This document introduces deep reinforcement learning and provides some examples of its applications. It begins with backgrounds on the history of deep learning and reinforcement learning. It then explains the concepts of reinforcement learning, deep learning, and deep reinforcement learning. Some example applications are controlling building sway, optimizing smart grids, and autonomous vehicles. The document also discusses using deep reinforcement learning for robot control and how understanding the principles can help in problem setting.
論文紹介:2D Pose-guided Complete Silhouette Estimation of Human Body in OcclusionToru Tamaki
Song Xu, Xuefeng Li, Xiangbo Lin,"2D Pose-guided Complete Silhouette Estimation of Human Body in Occlusion" ICPR2022
https://ieeexplore.ieee.org/document/9956436
2020/10/10に開催された第4回全日本コンピュータビジョン勉強会「人に関する認識・理解論文読み会」発表資料です。
以下の2本を読みました
Harmonious Attention Network for Person Re-identification. (CVPR2018)
Weekly Supervised Person Re-Identification (CVPR2019)
【DLゼミ】XFeat: Accelerated Features for Lightweight Image Matchingharmonylab
公開URL:https://arxiv.org/pdf/2404.19174
出典:Guilherme Potje, Felipe Cadar, Andre Araujo, Renato Martins, Erickson R. ascimento: XFeat: Accelerated Features for Lightweight Image Matching, Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2023)
概要:リソース効率に優れた特徴点マッチングのための軽量なアーキテクチャ「XFeat(Accelerated Features)」を提案します。手法は、局所的な特徴点の検出、抽出、マッチングのための畳み込みニューラルネットワークの基本的な設計を再検討します。特に、リソースが限られたデバイス向けに迅速かつ堅牢なアルゴリズムが必要とされるため、解像度を可能な限り高く保ちながら、ネットワークのチャネル数を制限します。さらに、スパース下でのマッチングを選択できる設計となっており、ナビゲーションやARなどのアプリケーションに適しています。XFeatは、高速かつ同等以上の精度を実現し、一般的なラップトップのCPU上でリアルタイムで動作します。