Hideo Hirose
Department of Systems Design and Informatics, Kyushu Institute of Technology
Fukuoka, 820-8502 Japan
1
On The Extended Cumulative Exposure Model,
ECEM
IEICE Reliability 2011.10.21
2
Conventional V-t test
log t
log V
threshold
test data!
extrapolation!
Accelerated Life Test
3
Weibull Power Law
H. Hirose, (1986)
Weibull Power Law
Weibull Distribution
Power Law
4
Parameters are estimable
H. Hirose, (1987)
5
• 機器の信頼性試験
• 故障発生までに長時間を要する
• 限られた試験時間内では故障発
生しない場合がある
• 加速寿命試験
• 実使用時よりも厳しいストレス
を加えて,機器の劣化を加速 
→ 評価時間の短縮
• 段階的上昇法
• 試験結果から機器の寿命を予測
1.ある一定時間,印加
2.非破壊なら印加電圧を上昇
3.破壊時の印加電圧を記録
• 30,30,45,35,...
電気機器の場合
H. Hirose, (2003)
Step-up Voltage Test
Step Stress Profile Testing. Using a step stress profile, test specimens are first subjected to a given level
of stress for a preset period of time, and then they are subjected to a higher level of stress for a
subsequent period of time. The process continues at ever increasing levels of stress, until either all the
specimens fail, or the time period at the maximum stress level ends. This approach precipitates failures
more rapidly for analysis. However, with this technique it is very difficult to properly model the acceleration
and, hence, to quantitatively predict the item life under normal usage.
Weibull Power Law
6
Fi(t)
F3(t)
F2(t)
F1(t)
time
broken
Fig. 2 Cumulative Probability Distributions Fj(t)
t1
s1
F0(t) = F1(t), 0 = t0 ! t ! t1
F0(t) = 1" exp "
(V1 " Vth)n
K
#
$
%
&
'
(
t
)
*
+
,
-
.
/0
1
22
3
4
55, V1 > Vth
= 0, V1 ! Vth
Sedyakin Model!
lowest stress level cdf model !
7
Fi(t)
F3(t)
F2(t)
F1(t)
time
broken
Fig. 2 Cumulative Probability Distributions Fj(t)
t1
s1
F2(s1) = F1(t1)
s1 = (t1 ! t0)
V1 ! Vth
V2 ! Vth
"
#
$ %
&
'
n
, V > Vth
= 0, V ( Vth
F0(t) = F2[(t ! t1) + s1], t1 ( t ( t2
F0(t) = 1! exp ! (t ! t1 + s1)
(V2 ! Vth)n
K
)
*
+
,
-
.
/
0
1
2
3
4
5"
#
$
$
%
&
'', V2 > Vth
= 0, V2 ( Vth
Sedyakin Model!
next stress level cdf model !
8
aa
・ 	 †	  ・ 	 †	  
Fi(t)
F3(t)
F2(t)
F1(t)
time
broken
Fig. 2 Cumulative Probability Distributions Fj(t)
t1
s1
F3(s2) = F2(t2 ! t1 + s1)
F0(t) = F3[(t ! t2) + s2], t2 " t " t3
s2 = (t2 ! t1 + s1)
V2 ! Vth
V3 ! Vth
#
$
% &
'
(
n
, V3 > Vth
= 0, V3 " Vth
F0(t) = 1! exp ! (t ! t2 + s2)
(V3 ! Vth)n
K
)
*
+
,
-
.
/
0
1
2
3
4
5#
$
%%
&
'
((, V3 > Vth
= 0, V3 " Vth
Sedyakin Model!
further next stress level cdf model !
9
aa
・ 	 †	  ・ 	 †	  
Fi(t)
F3(t)
F2(t)
F1(t)
time
broken
Fig. 2 Cumulative Probability Distributions Fj(t)
t1
s1
Fi(si!1) = Fi!1(ti!1 ! ti!2 + si!2)
F0(t) = Fi[(t ! ti!1) + si!1], ti!1 " t " ti
si!1 = (ti!1 ! ti!2 + si!2)
Vi!1 ! Vth
Vi ! Vth
#
$
% &
'
(
n
, Vi!1 > Vth
= 0, Vi!1 " Vth
F0(t) = 1! exp ! (t ! ti!1 + si!1)
(Vi ! Vth)n
K
)
*
+
,
-
.
/
0
1
2
3
4
5#
$
%
%
&
'
((
, Vi!1 > Vth
= 0, Vi!1 " Vth
Sedyakin Model!
highest stress level cdf model !
10
Cumulative probability
distribution F0
(t)
Fi(t)
F3(t)
F2(t)
F1(t)
time
broken
Fig. 2 Cumulative Probability Distributions Fj(t)
t1
s1
F0
(t)
t
Sedyakin Model!
by combining these models !
F(t,!) =1 " exp["{#(t)
$
}], ti"1 % t (! = (k,n,$)
T
)
!(t) =
t1 " t0
k / (v1 " vth)
n +
t2 " t1
k / (v2 " vth)
n +!+
t " ti "1
k / (vi " vth)
n
G0(t)
G0(t)
G0(t)
11
W. Nelson, (1990).
V. Bagdonavicius, M. Nikulin, (2001).
!"# !"#
$%&'()#*+),-%-&'&./
$%&'()#*+),-%-&'&./
G(t)
Fi(t)
Cumulative Exposure Model, CEM
12
Simulated Breakdown Voltage Test
n = 10" = 1
0 5 1 0 1 5 2 0
0
5
1 0
1 5
2 0
tim e
Vs = 4
F(t j ) = 1 " exp{"#(t j )
$
}
"(t j ) = k
#1
$ %t $ (V1
n
+ V2
n
+ ! + Vj
n
)
13
Maximum Likelihood Estimation
14
Tsuboi, Takami, Okabe, Inami, Aono, Transformer insulation reliability for moving oil with Weibull
analysis, IEEE Transactions on DEI, 17(3), 978 - 983. (2010)
0 cm/s 8 cm/s 16 cm/s
breakdownvoltage[kV]
mean
=90.2
mean
=80.1
mean
=79.8
Experimental Breakdown Voltage
BDV
low
BDV
mid
BDV
high
15
Cumulative Exposure Model, CEM
1.30 8.02 0.0098
0.913 9.52 0.0112
0.967 9.51 0.0114
0 cm/s 8 cm/s 16 cm/s
breakdownvoltage[kV]
mean
=90.2
mean
=80.1
mean
=79.8
BDV
low
BDV
mid
BDV
high
CEM explains this phenomena?
0 cm/s 8 cm/s 16 cm/s
mean 90.5 81.4 80.3
simulation using MLE
16
Extended CEM, ECEM
!"#
$%&'()#*+),-%-&'&./
$%&'()#*+),-%-&'&./
!"#
G(t)
Fi(t)
!F1(t1)
F1(t1)
0%1&23#4
Hideo. Hirose, (2011)proposed
0≦α≦1
17
Extended CEM, ECEM
!"#
$%&'()#*+),-%-&'&./
$%&'()#*+),-%-&'&./
!"#
G(t)
Fi(t)
!F1(t1)
F1(t1)
0%1&23#4
18
Relation among MM, ECEM, CEM
!"#
$%&'()#*+),-%-&'&./
$%&'()#*+),-%-&'&./
!"#
G(t)
Fi(t)
!F1(t1)
F1(t1)
0%1&23#4
α=0 α=0.5 α=1
ECEMMM CEM
Memoryless Model Extended CEM Cumulative Exposure Model
!"#
$%&'()#*+),-%-&'&./
$%&'()#*+),-%-&'&./
Fi(t)
BDV low BDV mid BDV highBDV low? BDV mid? BDV high?
19
Relation among MM, ECEM, CEM
!"#
$%&'()#*+),-%-&'&./
$%&'()#*+),-%-&'&./
!"#
G(t)
Fi(t)
!F1(t1)
F1(t1)
0%1&23#4
α=0 α=0.5 α=1
ECEMMM CEM
Memoryless Model Extended CEM Cumulative Exposure Model
!"#
$%&'()#*+),-%-&'&./
$%&'()#*+),-%-&'&./
Fi(t)
BDV low BDV mid BDV high
β=1 n=10 k=0.05235
0 cm/s 8 cm/s 16 cm/s
mean 18.5 18.3 17.5
Likelihood
ECEM
Parameters
Data Generation→Parameter Estimation (10,000 times)
4パラメータ×10,000個の推定結果を見て,
うまく推定できるか調査
20
Model Validation by Simulation
※典型的な絶縁機器
step-up test
モデルパラメータ
履歴の残る割合
図 5: function G(t) for expansion of CEM
Algorithm 1 Step-up voltage data generation algorithm
while N samples do
generate random number U
repeat
vi → vi+1
until U ≤ G(ti( j))
record v = vi
end while
4
の3ケース
21
Random Number Generation
time
voltage
10
12
14
16
18
20
22
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
100 120 140 160 180 200 220
dataset1
input
estimate
dataset1
22
Simulation Procedure
time
voltage
10
12
14
16
18
20
22
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
100 120 140 160 180 200 220
dataset1
time
voltage
10
12
14
16
18
20
22
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
100 120 140 160 180 200 220
dataset2
input
estimate
dataset1
dataset2
23
Simulation Procedure
time
voltage
10
12
14
16
18
20
22
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
100 120 140 160 180 200 220
dataset1
time
voltage
10
12
14
16
18
20
22
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
100 120 140 160 180 200 220
dataset2
dataset1
dataset2
dataset10,000
time
voltage
10
12
14
16
18
20
22
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
100 120 140 160 180 200 220
dataset10,000
input
estimate
α=0.0, 0.5, 1.0 の3ケース
24
Simulation Procedure
25
alpha
count
0
500
1000
1500
2000
2500
3000
3500
0.0 0.2 0.4 0.6 0.8
beta
count
0
200
400
600
800
1000
1200
1400
0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
k
count
0
500
1000
1500
2000
0.046 0.048 0.050 0.052 0.054
n
count
0
1000
2000
3000
4000
5000
6000
7000
9 10 11 12 13
true value
Simulation Result α=0
n
count
0
1000
2000
3000
4000
8 9 10 11 12 13
k
count
0
200
400
600
800
1000
1200
1400
0.046 0.048 0.050 0.052 0.054 0.056
beta
count
0
200
400
600
800
1000
1200
0.8 1.0 1.2 1.4
alpha
count
0
200
400
600
800
1000
0.0 0.2 0.4 0.6 0.8
26
Simulation Result α=0.5
true value
n
count
0
1000
2000
3000
4000
5000
9.5 10.0 10.5 11.0
k
count
0
500
1000
1500
0.051 0.052 0.053 0.054 0.055 0.056 0.057
alpha
count
0
1000
2000
3000
4000
5000
0.95 0.96 0.97 0.98 0.99 1.00 1.01
beta
count
0
200
400
600
800
1000
1200
1400
0.8 0.9 1.0 1.1 1.2 1.3 1.4
27
Simulation Result α=1
true value
0
0.5
1
0.0909
(0.121)
1.01
(0.070)
9.99
(0.161)
0.0521
(0.00066)
0.520
(0.153)
0.997
(0.0864)
10.0
(0.181)
0.0522
(0.00127)
1.00
(0.0023)
0.987
(0.0615)
10.0
(0.053)
0.0526
(0.00048)
28
mean
(standard deviation)
Simulation Results
29
Experimental Breakdown Voltage
0 cm/s 8 cm/s 16 cm/s
breakdownvoltage[kV]
mean
=90.2
mean
=80.1
mean
=79.8
0 cm/s
8 cm/s
16 cm/s
!"#
$%&'()#*+),-%-&'&./
$%&'()#*+),-%-&'&./
!"#
G(t)
Fi(t)
!F1(t1)
F1(t1)
0%1&23#4
time
voltage
50
60
70
80
90
100
110
0 2 4 6 8 10 12
time
voltage
50
60
70
80
90
100
110
0 2 4 6 8 10 12
time
voltage
50
60
70
80
90
100
110
0 2 4 6 8 10 12
30
MLE for ECEM
1.30 8.02 0.0098
0.913 9.52 0.0112
0.967 9.51 0.0114
0 cm/s 8 cm/s 16 cm/s
breakdownvoltage[kV]
mean
=90.2
mean
=80.1
mean
=79.8
BDV
low
BDV
mid
BDV
high
ECEM explains this phenomena?
0 cm/s 8 cm/s 16 cm/s
mean 91.3 80.0 80.3
velocity
0 cm/s
8 cm/s
16 cm/s
1 1.30 8.02 0.0098
0.7 1.02 9.52 0.0117
0.5 1.10 9.33 0.0120
CEM
MM
simulation using MLE
velocity
0 cm/s
8 cm/s
16 cm/s
1 1.30 8.02 0.0098
0.7 1.02 9.52 0.0117
0.5 1.10 9.33 0.0120
31
CEM
MM
maximum likelihood parameters using profile log-likelihood
Maximum Likelihood Parameters
α
1
0.5
0.7
BDV
low
BDV
high
BDV
low?
BDV
high?
32
Relation among ECEM, CEM, MM
! = 1
!"!# "!#
0.5
0
0
1
0.5 1t
$%$&'()*+(,(-./(
F2
F1
G(t)
! = 0.5
!"!#
0.5
0
0
1
0.5 1t
$%$&'()*+(,(-./(
F2
F1
G(t)
! = 0
!"!# ##
0.5
0
0
1
0.5 1t
$%$&'()*+(,(-(
F2
F1
G(t)
F1(t)
F2(t)
0.5
0
0
1
0.5 1t
F1(t),F2(t)
BDV
low
BDV
mid
BDV
high
BDV
low
BDV
mid
BDV
high
33
Flaw of the IM
! = 0.5
!"!#
0.5
0
0
1
0.5 1t
$%$&'()*+(,(-./(
F2
F1
G(t)
! = 1
!"
0.5
0
0
1
0.5 1t
#$#%&'()*'+','
F2
F1
G(t)
F1(t)
F2(t)
0.5
0
0
1
0.5 1t
F1(t),F2(t)
! = 1
!"!# "!#
0.5
0
0
1
0.5 1t
$%$&'()*+(,(-./(
F2
F1
G(t)
! = 0
!"!# ##
0.5
0
0
1
0.5 1t
$%$&'()*+(,(-(
F2
F1
G(t)
BDV
low
BDV
mid
BDV
high
BDV
low
BDV
mid
BDV
high
34
Flaw of the IM
! = 0.5
!"!#
0.5
0
0
1
0.5 1t
$%$&'()*+(,(-./(
F2
F1
G(t)
! = 1
!"
0.5
0
0
1
0.5 1t
#$#%&'()*'+','
F2
F1
G(t)
F1(t)
F2(t)
0.5
0
0
1
0.5 1t
F1(t),F2(t)
! = 1
!"!# "!#
0.5
0
0
1
0.5 1t
$%$&'()*+(,(-./(
F2
F1
G(t)
! = 0
!"!# ##
0.5
0
0
1
0.5 1t
$%$&'()*+(,(-(
F2
F1
G(t)
BDV low? BDV mid? BDV high?
E[BDV]
=(1/4)*1+(1/2)* (1/2)*2
=3/2
E[BDV]
=(1/4)*1+(1/2)* (1/2)*2
=3/2
E[BDV]
=(1/4)*1+(1/2)* (1/2)*2
=3/2
35
Flaw of the IM
! = 0.5
!"!#
0.5
0
0
1
0.5 1t
$%$&'()*+(,(-./(
F2
F1
G(t)
! = 1
!"
0.5
0
0
1
0.5 1t
#$#%&'()*'+','
F2
F1
G(t)
F1(t)
F2(t)
0.5
0
0
1
0.5 1t
F1(t),F2(t)
! = 1
!"!# "!#
0.5
0
0
1
0.5 1t
$%$&'()*+(,(-./(
F2
F1
G(t)
! = 0
!"!# ##
0.5
0
0
1
0.5 1t
$%$&'()*+(,(-(
F2
F1
G(t)
BDV low? BDV mid? BDV high?
E[BDV]
=(1/2)*1+(1/2)*2
=3/2
E[BDV]
=(1/2)*1+(1/2)*2
=3/2
E[BDV]
=(1/2)*1+(1/2)*2
=3/2
E[BDV]
=(1/2)*1+(1/2)*2
=3/2
• We have proposed a new model, extended cumulative
exposure model, ECEM
• The ECEM can explain the relation between the step-
up voltage test result and the accelerated life test result
• An experimental result is consistent with the proposed
model
• We have pointed out the flaw of the independence
model, IM
36
Conclusion
Thank you
Department of Systems Design and Informatics, Kyushu Institute of Technology
Fukuoka, 820-8502 Japan
37
On The Extended Cumulative Exposure Model,
ECEM
IEICE Reliability 2011.10.21

More Related Content

PDF
Fourier transform
PPT
Fourier transform
PPT
DOCX
Resume
DOCX
Amanda Johnson
PDF
erika cover letter
PDF
Cover letter
PPTX
Fi1 tb lops etukäteisläksyn ohjeet täällä!!!
Fourier transform
Fourier transform
Resume
Amanda Johnson
erika cover letter
Cover letter
Fi1 tb lops etukäteisläksyn ohjeet täällä!!!

Similar to Extended cumulative exposure model, ecem (20)

PDF
Signal fundamentals
PPT
reliability workshop
PDF
Multi dof modal analysis free
PDF
Matlab Señales Discretas
PDF
Optimal Multisine Probing Signal Design for Power System Electromechanical Mo...
PDF
Power Market and Models Convergence ?
PDF
2018 MUMS Fall Course - Mathematical surrogate and reduced-order models - Ral...
PDF
Volatility derivatives and default risk
PDF
PosterFormatRNYF(1)
PPT
Lectures on digital communication by prof.dr.a.abbas
PPT
Lectures on Digital Dommunication by Prof.Dr.A.Abbas Khan
PDF
Power Quality Monitoring by Disturbance Detection using Hilbert Phase Shifting
PDF
Using Wavelet Transform to Disaggregate Electrical Power Consumption into the...
PPTX
2.1 Average Value and RMS Vasdsddlue.pptx
PPT
LeastSquaresParameterEstimation.ppt
PDF
Ejercicio de fasores
PDF
ScilabTEC 2015 - J. Richalet
PDF
Congrès SMAI 2019
PDF
PPT
Estimation of Dynamic Causal Effects -Introduction to Economics
Signal fundamentals
reliability workshop
Multi dof modal analysis free
Matlab Señales Discretas
Optimal Multisine Probing Signal Design for Power System Electromechanical Mo...
Power Market and Models Convergence ?
2018 MUMS Fall Course - Mathematical surrogate and reduced-order models - Ral...
Volatility derivatives and default risk
PosterFormatRNYF(1)
Lectures on digital communication by prof.dr.a.abbas
Lectures on Digital Dommunication by Prof.Dr.A.Abbas Khan
Power Quality Monitoring by Disturbance Detection using Hilbert Phase Shifting
Using Wavelet Transform to Disaggregate Electrical Power Consumption into the...
2.1 Average Value and RMS Vasdsddlue.pptx
LeastSquaresParameterEstimation.ppt
Ejercicio de fasores
ScilabTEC 2015 - J. Richalet
Congrès SMAI 2019
Estimation of Dynamic Causal Effects -Introduction to Economics
Ad

More from Hideo Hirose (20)

PDF
データを読み取る感性
PDF
データを読む感性
PDF
Derivative of sine function: A graphical explanation
PDF
Success/Failure Prediction for Final Examination using the Trend of Weekly On...
PDF
Attendance to Lectures is Crucial in Order Not to Drop Out
PDF
HTT vs. HTH
PDF
統計の世界:予測を扱う科学 Statistics World: A Science of Prediction
PDF
Solve [X^2=A], where A is a matrix
PDF
コーヒーはホットかアイスか 意外なことが分かった
PDF
多変数の極値問題は解析と線形代数の融合だ
PDF
Homotopy法による非線形方程式の解法
PDF
Different classification results under different criteria, distance and proba...
PDF
漸近理論をスライド1枚で(フォローアッププログラムクラス講義07132016)
PDF
雷の波形は指数関数(フォローアッププログラムクラス講義07072016)
PDF
微分は約分ではない(フォローアッププログラムクラス講義06152016)
PDF
Interesting but difficult problem: find the optimum saury layout on a gridiro...
PDF
Central Limit Theorem & Galton Board
PDF
回路方程式, ポアソン方程式, 中心極限定理による最適なサンマの焼き方
PDF
「科学=予測」Science cafe 2011 june 10
PDF
Parameter estimation for the truncated weibull model using the ordinary diffe...
データを読み取る感性
データを読む感性
Derivative of sine function: A graphical explanation
Success/Failure Prediction for Final Examination using the Trend of Weekly On...
Attendance to Lectures is Crucial in Order Not to Drop Out
HTT vs. HTH
統計の世界:予測を扱う科学 Statistics World: A Science of Prediction
Solve [X^2=A], where A is a matrix
コーヒーはホットかアイスか 意外なことが分かった
多変数の極値問題は解析と線形代数の融合だ
Homotopy法による非線形方程式の解法
Different classification results under different criteria, distance and proba...
漸近理論をスライド1枚で(フォローアッププログラムクラス講義07132016)
雷の波形は指数関数(フォローアッププログラムクラス講義07072016)
微分は約分ではない(フォローアッププログラムクラス講義06152016)
Interesting but difficult problem: find the optimum saury layout on a gridiro...
Central Limit Theorem & Galton Board
回路方程式, ポアソン方程式, 中心極限定理による最適なサンマの焼き方
「科学=予測」Science cafe 2011 june 10
Parameter estimation for the truncated weibull model using the ordinary diffe...
Ad

Recently uploaded (20)

PPT
Chapter 1 - Introduction to Manufacturing Technology_2.ppt
PDF
Computer organization and architecuture Digital Notes....pdf
PPTX
CyberSecurity Mobile and Wireless Devices
PDF
distributed database system" (DDBS) is often used to refer to both the distri...
PDF
August 2025 - Top 10 Read Articles in Network Security & Its Applications
PDF
UEFA_Carbon_Footprint_Calculator_Methology_2.0.pdf
PDF
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
PPTX
Chemical Technological Processes, Feasibility Study and Chemical Process Indu...
PPTX
"Array and Linked List in Data Structures with Types, Operations, Implementat...
PPTX
Information Storage and Retrieval Techniques Unit III
PDF
Abrasive, erosive and cavitation wear.pdf
PPTX
Management Information system : MIS-e-Business Systems.pptx
PDF
Prof. Dr. KAYIHURA A. SILAS MUNYANEZA, PhD..pdf
PDF
Soil Improvement Techniques Note - Rabbi
PPTX
Module 8- Technological and Communication Skills.pptx
PPTX
ASME PCC-02 TRAINING -DESKTOP-NLE5HNP.pptx
PDF
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
PDF
Unit1 - AIML Chapter 1 concept and ethics
PPTX
Building constraction Conveyance of water.pptx
PPTX
Sorting and Hashing in Data Structures with Algorithms, Techniques, Implement...
Chapter 1 - Introduction to Manufacturing Technology_2.ppt
Computer organization and architecuture Digital Notes....pdf
CyberSecurity Mobile and Wireless Devices
distributed database system" (DDBS) is often used to refer to both the distri...
August 2025 - Top 10 Read Articles in Network Security & Its Applications
UEFA_Carbon_Footprint_Calculator_Methology_2.0.pdf
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
Chemical Technological Processes, Feasibility Study and Chemical Process Indu...
"Array and Linked List in Data Structures with Types, Operations, Implementat...
Information Storage and Retrieval Techniques Unit III
Abrasive, erosive and cavitation wear.pdf
Management Information system : MIS-e-Business Systems.pptx
Prof. Dr. KAYIHURA A. SILAS MUNYANEZA, PhD..pdf
Soil Improvement Techniques Note - Rabbi
Module 8- Technological and Communication Skills.pptx
ASME PCC-02 TRAINING -DESKTOP-NLE5HNP.pptx
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
Unit1 - AIML Chapter 1 concept and ethics
Building constraction Conveyance of water.pptx
Sorting and Hashing in Data Structures with Algorithms, Techniques, Implement...

Extended cumulative exposure model, ecem