Evaporation
Evaporation
• Terminology
– Evaporation – process by which liquid
water passes directly to the vapor phase
– Transpiration - process by which liquid
water passes from liquid to vapor through
plant metabolism
– Sublimation - process by which water
passes directly from the solid phase to the
vapor phase
Factors Influencing Evaporation
• Energy supply for
vaporization (latent heat)
– Solar radiation
• Transport of vapor away from
evaporative surface
– Wind velocity over surface
– Specific humidity gradient
above surface
• Vegetated surfaces
– Supply of moisture to the
surface
– Evapotranspiration (ET)
• Potential Evapotranspiration
(PET) – moisture supply is not
limited
nR
E
Net radiation
Evaporation
Air Flow
u
Evaporation from a Water
Surface
• Simplest form of evaporation
– From free liquid of permanently saturated
surface
Evaporation from a Pan
• National Weather Service Class A
type
• Installed on a wooden platform in a
grassy location
• Filled with water to within 2.5 inches
of the top
• Evaporation rate is measured by
manual readings or with an analog
output evaporation gauge
h
Area, A
CS
w
a
AEm wv 
dt
dh
E 
nRsH
Sensible
heat to air
Net radiation Vapor flow rate
Heat conducted
to ground
G
Methods of Estimating Evaporation
• Energy Balance Method
• Aerodynamic method
• Combined method
Energy Method
• CV contains liquid and vapor phase water
• Continuity - Liquid phase
  
CS
w
CV
wv d
dt
d
m dAV
0
dt
dh
Aw No flow of liquid
water through CS
AEm wv 
E
dt
dh

hw
a
vm
dt
dh
E 
nRsH
G
Energy Method
• Continuity - Vapor phase
 
CS
avw qAE dAV
0
Steady flow of air
over water
AEw
  
CS
av
CV
avv qdq
dt
d
m dAV
 
CS
av
w
q
A
E dAV

1
 
CS
avv qm dAV
hw
a
vm
dt
dh
E 
nRsH
G
 
 
CS
u
CV
u
dgzVe
dgzVe
dt
d
dt
dW
dt
dH
AV



)2/(
)2/(
2
2
Energy Method
• Energy Eq.
0
hw
a
vm
dt
dh
E 
nRsH
G
.,0;0 consthV 
 
CV
wu de
dt
d
dt
dH

GHR
dt
dH
sn 
GHR sn 
Energy Method
• Energy Eq. for Water in CV
Assume:
1. Constant temp of water in CV
2. Change of heat is change in internal energy of water evaporated
hw
a
vm
dt
dh
E 
nRsH
G
vvml
dt
dH

GHR
dt
dH
sn 
GHRml snvv  AEm w
 GHR
Al
E sn
wv


1
Recall:
wv
n
r
l
R
E


Neglecting sensible and ground heat
fluxes
Wind as a Factor in Evaporation
• Wind has a major effect on evaporation, E
– Wind removes vapor-laden air by convection
– This Keeps boundary layer thin
– Maintains a high rate of water transfer from
liquid to vapor phase
– Wind is also turbulent
• Convective diffusion is several orders of magnitude
larger than molecular diffusion
Aerodynamic Method
• Include transport of vapor
away from water surface
as function of:
– Humidity gradient above
surface
– Wind speed across surface
• Upward vapor flux
• Upward momentum flux
nR
E
Net radiation
Evaporation
Air Flow
12
21
zz
qq
K
dz
dq
Km
vv
wa
v
wa


 
12
12
zz
uu
K
dz
du
K mama


 
 
 12
21
uuK
qqK
m
m
vvw



Aerodynamic Method
• Log-velocity profile
• Momentum flux
nR
E
Net radiation
Evaporation
Air Flow
 
 12
21
uuK
qqK
m
m
vvw










oZ
Z
ku
u
ln
1
*
 
 
2
12
12
ln 




 

ZZ
uuk
a
  
  2
12
12
2
ln
21
ZZK
uuqqkK
m
m
vvaw 



Thornthwaite-Holzman Equation
u
Z
Aerodynamic Method
• Often only available at 1
elevation
• Simplifying
nR
E
Net radiation
Evaporation
Air Flow
  
  2
12
12
2
ln
21
ZZK
uuqqkK
m
m
vvaw 



uqv and
 
  2
2
2
2
ln
622.0
o
aasa
ZZP
ueek
m




AEm w
 aasa eeBE 
  2
2
2
2
ln
622.0
ow
a
ZZP
uk
B



2@pressurevapor Zea 
Combined Method
• Evaporation is calculated by
– Aerodynamic method
• Energy supply is not limiting
– Energy method
• Vapor transport is not limiting
• Normally, both are limiting, so use a combination
method
ar EEE


 




wv
n
r
l
R
EE


 aasa eeBEE 
wv
hp
Kl
pKC
622.0

2
)3.237(
4098
T
e
dT
de ss


rEE


 3.1
Priestly & Taylor
Example
– Elev = 2 m,
– Press = 101.3 kPa,
– Wind speed = 3 m/s,
– Net Radiation = 200 W/m2,
– Air Temp = 25 degC,
– Rel. Humidity = 40%,
• Use Combo Method to find Evaporation
kJ/kg244110)25*36.22500(
237010501.2
3
6


x
Txlv
mm/day10.7
997*102441
200
3

xl
R
E
wv
n
r

Example (Cont.)
– Elev = 2 m,
– Press = 101.3 kPa,
– Wind speed = 3 m/s,
– Net Radiation = 200 W/m2,
– Air Temp = 25 degC,
– Rel. Humidity = 40%,
• Use Combo Method to find Evaporation
 
mm/day45.7
)day1/s86400(*)m1/mm1000(*126731671054.4 11

 
xEa
     
sm/Pa1054.4
1032ln997*3.101
3*19.1*4.0*622.0
ln
622.0 11
24
2
2
2
2
2
 

x
xZZP
uk
B
ow
a


Pa3167ase
Pa12673167*4.0*  asha eRe
Example (Cont.)
– Elev = 2 m,
– Press = 101.3 kPa,
– Wind speed = 3 m/s,
– Net Radiation = 200 W/m2,
– Air Temp = 25 degC,
– Rel. Humidity = 40%,
Pa/degC1.67
102441*622.0
103.101*1005
622.0 3
3

x
x
Kl
pKC
wv
hp

• Use Combo Method to find Evaporation
Pa/degC7.188
)253.237(
3167*4098
2



738.0



mm/day2.745.7*262.010.7*738.0 




 ar EEE



262.0
 

Example
– Net Radiation = 200 W/m2,
– Air Temp = 25 degC,
• Use Priestly-Taylor Method to find
Evaporation rate for a water body
rEE


 3.1 Priestly & Taylor
mm/day10.7rE 738.0



mm/day80.610.7*738.0*3.1 E
Evapotranspiration
• Evapotranspiration
– Combination of evaporation from soil surface and
transpiration from vegetation
– Governing factors
• Energy supply and vapor transport
• Supply of moisture at evaporative surfaces
– Reference crop
• 8-15 cm of healthy growing green grass with abundant water
– Combo Method works well if B is calibrated to local
conditions
Potential Evapotranspiration
• Multiply reference crop ET by a Crop Coefficient and a
Soil Coefficient rcs ETkkET 
3.10.2
t;CoefficienCrop


c
c
k
k
10
t;CoefficienSoil


s
s
k
k
ETActualET
ETCropReferencerET
http://www.ext.colostate.edu/pubs/crops/04707.html
CORN
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0 20 40 60 80 100 120 140 160
Time Since Planting (Days)
CropCoefficient,kc

EVAPORATION (LIQUID CONVERSION INTO VAPOUR PRESSURE)

  • 1.
  • 2.
    Evaporation • Terminology – Evaporation– process by which liquid water passes directly to the vapor phase – Transpiration - process by which liquid water passes from liquid to vapor through plant metabolism – Sublimation - process by which water passes directly from the solid phase to the vapor phase
  • 3.
    Factors Influencing Evaporation •Energy supply for vaporization (latent heat) – Solar radiation • Transport of vapor away from evaporative surface – Wind velocity over surface – Specific humidity gradient above surface • Vegetated surfaces – Supply of moisture to the surface – Evapotranspiration (ET) • Potential Evapotranspiration (PET) – moisture supply is not limited nR E Net radiation Evaporation Air Flow u
  • 4.
    Evaporation from aWater Surface • Simplest form of evaporation – From free liquid of permanently saturated surface
  • 5.
    Evaporation from aPan • National Weather Service Class A type • Installed on a wooden platform in a grassy location • Filled with water to within 2.5 inches of the top • Evaporation rate is measured by manual readings or with an analog output evaporation gauge h Area, A CS w a AEm wv  dt dh E  nRsH Sensible heat to air Net radiation Vapor flow rate Heat conducted to ground G
  • 6.
    Methods of EstimatingEvaporation • Energy Balance Method • Aerodynamic method • Combined method
  • 7.
    Energy Method • CVcontains liquid and vapor phase water • Continuity - Liquid phase    CS w CV wv d dt d m dAV 0 dt dh Aw No flow of liquid water through CS AEm wv  E dt dh  hw a vm dt dh E  nRsH G
  • 8.
    Energy Method • Continuity- Vapor phase   CS avw qAE dAV 0 Steady flow of air over water AEw    CS av CV avv qdq dt d m dAV   CS av w q A E dAV  1   CS avv qm dAV hw a vm dt dh E  nRsH G
  • 9.
        CS u CV u dgzVe dgzVe dt d dt dW dt dH AV    )2/( )2/( 2 2 EnergyMethod • Energy Eq. 0 hw a vm dt dh E  nRsH G .,0;0 consthV    CV wu de dt d dt dH  GHR dt dH sn  GHR sn 
  • 10.
    Energy Method • EnergyEq. for Water in CV Assume: 1. Constant temp of water in CV 2. Change of heat is change in internal energy of water evaporated hw a vm dt dh E  nRsH G vvml dt dH  GHR dt dH sn  GHRml snvv  AEm w  GHR Al E sn wv   1 Recall: wv n r l R E   Neglecting sensible and ground heat fluxes
  • 11.
    Wind as aFactor in Evaporation • Wind has a major effect on evaporation, E – Wind removes vapor-laden air by convection – This Keeps boundary layer thin – Maintains a high rate of water transfer from liquid to vapor phase – Wind is also turbulent • Convective diffusion is several orders of magnitude larger than molecular diffusion
  • 12.
    Aerodynamic Method • Includetransport of vapor away from water surface as function of: – Humidity gradient above surface – Wind speed across surface • Upward vapor flux • Upward momentum flux nR E Net radiation Evaporation Air Flow 12 21 zz qq K dz dq Km vv wa v wa     12 12 zz uu K dz du K mama        12 21 uuK qqK m m vvw   
  • 13.
    Aerodynamic Method • Log-velocityprofile • Momentum flux nR E Net radiation Evaporation Air Flow    12 21 uuK qqK m m vvw           oZ Z ku u ln 1 *     2 12 12 ln         ZZ uuk a      2 12 12 2 ln 21 ZZK uuqqkK m m vvaw     Thornthwaite-Holzman Equation u Z
  • 14.
    Aerodynamic Method • Oftenonly available at 1 elevation • Simplifying nR E Net radiation Evaporation Air Flow      2 12 12 2 ln 21 ZZK uuqqkK m m vvaw     uqv and     2 2 2 2 ln 622.0 o aasa ZZP ueek m     AEm w  aasa eeBE    2 2 2 2 ln 622.0 ow a ZZP uk B    2@pressurevapor Zea 
  • 15.
    Combined Method • Evaporationis calculated by – Aerodynamic method • Energy supply is not limiting – Energy method • Vapor transport is not limiting • Normally, both are limiting, so use a combination method ar EEE         wv n r l R EE    aasa eeBEE  wv hp Kl pKC 622.0  2 )3.237( 4098 T e dT de ss   rEE    3.1 Priestly & Taylor
  • 16.
    Example – Elev =2 m, – Press = 101.3 kPa, – Wind speed = 3 m/s, – Net Radiation = 200 W/m2, – Air Temp = 25 degC, – Rel. Humidity = 40%, • Use Combo Method to find Evaporation kJ/kg244110)25*36.22500( 237010501.2 3 6   x Txlv mm/day10.7 997*102441 200 3  xl R E wv n r 
  • 17.
    Example (Cont.) – Elev= 2 m, – Press = 101.3 kPa, – Wind speed = 3 m/s, – Net Radiation = 200 W/m2, – Air Temp = 25 degC, – Rel. Humidity = 40%, • Use Combo Method to find Evaporation   mm/day45.7 )day1/s86400(*)m1/mm1000(*126731671054.4 11    xEa       sm/Pa1054.4 1032ln997*3.101 3*19.1*4.0*622.0 ln 622.0 11 24 2 2 2 2 2    x xZZP uk B ow a   Pa3167ase Pa12673167*4.0*  asha eRe
  • 18.
    Example (Cont.) – Elev= 2 m, – Press = 101.3 kPa, – Wind speed = 3 m/s, – Net Radiation = 200 W/m2, – Air Temp = 25 degC, – Rel. Humidity = 40%, Pa/degC1.67 102441*622.0 103.101*1005 622.0 3 3  x x Kl pKC wv hp  • Use Combo Method to find Evaporation Pa/degC7.188 )253.237( 3167*4098 2    738.0    mm/day2.745.7*262.010.7*738.0       ar EEE    262.0   
  • 19.
    Example – Net Radiation= 200 W/m2, – Air Temp = 25 degC, • Use Priestly-Taylor Method to find Evaporation rate for a water body rEE    3.1 Priestly & Taylor mm/day10.7rE 738.0    mm/day80.610.7*738.0*3.1 E
  • 20.
    Evapotranspiration • Evapotranspiration – Combinationof evaporation from soil surface and transpiration from vegetation – Governing factors • Energy supply and vapor transport • Supply of moisture at evaporative surfaces – Reference crop • 8-15 cm of healthy growing green grass with abundant water – Combo Method works well if B is calibrated to local conditions
  • 21.
    Potential Evapotranspiration • Multiplyreference crop ET by a Crop Coefficient and a Soil Coefficient rcs ETkkET  3.10.2 t;CoefficienCrop   c c k k 10 t;CoefficienSoil   s s k k ETActualET ETCropReferencerET http://www.ext.colostate.edu/pubs/crops/04707.html CORN 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 20 40 60 80 100 120 140 160 Time Since Planting (Days) CropCoefficient,kc