2022 ハッカソン 基調講演 - Hackathon からサービスインになったらデータを扱いましょう郡山 Connect 2022 ハッカソン 基調講演 - Hackathon からサービスインになったらデータを扱いましょう
郡山 Connect 2022 ハッカソン 基調講演 - Hackathon からサービスインになったらデータを扱いましょう
Daiyu Hatakeyama
 
テクノアカデミー郡山 現役ソフトウェアエンジニアが語る。IT の今と未来
テクノアカデミー郡山 現役ソフトウェアエンジニアが語る。IT の今と未来テクノアカデミー郡山 現役ソフトウェアエンジニアが語る。IT の今と未来
テクノアカデミー郡山 現役ソフトウェアエンジニアが語る。IT の今と未来
Daiyu Hatakeyama
 
Webサイトの最適化
Webサイトの最適化Webサイトの最適化
Webサイトの最適化
Daiyu Hatakeyama
 
DXのための内製化のススメ
DXのための内製化のススメDXのための内製化のススメ
DXのための内製化のススメ
Daiyu Hatakeyama
 
JDMC Azureアプリ開発入門
JDMC Azureアプリ開発入門JDMC Azureアプリ開発入門
JDMC Azureアプリ開発入門
Daiyu Hatakeyama
 
JAZUG12周年 俺の Azure Cosmos DB
JAZUG12周年 俺の Azure Cosmos DBJAZUG12周年 俺の Azure Cosmos DB
JAZUG12周年 俺の Azure Cosmos DB
Daiyu Hatakeyama
 
Microsoft の変革
Microsoft の変革Microsoft の変革
Microsoft の変革
Daiyu Hatakeyama
 
データ分析概略
データ分析概略データ分析概略
データ分析概略
Daiyu Hatakeyama
 
法政大学 MBA 中小企業向けITとの付き合うコツ
法政大学 MBA 中小企業向けITとの付き合うコツ法政大学 MBA 中小企業向けITとの付き合うコツ
法政大学 MBA 中小企業向けITとの付き合うコツ
Daiyu Hatakeyama
 
明治大学 データサイエンス・AIに関するオムニバス授業 エバンジェリストというキャリア
明治大学 データサイエンス・AIに関するオムニバス授業 エバンジェリストというキャリア明治大学 データサイエンス・AIに関するオムニバス授業 エバンジェリストというキャリア
明治大学 データサイエンス・AIに関するオムニバス授業 エバンジェリストというキャリア
Daiyu Hatakeyama
 
Green Software Foundation Global Summit 2022 Tokyo グリーンソフトウェアとは?
Green Software Foundation Global Summit 2022 Tokyo グリーンソフトウェアとは?Green Software Foundation Global Summit 2022 Tokyo グリーンソフトウェアとは?
Green Software Foundation Global Summit 2022 Tokyo グリーンソフトウェアとは?
Daiyu Hatakeyama
 
コミュニケーション戦略を前提にしたOutlookやTeams活用
コミュニケーション戦略を前提にしたOutlookやTeams活用コミュニケーション戦略を前提にしたOutlookやTeams活用
コミュニケーション戦略を前提にしたOutlookやTeams活用
Daiyu Hatakeyama
 
Python に行く前に Excel で学ぶデータ分析のいろは
Python に行く前に Excel で学ぶデータ分析のいろはPython に行く前に Excel で学ぶデータ分析のいろは
Python に行く前に Excel で学ぶデータ分析のいろは
Daiyu Hatakeyama
 
AI の光と影
AI の光と影AI の光と影
AI の光と影
Daiyu Hatakeyama
 
東京大学 メディアコンテンツ特別講義 Sustainability
東京大学 メディアコンテンツ特別講義 Sustainability東京大学 メディアコンテンツ特別講義 Sustainability
東京大学 メディアコンテンツ特別講義 Sustainability
Daiyu Hatakeyama
 
Wiz国際情報工科自動車大学校 特別講演 Teams活用しよう!
Wiz国際情報工科自動車大学校 特別講演 Teams活用しよう!Wiz国際情報工科自動車大学校 特別講演 Teams活用しよう!
Wiz国際情報工科自動車大学校 特別講演 Teams活用しよう!
Daiyu Hatakeyama
 
Wiz国際情報工科自動車大学校_特別講演_ITの織り成す未来
Wiz国際情報工科自動車大学校_特別講演_ITの織り成す未来Wiz国際情報工科自動車大学校_特別講演_ITの織り成す未来
Wiz国際情報工科自動車大学校_特別講演_ITの織り成す未来
Daiyu Hatakeyama
 
東洋経済 製造業DXフォーラム 2022: 製造業のための Sustainability との 向き合い方
東洋経済 製造業DXフォーラム 2022: 製造業のための Sustainability との 向き合い方東洋経済 製造業DXフォーラム 2022: 製造業のための Sustainability との 向き合い方
東洋経済 製造業DXフォーラム 2022: 製造業のための Sustainability との 向き合い方
Daiyu Hatakeyama
 
ChatGPT Impact - その社会的/ビジネス価値を考える -
ChatGPT Impact - その社会的/ビジネス価値を考える -ChatGPT Impact - その社会的/ビジネス価値を考える -
ChatGPT Impact - その社会的/ビジネス価値を考える -
Daiyu Hatakeyama
 
Ethics of AI - AIの倫理-
Ethics of AI - AIの倫理-Ethics of AI - AIの倫理-
Ethics of AI - AIの倫理-
Daiyu Hatakeyama
 
郡山 Connect 2022 ハッカソン 基調講演 - Hackathon からサービスインになったらデータを扱いましょう
郡山 Connect 2022 ハッカソン 基調講演 - Hackathon からサービスインになったらデータを扱いましょう郡山 Connect 2022 ハッカソン 基調講演 - Hackathon からサービスインになったらデータを扱いましょう
郡山 Connect 2022 ハッカソン 基調講演 - Hackathon からサービスインになったらデータを扱いましょう
Daiyu Hatakeyama
 
テクノアカデミー郡山 現役ソフトウェアエンジニアが語る。IT の今と未来
テクノアカデミー郡山 現役ソフトウェアエンジニアが語る。IT の今と未来テクノアカデミー郡山 現役ソフトウェアエンジニアが語る。IT の今と未来
テクノアカデミー郡山 現役ソフトウェアエンジニアが語る。IT の今と未来
Daiyu Hatakeyama
 
DXのための内製化のススメ
DXのための内製化のススメDXのための内製化のススメ
DXのための内製化のススメ
Daiyu Hatakeyama
 
JDMC Azureアプリ開発入門
JDMC Azureアプリ開発入門JDMC Azureアプリ開発入門
JDMC Azureアプリ開発入門
Daiyu Hatakeyama
 
JAZUG12周年 俺の Azure Cosmos DB
JAZUG12周年 俺の Azure Cosmos DBJAZUG12周年 俺の Azure Cosmos DB
JAZUG12周年 俺の Azure Cosmos DB
Daiyu Hatakeyama
 
法政大学 MBA 中小企業向けITとの付き合うコツ
法政大学 MBA 中小企業向けITとの付き合うコツ法政大学 MBA 中小企業向けITとの付き合うコツ
法政大学 MBA 中小企業向けITとの付き合うコツ
Daiyu Hatakeyama
 
明治大学 データサイエンス・AIに関するオムニバス授業 エバンジェリストというキャリア
明治大学 データサイエンス・AIに関するオムニバス授業 エバンジェリストというキャリア明治大学 データサイエンス・AIに関するオムニバス授業 エバンジェリストというキャリア
明治大学 データサイエンス・AIに関するオムニバス授業 エバンジェリストというキャリア
Daiyu Hatakeyama
 
Green Software Foundation Global Summit 2022 Tokyo グリーンソフトウェアとは?
Green Software Foundation Global Summit 2022 Tokyo グリーンソフトウェアとは?Green Software Foundation Global Summit 2022 Tokyo グリーンソフトウェアとは?
Green Software Foundation Global Summit 2022 Tokyo グリーンソフトウェアとは?
Daiyu Hatakeyama
 
コミュニケーション戦略を前提にしたOutlookやTeams活用
コミュニケーション戦略を前提にしたOutlookやTeams活用コミュニケーション戦略を前提にしたOutlookやTeams活用
コミュニケーション戦略を前提にしたOutlookやTeams活用
Daiyu Hatakeyama
 
Python に行く前に Excel で学ぶデータ分析のいろは
Python に行く前に Excel で学ぶデータ分析のいろはPython に行く前に Excel で学ぶデータ分析のいろは
Python に行く前に Excel で学ぶデータ分析のいろは
Daiyu Hatakeyama
 
東京大学 メディアコンテンツ特別講義 Sustainability
東京大学 メディアコンテンツ特別講義 Sustainability東京大学 メディアコンテンツ特別講義 Sustainability
東京大学 メディアコンテンツ特別講義 Sustainability
Daiyu Hatakeyama
 
Wiz国際情報工科自動車大学校 特別講演 Teams活用しよう!
Wiz国際情報工科自動車大学校 特別講演 Teams活用しよう!Wiz国際情報工科自動車大学校 特別講演 Teams活用しよう!
Wiz国際情報工科自動車大学校 特別講演 Teams活用しよう!
Daiyu Hatakeyama
 
Wiz国際情報工科自動車大学校_特別講演_ITの織り成す未来
Wiz国際情報工科自動車大学校_特別講演_ITの織り成す未来Wiz国際情報工科自動車大学校_特別講演_ITの織り成す未来
Wiz国際情報工科自動車大学校_特別講演_ITの織り成す未来
Daiyu Hatakeyama
 
東洋経済 製造業DXフォーラム 2022: 製造業のための Sustainability との 向き合い方
東洋経済 製造業DXフォーラム 2022: 製造業のための Sustainability との 向き合い方東洋経済 製造業DXフォーラム 2022: 製造業のための Sustainability との 向き合い方
東洋経済 製造業DXフォーラム 2022: 製造業のための Sustainability との 向き合い方
Daiyu Hatakeyama
 
Ad

Deep Learning Lab : Build 2020 Update - Reinforcement Learning on Azure Machine Learning