Getting Started with Elastic Stack.
Detailed blog for the same
http://vikshinde.blogspot.co.uk/2017/08/elastic-stack-introduction.html
The document provides an introduction to the ELK stack, which is a collection of three open source products: Elasticsearch, Logstash, and Kibana. It describes each component, including that Elasticsearch is a search and analytics engine, Logstash is used to collect, parse, and store logs, and Kibana is used to visualize data with charts and graphs. It also provides examples of how each component works together in processing and analyzing log data.
The document introduces the ELK stack, which consists of Elasticsearch, Logstash, Kibana, and Beats. Beats ship log and operational data to Elasticsearch. Logstash ingests, transforms, and sends data to Elasticsearch. Elasticsearch stores and indexes the data. Kibana allows users to visualize and interact with data stored in Elasticsearch. The document provides descriptions of each component and their roles. It also includes configuration examples and demonstrates how to access Elasticsearch via REST.
ELK Elasticsearch Logstash and Kibana Stack for Log ManagementEl Mahdi Benzekri
Initiation to the powerful Elasticsearch Logstash and Kibana stack, it has many use cases, the popular one is the server and application log management.
ELK Stack workshop covers real-world use cases and works with the participants to - implement them. This includes Elastic overview, Logstash configuration, creation of dashboards in Kibana, guidelines and tips on processing custom log formats, designing a system to scale, choosing hardware, and managing the lifecycle of your logs.
What Is ELK Stack | ELK Tutorial For Beginners | Elasticsearch Kibana | ELK S...Edureka!
( ELK Stack Training - https://www.edureka.co/elk-stack-trai... )
This Edureka tutorial on What Is ELK Stack will help you in understanding the fundamentals of Elasticsearch, Logstash, and Kibana together and help you in building a strong foundation in ELK Stack. Below are the topics covered in this ELK tutorial for beginners:
1. Need for Log Analysis
2. Problems with Log Analysis
3. What is ELK Stack?
4. Features of ELK Stack
5. Companies Using ELK Stack
This document discusses the ELK stack, which consists of Elasticsearch, Logstash, and Kibana. It provides an overview of each component, including that Elasticsearch is a search and analytics engine, Logstash is a data collection engine, and Kibana is a data visualization platform. The document then discusses setting up an ELK stack to index and visualize application logs.
Centralized log-management-with-elastic-stackRich Lee
Centralized log management is implemented using the Elastic Stack including Filebeat, Logstash, Elasticsearch, and Kibana. Filebeat ships logs to Logstash which transforms and indexes the data into Elasticsearch. Logs can then be queried and visualized in Kibana. For large volumes of logs, Kafka may be used as a buffer between the shipper and indexer. Backups are performed using Elasticsearch snapshots to a shared file system or cloud storage. Logs are indexed into time-based indices and a cron job deletes old indices to control storage usage.
Log Management
Log Monitoring
Log Analysis
Need for Log Analysis
Problem with Log Analysis
Some of Log Management Tool
What is ELK Stack
ELK Stack Working
Beats
Different Types of Server Logs
Example of Winlog beat, Packetbeat, Apache2 and Nginx Server log analysis
Mimikatz
Malicious File Detection using ELK
Practical Setup
Conclusion
So, what is the ELK Stack? "ELK" is the acronym for three open source projects: Elasticsearch, Logstash, and Kibana. Elasticsearch is a search and analytics engine. Logstash is a server‑side data processing pipeline that ingests data from multiple sources simultaneously, transforms it, and then sends it to a "stash" like Elasticsearch. Kibana lets users visualize data with charts and graphs in Elasticsearch.
This document discusses using the ELK stack (Elasticsearch, Logstash, Kibana) for log analysis. It describes the author's experience using Splunk and alternatives like Graylog and Elasticsearch before settling on the ELK stack. The key components - Logstash for input, Elasticsearch for storage and searching, and Kibana for the user interface - are explained. Troubleshooting tips are provided around checking that the components are running and communicating properly.
In this presentation, we are going to discuss how elasticsearch handles the various operations like insert, update, delete. We would also cover what is an inverted index and how segment merging works.
ELK (Elasticsearch, Logstash, Kibana) is an open source toolset for centralized logging, where Logstash collects, parses, and filters logs, Elasticsearch stores and indexes logs for search, and Kibana visualizes logs. Logstash processes logs through an input, filter, output pipeline using plugins. It can interpret various log formats and event types. Elasticsearch allows real-time search and scaling through replication/sharding. Kibana provides browser-based dashboards and visualization of Elasticsearch query results.
This document provides an overview and introduction to Elasticsearch. It discusses the speaker's experience and community involvement. It then covers how to set up Elasticsearch and Kibana locally. The rest of the document describes various Elasticsearch concepts and features like clusters, nodes, indexes, documents, shards, replicas, and building search-based applications. It also discusses using Elasticsearch for big data, different search capabilities, and text analysis.
The ELK stack is an open source toolset for data analysis that includes Logstash, Elasticsearch, and Kibana. Logstash collects and parses data from various sources, Elasticsearch stores and indexes the data for fast searching and analytics, and Kibana visualizes the data. The ELK stack can handle large volumes of time-series data in real-time and provides actionable insights. Commercial plugins are also available for additional functionality like monitoring, security, and support.
This document introduces the (B)ELK stack, which consists of Beats, Elasticsearch, Logstash, and Kibana. It describes each component and how they work together. Beats are lightweight data shippers that collect data from logs and systems. Logstash processes and transforms data from inputs like Beats. Elasticsearch stores and indexes the data. Kibana provides visualization and analytics capabilities. The document provides examples of using each tool and tips for working with the ELK stack.
Deep Dive on ElasticSearch Meetup event on 23rd May '15 at www.meetup.com/abctalks
Agenda:
1) Introduction to NOSQL
2) What is ElasticSearch and why is it required
3) ElasticSearch architecture
4) Installation of ElasticSearch
5) Hands on session on ElasticSearch
This slide deck talks about Elasticsearch and its features.
When you talk about ELK stack it just means you are talking
about Elasticsearch, Logstash, and Kibana. But when you talk
about Elastic stack, other components such as Beats, X-Pack
are also included with it.
what is the ELK Stack?
ELK vs Elastic stack
What is Elasticsearch used for?
How does Elasticsearch work?
What is an Elasticsearch index?
Shards
Replicas
Nodes
Clusters
What programming languages does Elasticsearch support?
Amazon Elasticsearch, its use cases and benefits
Elasticsearch is a distributed, open source search and analytics engine that allows full-text searches of structured and unstructured data. It is built on top of Apache Lucene and uses JSON documents. Elasticsearch can index, search, and analyze big volumes of data in near real-time. It is horizontally scalable, fault tolerant, and easy to deploy and administer.
The document discusses various components of the ELK stack including Elasticsearch, Logstash, Kibana, and how they work together. It provides descriptions of each component, what they are used for, and key features of Kibana such as its user interface, visualization capabilities, and why it is used.
Tuning Apache Kafka Connectors for Flink.pptxFlink Forward
Flink Forward San Francisco 2022.
In normal situations, the default Kafka consumer and producer configuration options work well. But we all know life is not all roses and rainbows and in this session we’ll explore a few knobs that can save the day in atypical scenarios. First, we'll take a detailed look at the parameters available when reading from Kafka. We’ll inspect the params helping us to spot quickly an application lock or crash, the ones that can significantly improve the performance and the ones to touch with gloves since they could cause more harm than benefit. Moreover we’ll explore the partitioning options and discuss when diverging from the default strategy is needed. Next, we’ll discuss the Kafka Sink. After browsing the available options we'll then dive deep into understanding how to approach use cases like sinking enormous records, managing spikes, and handling small but frequent updates.. If you want to understand how to make your application survive when the sky is dark, this session is for you!
by
Olena Babenko
This document introduces the ELK stack, which consists of Elasticsearch, Logstash, and Kibana. It provides instructions on setting up each component and using them together. Elasticsearch is a search engine that stores and searches data in JSON format. Logstash is an agent that collects logs from various sources, applies filters, and outputs to Elasticsearch. Kibana visualizes and explores the logs stored in Elasticsearch. The document demonstrates setting up each component and running a proof of concept to analyze sample log data.
Logstash is a tool for managing logs that allows for input, filter, and output plugins to collect, parse, and deliver logs and log data. It works by treating logs as events that are passed through the input, filter, and output phases, with popular plugins including file, redis, grok, elasticsearch and more. The document also provides guidance on using Logstash in a clustered configuration with an agent and server model to optimize log collection, processing, and storage.
This document discusses using Apache Kafka as a data hub to capture changes from various data sources using change data capture (CDC). It outlines several common CDC patterns like using modification dates, database triggers, or log files to identify changes. It then discusses using Kafka Connect to integrate various data sources like MongoDB, PostgreSQL and replicate changes. The document provides examples of open source CDC connectors and concludes with suggestions for getting involved in the Apache Kafka community.
An introduction to elasticsearch with a short demonstration on Kibana to present the search API. The slide covers:
- Quick overview of the Elastic stack
- indexation
- Analysers
- Relevance score
- One use case of elasticsearch
The query used for the Kibana demonstration can be found here:
https://github.com/melvynator/elasticsearch_presentation
ElasticSearch introduction talk. Overview of the API, functionality, use cases. What can be achieved, how to scale? What is Kibana, how it can benefit your business.
Introduction to Apache Flink - Fast and reliable big data processingTill Rohrmann
This presentation introduces Apache Flink, a massively parallel data processing engine which currently undergoes the incubation process at the Apache Software Foundation. Flink's programming primitives are presented and it is shown how easily a distributed PageRank algorithm can be implemented with Flink. Intriguing features such as dedicated memory management, Hadoop compatibility, streaming and automatic optimisation make it an unique system in the world of Big Data processing.
The document provides an introduction to the ELK stack for log analysis and visualization. It discusses why large data tools are needed for network traffic and log analysis. It then describes the components of the ELK stack - Elasticsearch for storage and search, Logstash for data collection and parsing, and Kibana for visualization. Several use cases are presented, including how Cisco and Yale use the ELK stack for security monitoring and analyzing biomedical research data.
So, what is the ELK Stack? "ELK" is the acronym for three open source projects: Elasticsearch, Logstash, and Kibana. Elasticsearch is a search and analytics engine. Logstash is a server‑side data processing pipeline that ingests data from multiple sources simultaneously, transforms it, and then sends it to a "stash" like Elasticsearch. Kibana lets users visualize data with charts and graphs in Elasticsearch.
This document discusses using the ELK stack (Elasticsearch, Logstash, Kibana) for log analysis. It describes the author's experience using Splunk and alternatives like Graylog and Elasticsearch before settling on the ELK stack. The key components - Logstash for input, Elasticsearch for storage and searching, and Kibana for the user interface - are explained. Troubleshooting tips are provided around checking that the components are running and communicating properly.
In this presentation, we are going to discuss how elasticsearch handles the various operations like insert, update, delete. We would also cover what is an inverted index and how segment merging works.
ELK (Elasticsearch, Logstash, Kibana) is an open source toolset for centralized logging, where Logstash collects, parses, and filters logs, Elasticsearch stores and indexes logs for search, and Kibana visualizes logs. Logstash processes logs through an input, filter, output pipeline using plugins. It can interpret various log formats and event types. Elasticsearch allows real-time search and scaling through replication/sharding. Kibana provides browser-based dashboards and visualization of Elasticsearch query results.
This document provides an overview and introduction to Elasticsearch. It discusses the speaker's experience and community involvement. It then covers how to set up Elasticsearch and Kibana locally. The rest of the document describes various Elasticsearch concepts and features like clusters, nodes, indexes, documents, shards, replicas, and building search-based applications. It also discusses using Elasticsearch for big data, different search capabilities, and text analysis.
The ELK stack is an open source toolset for data analysis that includes Logstash, Elasticsearch, and Kibana. Logstash collects and parses data from various sources, Elasticsearch stores and indexes the data for fast searching and analytics, and Kibana visualizes the data. The ELK stack can handle large volumes of time-series data in real-time and provides actionable insights. Commercial plugins are also available for additional functionality like monitoring, security, and support.
This document introduces the (B)ELK stack, which consists of Beats, Elasticsearch, Logstash, and Kibana. It describes each component and how they work together. Beats are lightweight data shippers that collect data from logs and systems. Logstash processes and transforms data from inputs like Beats. Elasticsearch stores and indexes the data. Kibana provides visualization and analytics capabilities. The document provides examples of using each tool and tips for working with the ELK stack.
Deep Dive on ElasticSearch Meetup event on 23rd May '15 at www.meetup.com/abctalks
Agenda:
1) Introduction to NOSQL
2) What is ElasticSearch and why is it required
3) ElasticSearch architecture
4) Installation of ElasticSearch
5) Hands on session on ElasticSearch
This slide deck talks about Elasticsearch and its features.
When you talk about ELK stack it just means you are talking
about Elasticsearch, Logstash, and Kibana. But when you talk
about Elastic stack, other components such as Beats, X-Pack
are also included with it.
what is the ELK Stack?
ELK vs Elastic stack
What is Elasticsearch used for?
How does Elasticsearch work?
What is an Elasticsearch index?
Shards
Replicas
Nodes
Clusters
What programming languages does Elasticsearch support?
Amazon Elasticsearch, its use cases and benefits
Elasticsearch is a distributed, open source search and analytics engine that allows full-text searches of structured and unstructured data. It is built on top of Apache Lucene and uses JSON documents. Elasticsearch can index, search, and analyze big volumes of data in near real-time. It is horizontally scalable, fault tolerant, and easy to deploy and administer.
The document discusses various components of the ELK stack including Elasticsearch, Logstash, Kibana, and how they work together. It provides descriptions of each component, what they are used for, and key features of Kibana such as its user interface, visualization capabilities, and why it is used.
Tuning Apache Kafka Connectors for Flink.pptxFlink Forward
Flink Forward San Francisco 2022.
In normal situations, the default Kafka consumer and producer configuration options work well. But we all know life is not all roses and rainbows and in this session we’ll explore a few knobs that can save the day in atypical scenarios. First, we'll take a detailed look at the parameters available when reading from Kafka. We’ll inspect the params helping us to spot quickly an application lock or crash, the ones that can significantly improve the performance and the ones to touch with gloves since they could cause more harm than benefit. Moreover we’ll explore the partitioning options and discuss when diverging from the default strategy is needed. Next, we’ll discuss the Kafka Sink. After browsing the available options we'll then dive deep into understanding how to approach use cases like sinking enormous records, managing spikes, and handling small but frequent updates.. If you want to understand how to make your application survive when the sky is dark, this session is for you!
by
Olena Babenko
This document introduces the ELK stack, which consists of Elasticsearch, Logstash, and Kibana. It provides instructions on setting up each component and using them together. Elasticsearch is a search engine that stores and searches data in JSON format. Logstash is an agent that collects logs from various sources, applies filters, and outputs to Elasticsearch. Kibana visualizes and explores the logs stored in Elasticsearch. The document demonstrates setting up each component and running a proof of concept to analyze sample log data.
Logstash is a tool for managing logs that allows for input, filter, and output plugins to collect, parse, and deliver logs and log data. It works by treating logs as events that are passed through the input, filter, and output phases, with popular plugins including file, redis, grok, elasticsearch and more. The document also provides guidance on using Logstash in a clustered configuration with an agent and server model to optimize log collection, processing, and storage.
This document discusses using Apache Kafka as a data hub to capture changes from various data sources using change data capture (CDC). It outlines several common CDC patterns like using modification dates, database triggers, or log files to identify changes. It then discusses using Kafka Connect to integrate various data sources like MongoDB, PostgreSQL and replicate changes. The document provides examples of open source CDC connectors and concludes with suggestions for getting involved in the Apache Kafka community.
An introduction to elasticsearch with a short demonstration on Kibana to present the search API. The slide covers:
- Quick overview of the Elastic stack
- indexation
- Analysers
- Relevance score
- One use case of elasticsearch
The query used for the Kibana demonstration can be found here:
https://github.com/melvynator/elasticsearch_presentation
ElasticSearch introduction talk. Overview of the API, functionality, use cases. What can be achieved, how to scale? What is Kibana, how it can benefit your business.
Introduction to Apache Flink - Fast and reliable big data processingTill Rohrmann
This presentation introduces Apache Flink, a massively parallel data processing engine which currently undergoes the incubation process at the Apache Software Foundation. Flink's programming primitives are presented and it is shown how easily a distributed PageRank algorithm can be implemented with Flink. Intriguing features such as dedicated memory management, Hadoop compatibility, streaming and automatic optimisation make it an unique system in the world of Big Data processing.
The document provides an introduction to the ELK stack for log analysis and visualization. It discusses why large data tools are needed for network traffic and log analysis. It then describes the components of the ELK stack - Elasticsearch for storage and search, Logstash for data collection and parsing, and Kibana for visualization. Several use cases are presented, including how Cisco and Yale use the ELK stack for security monitoring and analyzing biomedical research data.
Elastic Search Capability Presentation.pptxKnoldus Inc.
Elasticsearch is a search engine based on the Lucene library. It provides a distributed, multitenant-capable full-text search engine with an HTTP web interface and schema-free JSON document. Distributed search and analytics engine, part of the Elastic Stack. It indexes and analyzes data in real-time, providing powerful and scalable search capabilities for diverse applications.
This document discusses Real Time Log Analytics using the ELK (Elasticsearch, Logstash, Kibana) stack. It provides an overview of each component, including Elasticsearch for indexing and searching logs, Logstash for collecting, parsing, and enriching logs, and Kibana for visualizing and analyzing logs. It describes common use cases for log analytics like issue debugging and security analysis. It also covers challenges like non-consistent log formats and decentralized logs. The document includes examples of log entries from different systems and how ELK addresses issues like scalability and making logs easily searchable and reportable.
Centralized Logging Feature in CloudStack using ELK and Grafana - Kiran Chava...ShapeBlue
In this session, Kiran demonstrates how to centralize all the CloudStack-related logs in one place using Elastic Search and generate beautiful dashboards in Grafana. This session simplifies the troubleshooting process involved with CloudStack and quickly helps to resolve the issue.
-----------------------------------------
The CloudStack Collaboration Conference 2023 took place on 23-24th November. The conference, arranged by a group of volunteers from the Apache CloudStack Community, took place in the voco hotel, in Porte de Clichy, Paris. It hosted over 350 attendees, with 47 speakers holding technical talks, user stories, new features and integrations presentations and more.
Eko10 - Security Monitoring for Big Infrastructures without a Million Dollar ...Hernan Costante
Nowadays in an increasingly more complex and dynamic network its not enough to be a regex ninja and storing only the logs you think you might need. From network traffic to custom logs you won't know which logs will be crucial to stop the next attacker, and if you are not planning to spend a half of your security budget in a commercial solution we will show you a way to building you own SIEM with open source. The talk will go from how to build a powerful logging environment for your organization to scaling on the cloud and storing everything forever. We will walk through how to build such a system with open source solutions as Elasticsearch and Hadoop, and creating your own custom monitoring rules to monitor everything you need. The talk will also include how to secure the environment and allow restricted access to other teams as well as avoiding common pitfalls and ensuring compliance standards.
Centralized Logging System Using ELK StackRohit Sharma
Centralized Logging System using ELK Stack
The document discusses setting up a centralized logging system (CLS) using the ELK stack. The ELK stack consists of Logstash to capture and filter logs, Elasticsearch to index and store logs, and Kibana to visualize logs. Logstash agents on each server ship logs to Logstash, which filters and sends logs to Elasticsearch for indexing. Kibana queries Elasticsearch and presents logs through interactive dashboards. A CLS provides benefits like log analysis, auditing, compliance, and a single point of control. The ELK stack is an open-source solution that is scalable, customizable, and integrates with other tools.
This document provides an overview of Elastic Stack including ElasticSearch, Logstash, Kibana, and Beats. It discusses how Gemalto was using a monolithic solution to store logs from distributed systems and microservices, and wanted to implement a centralized scalable logging system. It describes various designs considered using Elastic Stack components like Logstash, Elasticsearch, and Filebeat to ingest, parse, store and visualize logs. Future plans discussed include using machine learning and Kafka.
AWS Community Day | Midwest 2018
Track 2
Elastic.co's ELK Stack - Platform Agnostic Immutable Infrastructure & Analysis through Configuration - Dan Morgan, Chicago burbs
Security Monitoring for big Infrastructures without a Million Dollar budgetJuan Berner
Nowadays in an increasingly more complex and dynamic network its not enough to be a regex ninja and storing only the logs you think you might need. From network traffic to custom logs you won't know which logs will be crucial to stop the next attacker, and if you are not planning to spend a half of your security budget in a commercial solution we will show you a way to building you own SIEM with open source. The talk will go from how to build a powerful logging environment for your organization to scaling on the cloud and storing everything forever. We will walk through how to build such a system with open source solutions as Elasticsearch and Hadoop, and creating your own custom monitoring rules to monitor everything you need. The talk will also include how to secure the environment and allow restricted access to other teams as well as avoiding common pitfalls and ensuring compliance standards.
Devteach 2017 Store 2 million of audit a day into elasticsearchTaswar Bhatti
The document discusses using Elastic Stack to store and analyze 2 million audit logs per day from distributed systems. It introduces Elastic Stack components like Logstash, Kibana, Elasticsearch and Beats. It describes how the speaker's company Gemalto used Logstash and Elasticsearch to ingest logs from .NET applications into Elasticsearch at speeds of 1000 logs/second. Future plans include using Elasticsearch's machine learning and integrating with Kafka for cross data center replication.
The document summarizes the new features and improvements in Elastic Stack v5.0.0, including updates to Kibana, Elasticsearch, Logstash, and Beats. Key highlights include a redesigned Kibana interface, improved indexing performance in Elasticsearch, easier plugin development in Logstash, new data shippers and filtering capabilities in Beats, and expanded subscription support offerings. The Elastic Stack aims to help users build distributed applications and solve real problems through its integrated search, analytics, and data pipeline capabilities.
DIY Netflow Data Analytic with ELK Stack by CL LeeMyNOG
This document discusses using the ELK stack (Elasticsearch, Logstash, Kibana) to analyze netflow data. It describes IP ServerOne's infrastructure managing over 5000 servers across multiple data centers. Netflow data is collected and sent to Logstash for processing, then stored in Elasticsearch for querying and visualization in Kibana. Examples are given of how the data can be used, such as identifying top talkers, traffic profiling by ASN, and troubleshooting with IP conversation history. The ELK stack is concluded to be a powerful yet not difficult tool for analyzing netflow traffic.
Video: https://www.youtube.com/watch?v=v69kyU5XMFI
A talk I gave at the Philly Security Shell meetup 2019-02-21 on how the Elastic Stack works and how you can use it for indexing and searching security logs. Tools I mentioned: Github repo with script and demo data - https://github.com/SecHubb/SecShell_Demo Cerebro - https://github.com/lmenezes/cerebro Elastalert - https://github.com/Yelp/elastalert For info on my SANS teaching schedule visit: https://www.sans.org/instructors/john... Twitter: https://twitter.com/SecHubb
This document discusses logs aggregation and analysis using the ELK stack, which consists of Elasticsearch, Logstash, and Kibana. It describes problems with traditional logging like inconsistent formats and high server loads. It then explains how each tool in the ELK stack addresses these issues. Elasticsearch provides centralized storage and search. Logstash collects, parses, and filters logs from multiple sources. Kibana enables visualization and dashboarding for log analysis. Additional tools like Marvel and plugins are also discussed. Overall, the ELK stack provides a scalable logging solution with consistent structure, centralized management, and interactive analytics dashboards.
Présentation de la suite ELK dans un contexte SIEM et zoom sur Wazuh (OSSEC) , IDS open source
Venez découvrir comment être proactif face aux problèmes de cyber sécurité en analysant les données fournies par vos équipements et applications critiques.
We're talking about serious log crunching and intelligence gathering with Elastic, Logstash, and Kibana.
ELK is an end-to-end stack for gathering structured and unstructured data from servers. It delivers insights in real time using the Kibana dashboard giving unprecedented horizontal visibility. The visualization and search tools will make your day-to-day hunting a breeze.
During this brief walkthrough of the setup, configuration, and use of the toolset, we will show you how to find the trees from the forest in today's modern cloud environments and beyond.
Use the Elastic Stack (ELK stack) to analyze the business data and API analytics. You can use Logstash for Filebeat to process Anypoint Platform log files, insert them into an Elasticsearch database, and then analyze them with Kibana.
nnual (33 years) study of the Israeli Enterprise / public IT market. Covering sections on Israeli Economy, IT trends 2026-28, several surveys (AI, CDOs, OCIO, CTO, staffing cyber, operations and infra) plus rankings of 760 vendors on 160 markets (market sizes and trends) and comparison of products according to support and market penetration.
Exploring the advantages of on-premises Dell PowerEdge servers with AMD EPYC processors vs. the cloud for small to medium businesses’ AI workloads
AI initiatives can bring tremendous value to your business, but you need to support your new AI workloads effectively. That means choosing the best possible infrastructure for your needs—and many companies are finding that the cloud isn’t right for them. According to a recent Rackspace survey of IT executives, 69 percent of companies have moved some of their applications on-premises from the cloud, with half of those citing security and compliance as the reason and 44 percent citing cost.
On-premises solutions provide a number of advantages. With full control over your security infrastructure, you can be certain that all compliance requirements remain firmly in the hands of your IT team. Opting for on-premises also gives you the ability to design your infrastructure to the precise needs of that team and your new AI workloads. Depending on the workload, you may also see performance benefits, along with more predictable costs. As you start to build your next AI initiative, consider an on-premises solution utilizing AMD EPYC processor-powered Dell PowerEdge servers.
As data privacy regulations become more pervasive across the globe and organizations increasingly handle and transfer (including across borders) meaningful volumes of personal and confidential information, the need for robust contracts to be in place is more important than ever.
This webinar will provide a deep dive into privacy contracting, covering essential terms and concepts, negotiation strategies, and key practices for managing data privacy risks.
Whether you're in legal, privacy, security, compliance, GRC, procurement, or otherwise, this session will include actionable insights and practical strategies to help you enhance your agreements, reduce risk, and enable your business to move fast while protecting itself.
This webinar will review key aspects and considerations in privacy contracting, including:
- Data processing addenda, cross-border transfer terms including EU Model Clauses/Standard Contractual Clauses, etc.
- Certain legally-required provisions (as well as how to ensure compliance with those provisions)
- Negotiation tactics and common issues
- Recent lessons from recent regulatory actions and disputes
Measuring Microsoft 365 Copilot and Gen AI SuccessNikki Chapple
Session | Measuring Microsoft 365 Copilot and Gen AI Success with Viva Insights and Purview
Presenter | Nikki Chapple 2 x MVP and Principal Cloud Architect at CloudWay
Event | European Collaboration Conference 2025
Format | In person Germany
Date | 28 May 2025
📊 Measuring Copilot and Gen AI Success with Viva Insights and Purview
Presented by Nikki Chapple – Microsoft 365 MVP & Principal Cloud Architect, CloudWay
How do you measure the success—and manage the risks—of Microsoft 365 Copilot and Generative AI (Gen AI)? In this ECS 2025 session, Microsoft MVP and Principal Cloud Architect Nikki Chapple explores how to go beyond basic usage metrics to gain full-spectrum visibility into AI adoption, business impact, user sentiment, and data security.
🎯 Key Topics Covered:
Microsoft 365 Copilot usage and adoption metrics
Viva Insights Copilot Analytics and Dashboard
Microsoft Purview Data Security Posture Management (DSPM) for AI
Measuring AI readiness, impact, and sentiment
Identifying and mitigating risks from third-party Gen AI tools
Shadow IT, oversharing, and compliance risks
Microsoft 365 Admin Center reports and Copilot Readiness
Power BI-based Copilot Business Impact Report (Preview)
📊 Why AI Measurement Matters: Without meaningful measurement, organizations risk operating in the dark—unable to prove ROI, identify friction points, or detect compliance violations. Nikki presents a unified framework combining quantitative metrics, qualitative insights, and risk monitoring to help organizations:
Prove ROI on AI investments
Drive responsible adoption
Protect sensitive data
Ensure compliance and governance
🔍 Tools and Reports Highlighted:
Microsoft 365 Admin Center: Copilot Overview, Usage, Readiness, Agents, Chat, and Adoption Score
Viva Insights Copilot Dashboard: Readiness, Adoption, Impact, Sentiment
Copilot Business Impact Report: Power BI integration for business outcome mapping
Microsoft Purview DSPM for AI: Discover and govern Copilot and third-party Gen AI usage
🔐 Security and Compliance Insights: Learn how to detect unsanctioned Gen AI tools like ChatGPT, Gemini, and Claude, track oversharing, and apply eDLP and Insider Risk Management (IRM) policies. Understand how to use Microsoft Purview—even without E5 Compliance—to monitor Copilot usage and protect sensitive data.
📈 Who Should Watch: This session is ideal for IT leaders, security professionals, compliance officers, and Microsoft 365 admins looking to:
Maximize the value of Microsoft Copilot
Build a secure, measurable AI strategy
Align AI usage with business goals and compliance requirements
🔗 Read the blog https://nikkichapple.com/measuring-copilot-gen-ai/
Introduction and Background:
Study Overview and Methodology: The study analyzes the IT market in Israel, covering over 160 markets and 760 companies/products/services. It includes vendor rankings, IT budgets, and trends from 2025-2029. Vendors participate in detailed briefings and surveys.
Vendor Listings: The presentation lists numerous vendors across various pages, detailing their names and services. These vendors are ranked based on their participation and market presence.
Market Insights and Trends: Key insights include IT market forecasts, economic factors affecting IT budgets, and the impact of AI on enterprise IT. The study highlights the importance of AI integration and the concept of creative destruction.
Agentic AI and Future Predictions: Agentic AI is expected to transform human-agent collaboration, with AI systems understanding context and orchestrating complex processes. Future predictions include AI's role in shopping and enterprise IT.
Evaluation Challenges in Using Generative AI for Science & Technical ContentPaul Groth
Evaluation Challenges in Using Generative AI for Science & Technical Content.
Foundation Models show impressive results in a wide-range of tasks on scientific and legal content from information extraction to question answering and even literature synthesis. However, standard evaluation approaches (e.g. comparing to ground truth) often don't seem to work. Qualitatively the results look great but quantitive scores do not align with these observations. In this talk, I discuss the challenges we've face in our lab in evaluation. I then outline potential routes forward.
New Ways to Reduce Database Costs with ScyllaDBScyllaDB
How ScyllaDB’s latest capabilities can reduce your infrastructure costs
ScyllaDB has been obsessed with price-performance from day 1. Our core database is architected with low-level engineering optimizations that squeeze every ounce of power from the underlying infrastructure. And we just completed a multi-year effort to introduce a set of new capabilities for additional savings.
Join this webinar to learn about these new capabilities: the underlying challenges we wanted to address, the workloads that will benefit most from each, and how to get started. We’ll cover ways to:
- Avoid overprovisioning with “just-in-time” scaling
- Safely operate at up to ~90% storage utilization
- Cut network costs with new compression strategies and file-based streaming
We’ll also highlight a “hidden gem” capability that lets you safely balance multiple workloads in a single cluster. To conclude, we will share the efficiency-focused capabilities on our short-term and long-term roadmaps.
Neural representations have shown the potential to accelerate ray casting in a conventional ray-tracing-based rendering pipeline. We introduce a novel approach called Locally-Subdivided Neural Intersection Function (LSNIF) that replaces bottom-level BVHs used as traditional geometric representations with a neural network. Our method introduces a sparse hash grid encoding scheme incorporating geometry voxelization, a scene-agnostic training data collection, and a tailored loss function. It enables the network to output not only visibility but also hit-point information and material indices. LSNIF can be trained offline for a single object, allowing us to use LSNIF as a replacement for its corresponding BVH. With these designs, the network can handle hit-point queries from any arbitrary viewpoint, supporting all types of rays in the rendering pipeline. We demonstrate that LSNIF can render a variety of scenes, including real-world scenes designed for other path tracers, while achieving a memory footprint reduction of up to 106.2x compared to a compressed BVH.
https://arxiv.org/abs/2504.21627
Contributing to WordPress With & Without Code.pptxPatrick Lumumba
Contributing to WordPress: Making an Impact on the Test Team—With or Without Coding Skills
WordPress survives on collaboration, and the Test Team plays a very important role in ensuring the CMS is stable, user-friendly, and accessible to everyone.
This talk aims to deconstruct the myth that one has to be a developer to contribute to WordPress. In this session, I will share with the audience how to get involved with the WordPress Team, whether a coder or not.
We’ll explore practical ways to contribute, from testing new features, and patches, to reporting bugs. By the end of this talk, the audience will have the tools and confidence to make a meaningful impact on WordPress—no matter the skill set.
Cyber Security Legal Framework in Nepal.pptxGhimire B.R.
The presentation is about the review of existing legal framework on Cyber Security in Nepal. The strength and weakness highlights of the major acts and policies so far. Further it highlights the needs of data protection act .
Grannie’s Journey to Using Healthcare AI ExperiencesLauren Parr
AI offers transformative potential to enhance our long-time persona Grannie’s life, from healthcare to social connection. This session explores how UX designers can address unmet needs through AI-driven solutions, ensuring intuitive interfaces that improve safety, well-being, and meaningful interactions without overwhelming users.
Agentic AI Explained: The Next Frontier of Autonomous Intelligence & Generati...Aaryan Kansari
Agentic AI Explained: The Next Frontier of Autonomous Intelligence & Generative AI
Discover Agentic AI, the revolutionary step beyond reactive generative AI. Learn how these autonomous systems can reason, plan, execute, and adapt to achieve human-defined goals, acting as digital co-workers. Explore its promise, key frameworks like LangChain and AutoGen, and the challenges in designing reliable and safe AI agents for future workflows.
Sticky Note Bullets:
Definition: Next stage beyond ChatGPT-like systems, offering true autonomy.
Core Function: Can "reason, plan, execute and adapt" independently.
Distinction: Proactive (sets own actions for goals) vs. Reactive (responds to prompts).
Promise: Acts as "digital co-workers," handling grunt work like research, drafting, bug fixing.
Industry Outlook: Seen as a game-changer; Deloitte predicts 50% of companies using GenAI will have agentic AI pilots by 2027.
Key Frameworks: LangChain, Microsoft's AutoGen, LangGraph, CrewAI.
Development Focus: Learning to think in workflows and goals, not just model outputs.
Challenges: Ensuring reliability, safety; agents can still hallucinate or go astray.
Best Practices: Start small, iterate, add memory, keep humans in the loop for final decisions.
Use Cases: Limited only by imagination (e.g., drafting business plans, complex simulations).
European Accessibility Act & Integrated Accessibility TestingJulia Undeutsch
Emma Dawson will guide you through two important topics in this session.
Firstly, she will prepare you for the European Accessibility Act (EAA), which comes into effect on 28 June 2025, and show you how development teams can prepare for it.
In the second part of the webinar, Emma Dawson will explore with you various integrated testing methods and tools that will help you improve accessibility during the development cycle, such as Linters, Storybook, Playwright, just to name a few.
Focus: European Accessibility Act, Integrated Testing tools and methods (e.g. Linters, Storybook, Playwright)
Target audience: Everyone, Developers, Testers
Offshore IT Support: Balancing In-House and Offshore Help Desk Techniciansjohn823664
In today's always-on digital environment, businesses must deliver seamless IT support across time zones, devices, and departments. This SlideShare explores how companies can strategically combine in-house expertise with offshore talent to build a high-performing, cost-efficient help desk operation.
From the benefits and challenges of offshore support to practical models for integrating global teams, this presentation offers insights, real-world examples, and key metrics for success. Whether you're scaling a startup or optimizing enterprise support, discover how to balance cost, quality, and responsiveness with a hybrid IT support strategy.
Perfect for IT managers, operations leads, and business owners considering global help desk solutions.
Jeremy Millul - A Talented Software DeveloperJeremy Millul
Jeremy Millul is a talented software developer based in NYC, known for leading impactful projects such as a Community Engagement Platform and a Hiking Trail Finder. Using React, MongoDB, and geolocation tools, Jeremy delivers intuitive applications that foster engagement and usability. A graduate of NYU’s Computer Science program, he brings creativity and technical expertise to every project, ensuring seamless user experiences and meaningful results in software development.
6th Power Grid Model Meetup
Join the Power Grid Model community for an exciting day of sharing experiences, learning from each other, planning, and collaborating.
This hybrid in-person/online event will include a full day agenda, with the opportunity to socialize afterwards for in-person attendees.
If you have a hackathon proposal, tell us when you register!
About Power Grid Model
The global energy transition is placing new and unprecedented demands on Distribution System Operators (DSOs). Alongside upgrades to grid capacity, processes such as digitization, capacity optimization, and congestion management are becoming vital for delivering reliable services.
Power Grid Model is an open source project from Linux Foundation Energy and provides a calculation engine that is increasingly essential for DSOs. It offers a standards-based foundation enabling real-time power systems analysis, simulations of electrical power grids, and sophisticated what-if analysis. In addition, it enables in-depth studies and analysis of the electrical power grid’s behavior and performance. This comprehensive model incorporates essential factors such as power generation capacity, electrical losses, voltage levels, power flows, and system stability.
Power Grid Model is currently being applied in a wide variety of use cases, including grid planning, expansion, reliability, and congestion studies. It can also help in analyzing the impact of renewable energy integration, assessing the effects of disturbances or faults, and developing strategies for grid control and optimization.
Jira Administration Training – Day 1 : IntroductionRavi Teja
This presentation covers the basics of Jira for beginners. Learn how Jira works, its key features, project types, issue types, and user roles. Perfect for anyone new to Jira or preparing for Jira Admin roles.
Co-Constructing Explanations for AI Systems using ProvenancePaul Groth
Explanation is not a one off - it's a process where people and systems work together to gain understanding. This idea of co-constructing explanations or explanation by exploration is powerful way to frame the problem of explanation. In this talk, I discuss our first experiments with this approach for explaining complex AI systems by using provenance. Importantly, I discuss the difficulty of evaluation and discuss some of our first approaches to evaluating these systems at scale. Finally, I touch on the importance of explanation to the comprehensive evaluation of AI systems.
2. 2
Agenda
• Introduction
• Elastic Stack Overview
• Components of Elastic Stack
• Role of Elastic Stack in Big Data Analysis
• Demo
• ElasticSearch configurations
• Logstash pipelines
• Kibana Dashboards
• Beats example
• Twitter trend example
• Q & A
3. 3
Elastic (ELK) Stack
Elastic Stack is a group of open source products from Elastic designed to help users take
data from any type of source and in any format and search, analyze, and visualize that data
in real time. It uses Logstash for log aggregation, Elasticsearch for searching, and Kibana
for visualizing and analyzing data.
• ElasticSearch: Store, Search, and Analyze
• Logstash: Collect logs and events data, Parse and Transform
• Kibana: Explore, Visualize, and Share
• Beats: Data shipper.
5. 5
ElasticSearch
Elasticsearch is a highly available and distributed search engine.
• Built on top of Apache Lucene
• NoSQL Datastore
• Schema-free
• JSON Document
• RESTful APIs
Relational Database ElasticSearch
Database Index
Table Type
Row Document
Column Field
Schema Mapping
• Node
• Cluster
6. 6
ElasticSearch
Elasticsearch is distributed, which means that indices can be divided into shards and each
shard can have zero or more replicas. By default, an index is created with 5 shards and 1
replica per shard (5/1). Rebalancing and routing of shards are done automatically.
Features
• Distributed
• Scalable
• Highly available
• Near Real Time (NRT) search
• Full Text Search
• Java, .NET, PHP, Python, Curl, Perl, Ruby
• HADOOP & SPARK -- Elasticsearch-Hadoop (ES-Hadoop)
8. 8
GitHub Casestudy
Challenge : How do you satisfy the search needs of GitHub's 4 million users while
simultaneously providing tactical operational insights that help you iteratively
improve customer service?
Solution: GitHub uses Elasticsearch to continually index the data from an ever-
growing store of over 8 million code repositories, comprising over 2 billion
documents.
GitHub uses Elasticsearch to index new code as soon as users push it to a
repository on GitHub.
"Search is at the core of GitHub"
Other customers includes Facebook, Netflix, ebay, Wikimedia, etc.
ebay : Searching across 800 million listings in subseconds
9. 9
Logstash
Logstash can collect logs from a variety of sources (using input plugins), process the data
into a common format using filters, and stream data to a variety of sources (using output
plugins). Multiple filters can be chained to parse the data into a common format. Together,
they build a Logstash Processing Pipeline.
10. 10
Logstash Plug-ins
Input Plugins
• Beats
• Elasticsearch
• File
• Graphite
• Heartbeat
• Tttp
• Jdbc
• Kafka
• Log4j
• Redis
• Stdin
• TCP
• Twitter
Output Plugins
• CSV
• Elasticsearch
• Email
• File
• Graphite
• Http
• Jira
• Kafka
• Nagios
• Redis
• Stdout
• S3
• Tcp
• Udp
Filter Plugins
• Aggregate
• csv
• Date
• geoip
• Grok
• Json
• sleep
• urlencode
• UUID
• xml
Logstash has a rich collections of input, filter and output plugins. You can now create
your own Logstash plugin and add it into community plugins.
12. 12
Kibana
• Discover
• Visualise
• Dashboards
• Put Geo Data on Any Map
• Insert dashboards into your
internal wiki or webpage
• Send your coworker a URL to
a dashboard.
Kibana gives you the freedom to select the way you give shape to your data.
13. 13
Beats
Lightweight Data Shippers.
Beats is the platform for single-purpose data shippers. They install as lightweight agents and
send data from hundreds or thousands of machines to Logstash or Elasticsearch.
14. 14
Elastic Stack for Big Data Analysis
Connect the massive data storage and deep processing power of Hadoop with the real-time
search and analytics of Elasticsearch.
ES-Hadoop lets you index Hadoop data into the Elastic Stack to take full advantage of the
speedy Elasticsearch engine and beautiful Kibana visualizations.
Elasticsearch for Apache Hadoop
15. 15
Splunk VS ELKStack
Popularity Trend
A head to head comparison is always a tough call, especially when there’s no clear
winner and the tool you choose can potentially have a huge impact on the business
Splunk and the ELK stack are dominating the interest in the log management space
with the most comprehensive and customizable solutions.
#14: The Beats are open source data shippers that you install as agents on your servers to send different types of operational data to Elasticsearch. Beats can send data directly to Elasticsearch or send it to Elasticsearch via Logstash, which you can use to parse and transform the data.
Packetbeat, Filebeat, Metricbeat, and Winlogbeat are a few examples of Beats. Packetbeat is a network packet analyzer that ships information about the transactions exchanged between your application servers. Filebeat ships log files from your servers. Metricbeat is a server monitoring agent that periodically collects metrics from the operating systems and services running on your servers. And Winlogbeat ships Windows event logs.