Statistical Methods for Engineering Research
Factorial design, 2n
factorial design –
22
and 23
factorial design
Prepared By
Dr. Manu Melwin Joy
Assistant Professor
School of Management Studies
Cochin University of Science and Technology
Kerala, India.
Phone – 9744551114
Mail – manumelwinjoy@cusat.ac.in
Kindly restrict the use of slides for personal purpose.
Please seek permission to reproduce the same in public forms and
presentations.
Factorial design
• In statistics, a full factorial experiment is an
experiment whose design consists of two or more
factors, each with discrete possible values or
"levels", and whose experimental units take on all
possible combinations of these levels across all
such factors.
Factorial design
• Probably the easiest way to begin understanding
factorial designs is by looking at an example. Let's
imagine a design where we have an educational
program where we would like to look at a variety
of program variations to see which works best. For
instance, we would like to vary the amount of time
the children receive instruction with one group
getting 1 hour of instruction per week and another
getting 4 hours per week.
Factorial design
• And, we'd like to vary the setting with one group
getting the instruction in-class (probably pulled
off into a corner of the classroom) and the other
group being pulled-out of the classroom for
instruction in another room. We could think about
having four separate groups to do this, but when
we are varying the amount of time in instruction,
what setting would we use: in-class or pull-out?
And, when we were studying setting, what amount
of instruction time would we use: 1 hour, 4 hours,
or something else?
Factorial design
Factorial design
•  In  factorial  designs,  a factor is  a  major 
independent variable. In this example we have two 
factors: time in instruction and setting. A level is a 
subdivision  of  a  factor.  In  this  example,  time  in 
instruction  has  two  levels  and  setting  has  two 
levels. 
Factorial design
• Sometimes  we  depict  a  factorial  design  with  a 
numbering notation. In this example, we can say 
that  we  have  a  2  x  2  (spoken  "two-by-two) 
factorial  design.  In  this  notation,  the number of
numbers tells you how many factors there are and 
the number values tell you how many levels. If I 
said  I  had  a  3  x  4  factorial  design,  you  would 
know that I had 2 factors and that one factor had 3 
levels while the other had 4. 
Factorial design
• Now, let's look at a variety of different results we 
might get from this simple 2 x 2 factorial design. 
Each of the following figures describes a different 
possible outcome. And each outcome is shown in 
table  form  (the  2  x  2  table  with  the  row  and 
column averages) and in graphic form (with each 
factor  taking  a  turn  on  the  horizontal  axis).  You 
should  convince  yourself  that  the  information  in 
the tables agrees with the information in both of 
the graphs. You should also convince yourself that 
the  pair  of  graphs  in  each  figure  show  the  exact 
same information graphed in two different ways
The Null Outcome
• Let's begin by looking at the "null" case. The null 
case  is  a  situation  where  the  treatments  have  no 
effect. This figure assumes that even if we didn't 
give  the  training  we  could  expect  that  students 
would score a 5 on average on the outcome test. 
You can see in this hypothetical case that all four 
groups score an average of 5 and therefore the row 
and column averages must be 5. You can't see the 
lines for both levels in the graphs because one line 
falls right on top of the other.
The Null Outcome
The Main Effects
• A main effect is  an  outcome  that  is  a  consistent 
difference between levels of a factor. For instance, 
we would say there’s a main effect for setting if 
we  find  a  statistical  difference  between  the 
averages for the in-class and pull-out groups, at all
levels of  time  in  instruction.  The  first  figure 
depicts a main effect of time. For all settings, the 4 
hour/week  condition  worked  better  than  the  1 
hour/week one. It is also possible to have a main 
effect for setting (and none for time).
The Main Effects
The Main Effects
The Main Effects
Interaction Effects
• If we could only look at main effects, factorial designs
would be useful. But, because of the way we combine
levels in factorial designs, they also enable us to
examine the interaction effects that exist between
factors. An interaction effect exists when differences
on one factor depend on the level you are on another
factor. It's important to recognize that an interaction is
between factors, not levels. We wouldn't say there's an
interaction between 4 hours/week and in-class
treatment. Instead, we would say that there's an
interaction between time and setting, and then we
would go on to describe the specific levels involved.
Interaction Effects
Interaction Effects
• How do you know if there is an interaction in a factorial design? There
are three ways you can determine there's an interaction. First, when
you run the statistical analysis, the statistical table will report on all
main effects and interactions. Second, you know there's an interaction
when can't talk about effect on one factor without mentioning the other
factor. if you can say at the end of our study that time in instruction
makes a difference, then you know that you have a main effect and not
an interaction (because you did not have to mention the setting factor
when describing the results for time). On the other hand, when you
have an interaction it is impossible to describe your results accurately
without mentioning both factors. Finally, you can always spot an
interaction in the graphs of group means -- whenever there are lines
that are not parallel there is an interaction present! If you check out the
main effect graphs above, you will notice that all of the lines within a
graph are parallel. In contrast, for all of the interaction graphs, you
will see that the lines are not parallel.
Interaction Effects
• In the first interaction effect graph, we see that one
combination of levels -- 4 hours/week and in-class
setting -- does better than the other three. In the
second interaction we have a more complex
"cross-over" interaction. Here, at 1 hour/week the
pull-out group does better than the in-class group
while at 4 hours/week the reverse is true.
Furthermore, the both of these combinations of
levels do equally well.
Interaction Effects
Factorial design - Dr. Manu Melwin Joy - School of Management Studies, Cochin University of Science and Technology

Factorial design - Dr. Manu Melwin Joy - School of Management Studies, Cochin University of Science and Technology

  • 1.
    Statistical Methods forEngineering Research Factorial design, 2n factorial design – 22 and 23 factorial design
  • 2.
    Prepared By Dr. ManuMelwin Joy Assistant Professor School of Management Studies Cochin University of Science and Technology Kerala, India. Phone – 9744551114 Mail – [email protected] Kindly restrict the use of slides for personal purpose. Please seek permission to reproduce the same in public forms and presentations.
  • 3.
    Factorial design • Instatistics, a full factorial experiment is an experiment whose design consists of two or more factors, each with discrete possible values or "levels", and whose experimental units take on all possible combinations of these levels across all such factors.
  • 4.
    Factorial design • Probablythe easiest way to begin understanding factorial designs is by looking at an example. Let's imagine a design where we have an educational program where we would like to look at a variety of program variations to see which works best. For instance, we would like to vary the amount of time the children receive instruction with one group getting 1 hour of instruction per week and another getting 4 hours per week.
  • 5.
    Factorial design • And,we'd like to vary the setting with one group getting the instruction in-class (probably pulled off into a corner of the classroom) and the other group being pulled-out of the classroom for instruction in another room. We could think about having four separate groups to do this, but when we are varying the amount of time in instruction, what setting would we use: in-class or pull-out? And, when we were studying setting, what amount of instruction time would we use: 1 hour, 4 hours, or something else?
  • 6.
  • 7.
    Factorial design •  In factorial  designs,  a factor is  a  major  independent variable. In this example we have two  factors: time in instruction and setting. A level is a  subdivision  of  a  factor.  In  this  example,  time  in  instruction  has  two  levels  and  setting  has  two  levels. 
  • 8.
    Factorial design • Sometimes we  depict  a  factorial  design  with  a  numbering notation. In this example, we can say  that  we  have  a  2  x  2  (spoken  "two-by-two)  factorial  design.  In  this  notation,  the number of numbers tells you how many factors there are and  the number values tell you how many levels. If I  said  I  had  a  3  x  4  factorial  design,  you  would  know that I had 2 factors and that one factor had 3  levels while the other had 4. 
  • 9.
    Factorial design • Now, let's look at a variety of different results we  might get from this simple 2 x 2 factorial design.  Each of the following figures describes a different  possible outcome. And each outcome is shown in  table form  (the  2  x  2  table  with  the  row  and  column averages) and in graphic form (with each  factor  taking  a  turn  on  the  horizontal  axis).  You  should  convince  yourself  that  the  information  in  the tables agrees with the information in both of  the graphs. You should also convince yourself that  the  pair  of  graphs  in  each  figure  show  the  exact  same information graphed in two different ways
  • 10.
    The Null Outcome •Let's begin by looking at the "null" case. The null  case  is  a  situation  where  the  treatments  have  no  effect. This figure assumes that even if we didn't  give  the  training  we  could  expect  that  students  would score a 5 on average on the outcome test.  You can see in this hypothetical case that all four  groups score an average of 5 and therefore the row  and column averages must be 5. You can't see the  lines for both levels in the graphs because one line  falls right on top of the other.
  • 11.
  • 12.
    The Main Effects •A main effect is  an  outcome  that  is  a  consistent  difference between levels of a factor. For instance,  we would say there’s a main effect for setting if  we  find  a  statistical  difference  between  the  averages for the in-class and pull-out groups, at all levels of  time  in  instruction.  The  first  figure  depicts a main effect of time. For all settings, the 4  hour/week  condition  worked  better  than  the  1  hour/week one. It is also possible to have a main  effect for setting (and none for time).
  • 13.
  • 14.
  • 15.
  • 16.
    Interaction Effects • Ifwe could only look at main effects, factorial designs would be useful. But, because of the way we combine levels in factorial designs, they also enable us to examine the interaction effects that exist between factors. An interaction effect exists when differences on one factor depend on the level you are on another factor. It's important to recognize that an interaction is between factors, not levels. We wouldn't say there's an interaction between 4 hours/week and in-class treatment. Instead, we would say that there's an interaction between time and setting, and then we would go on to describe the specific levels involved.
  • 17.
  • 18.
    Interaction Effects • Howdo you know if there is an interaction in a factorial design? There are three ways you can determine there's an interaction. First, when you run the statistical analysis, the statistical table will report on all main effects and interactions. Second, you know there's an interaction when can't talk about effect on one factor without mentioning the other factor. if you can say at the end of our study that time in instruction makes a difference, then you know that you have a main effect and not an interaction (because you did not have to mention the setting factor when describing the results for time). On the other hand, when you have an interaction it is impossible to describe your results accurately without mentioning both factors. Finally, you can always spot an interaction in the graphs of group means -- whenever there are lines that are not parallel there is an interaction present! If you check out the main effect graphs above, you will notice that all of the lines within a graph are parallel. In contrast, for all of the interaction graphs, you will see that the lines are not parallel.
  • 19.
    Interaction Effects • Inthe first interaction effect graph, we see that one combination of levels -- 4 hours/week and in-class setting -- does better than the other three. In the second interaction we have a more complex "cross-over" interaction. Here, at 1 hour/week the pull-out group does better than the in-class group while at 4 hours/week the reverse is true. Furthermore, the both of these combinations of levels do equally well.
  • 20.