1. Stress Analysis 
Moment of Inertias 
1. Atalet moment of inertia; 2. Polar moment of inertia; 
Ix = ò y 2 
dA ò 2 
Iy = x dA ò 2 2 
Jz = (x + y )dA 
Shape Ix Iy J 
Rectangle bh3/12 hb3/12 1b2h (b2+h2 ) 
Triangle bh3/36 hb3/36 
æ ö 
ç ¸ 
çè ø¸ 
h2+b2 bh 
18 
Circle πd4/64 πd4/64 πd4/32 
Stresses 
Normal Stresses Shear Stresses 
Axial 
Tensile 
F 
σ = 
A 
Torsional 
t 
Tr 
= 
J 
· t = 16T/πd3 for solid 
circular beam 
Compression 
F 
σ = 
A 
Bending 
b 
Mc 
σ = 
I 
32M 
σ = 
· b 3 
πd 
for solid 
circular 
beam 
Transverse 
(Flexural) 
t = 
VQ 
Ib 
, 
- 
Q = A y 
· max t = 4V/3A for 
solid circular beam 
· t max = 2V/A for 
hollow circular 
section 
· t max = 3V/2A for 
rectangular beam 
σ + σ - σ - σ 
Principle stresses æ ö 
σ = + + 
ç ¸ 
è ø 
t 
2 
x y x y 2 
1,2 xy 
2 2 2 
t xy 
x y 
tan2φ = 
σ - σ 
Max. and min. shear 
stresses 
2 
- σ - σ 
= + + 
æ ö 
ç ¸ 
è ø 
x y 2 
t t 
1,2 xy 
2
σ' = σ1 - σ1σ2 + σ2 or t 2 2 
Von-Mises stresses 2 2 
σ' = σx + 3 xy (for biaxial) 
Stresses States 
Triaxial stress state 
1 2 3 
1 
σ σ + σ 
ε = - μ 
E E 
2 1 3 
2 
σ σ + σ 
ε = - μ 
E E 
3 1 2 
2 
σ σ + σ 
ε = - μ 
E E 
Stress in Cylinders 
Thick-Walled (t/r>1/20) Wessels (internally and externally pressurized 
cyclinders): 
2 2 2 2 2 
i o o i 
p a - p b - a b (p - p )/r 
σ = 
t 2 2 
b - a 
2 2 2 2 2 
i o o i 
p a - p b + a b (p - p )/r 
σ = 
r 2 2 
b - a 
2 
i 
p a 
σ = 
l 2 2 
b - a 
· If the external pressure is zero (po=0); 
2 2 
æ ö 
ç ¸ 
è ø 
a p b 
i 
σ = 1+ 
t 2 2 2 
b - a r 
2 2 
æ ö 
ç ¸ 
è ø 
a p b 
i 
σ = 1- 
r 2 2 2 
b - a r 
At the inner surface; 
r=aÞ σr = -pi 
2 2 
b + a 
σ = p 
t i 2 2 
b - a 
At the outer surface; 
r=bÞ σr = 0 
2 
2a 
σ = p 
t i 2 2 
b - a 
· If the internal pressure is zero (pi=0); 
2 2 
æ ö 
ç ¸ 
è ø 
b a 
σ = -p 1+ 
t o 2 2 2 
b - a r 
2 2 
æ ö 
ç ¸ 
è ø 
b a 
σ = -p 1- 
r o 2 2 2 
b - a r
At the inner surface; 
r=aÞ σr = 0 
2 
2b 
σ = -p 
t o 2 2 
b - a 
At the outer surface; 
r=bÞ σr = -po 
2 2 
b + a 
σ = -p 
t o 2 2 
b - a 
a=inside radius of the cylinder b=outside radius of the cylinder pi=internal 
pressure po=external pressure 
Thin-Walled Wessels(t/r<1/20): 
i 
t 
pd 
σ = 
2t 
i 
l 
pd 
σ = 
4t 
Curved Members In Flexure: 
· 
ò 
A 
r = 
dA 
ρ 
· My 
σ = 
Ae(r - y) 
Þ o 
o 
o 
Mc 
σ = 
Aer 
, i 
i 
i 
Mc 
σ = 
Aer 
Press and Shrink Fit: 
· 
2 2 
b + a 
σ = -p 
it 2 2 
b - a 
· 
2 2 
c + b 
σ = -p 
ot 2 2 
c - b 
· 
æ ö 
ç ¸ 
è ø 
d 
2 2 
bp c + b 
= +μ 
E c - b 
o 2 2 o 
o 
· bp æ b + a 
ö 
= - -μ 
ç ¸ 
è ø 
d 
2 2 
i 2 2 i 
E b - a 
i 
· 
æ ö æ ö 
ç ¸ ç ¸ 
è ø è ø 
= - +μ - μ 
d d d 
2 2 2 2 
bp c + b bp b + a 
= + 
o i 2 2 o 2 2 i 
E c - b E b - a 
o i 
· ( ) ( ) 
é ù 
ê ú 
êë úû 
d 2 2 2 2 
E c - b b - a 
( ) 
if E = E = E; interface pressure = p = 
o i 2 2 2 
b 2b c - a
2. Deflection Analysis 
F 
k = 
y 
, k=spring constant 
T GJ 
k = = 
θ l 
, k=Torsional spring rate 
k = AE for tension or compression loading l 
Castigliano’s Theorem: 
Strain Energy 
Axial Load 
F2L 
U = 
2AE 
Direct Shear Force 
F2L 
U = 
2AG 
Torsional Load 
T2L 
U = 
2GJ 
Bending Moment ò 
M2 
U = dx 
2EI 
Flexural Shear ò 
CF2 
U = dx 
2GA 
, C is constant C=1.2 for rectangular shape 
C=1.11 Circular 
C=2.0 for thin walled tubular, 
Buckling Consideration: 
Slenderness ratio=æ ö 
l 
k 
çè ø¸ 
, I 
k = 
A 
æ ö 
çè ø¸1 
2π2EC 
Sy 
l 
= 
k 
Euler column 
U Total energy 
F Force on the deflection point 
θ Angular deflection 
¶ 
¶ 
y = 
U 
F 
Tl 
θ = 
GJ
· ³ Þ ( ) æ ö æ ö 
l l P Cπ E 
çè ø¸ èç ø¸ 
2 
cr 
2 
1 
Critical Unit Load = = 
k k A l/k 
or 
2 
2 
P = Cπ EI cr l 
Johnson's Column 
æ l ö æ l ö P æ S ö æ 1 öæ l 
ö 
çè < Critital Unit Load = S - 
k ø¸ èç k ø¸ A ç 2π ¸ è ø 
èç CE ø¸èç k 
ø¸ · Þ 
2 2 
cr y 
y 
1 
= 
1. Both ends are rounded-simply supported ÞC=1 
2. Both ends are fixed ÞC=4 
3. One end fixed, one end rounded and guided ÞC=2 
4. One end fixed, one end free ÞC=1/4
3.Design For Static Strength 
Ductile Materials 
1. Max. Normal Stress Theory 
(MNST): 
· If, σ1 > σ2 > σ3 
· y 
1 
S 
n = 
σ 
3. Distortion Energy Theory 
· If, σ1 > σ2 > σ3 
· 
2 2 2 
(σ1 - σ2 ) + (σ2 - σ3 ) + (σ3 - σ1) 
σ' = 
2 
· For biaxial stress state; 
2 2 
σ' = σx + 3τxy 
· y S 
n = 
σ' 
2. Max. Shear Stress Theory 
(MSST): 
· Yield strength in shear 
(Ssy)=Sy/2 
· ( ) t 1 3 
max 
σ - σ 
= 
2 
for biaxial stress state; 
1 2 2 =σ + 4τ 
2 
t max x xy 
S 
sy 
max 
n = 
τ 
Brittle Materials 
1. Max. Normal Stress Theory (MNST): 3. The Modified Mohr Theory 
(MMT) 
· If, σ1 > σ2 > σ3 
· ut 
1 
S 
n = 
σ 
· If, σ1 > σ2 > σ3
or uc 
3 
n = S 
σ · 
uc 
3 
S 
uc ut 1 
ut 3 
S = 
S - S σ 
-1 
Sσ 
· 3 
3 
S 
n = 
σ 
2. The Column Mohr Theory (CMT) or 
Internal Friction Theory (IFT): 
· 
uc 
3 
S 
uc 1 
ut 3 
S = 
S σ 
-1 
Sσ 
· 3 
3 
S 
n = 
σ
5. Design for Fatigue Strength 
Endurance limit for test specimen (Se’); 
· For ductile materials: 
Se’=0.5 Sut if Sut<1400 MPa 
Se’=700 MPa if Sut ³ 1400 MPa 
· For irons: 
Se’=0.4 Sut if Sut<400 MPa 
Se’=160 MPa if Sut³ 400 MPa 
· For Aliminiums: 
Se’=0.4 Sut if Sut<330 MPa 
Se’=130 MPa if Sut³ 330 MPa 
· For copper alloys: 
Se’ » 0.4 Sut if Sut<280 MPa 
Se’ » 100 MPa if Sut³ 280 MPa 
Se = ka kb kc kd ke Se’ 
Sf=10c Nb 
é ù 
ê ú 
ë û 
1 0.8S 
u 
e 
b = - log 
3 S 
é( 0.8S 
) 2 
ù 
ê u 
ú 
êë e 
úû 
c = log 
S
· ka : surface factor, ka=aSut 
b 
Surface Finish Factor a Factor b 
Ground 1.58 -0.065 
Machined or Cold Drawn 4.51 -0.265 
Hot Rolled 57.7 -0.718 
As Forged 272 -0.995 
· kb : size factor; 
kb=1 if d£ 8 mm and kb= 1.189d-0.097 if 8 mm<d£ 250 mm for 
bending & torsional loading. 
For non-rotating element, -0.097 
kb = 1.189deq deq=0.37d 
For pure axial loading, kb=1 and Se’=0.45Sut 
For combined loading, a =1.11 if Sut £ 1520 MPa and a =1 if Sut ³ 
1520 MPa for ductile materials. 
· kc : reliability factor 
· kd : temperature effects, kd=1 if T£ 3500 and kd=0.5 if 3500<T£ 5000 
· ke : stress concentration factor, ke=1/Kf Kf=1+q(Kt-1) 
Kt : geometric stress concentration factor, q=notch sensitivity. 
Modified Goodman Soderberg 
Infinite Life Finite Life Infinite Life Finite Life
1 
a m 
e u 
n = 
σ σ 
+ 
S S 
n = 1 σ + σ 
a m 
f u 
S S 
1 
a m 
e y 
n = 
σ σ 
+ 
S S 
1 
a m 
f y 
n = 
σ σ 
+ 
S S 
· Fa=(Fmax-Fmin)/2 · Fm=(Fmax+Fmin)/2 
6. Tolerances and Fits 
Clearance fit: 
TF=Cmax-Cmin Cmax=DU-dL Cmin=DL-dU 
Transition fit: 
TF=Imax+Cmax Cmax=DU-dL Imax=dU-DL 
Interference fit: 
TF=Imax-Imin Imax=dU-DL Imin=dL-Du 
Tolerances on the shaft, on the hole and on the fit
TS=dU-dL TH=DU-DL TF=TH+TS 
7. Design of Power Screws 
æ ö 
ç ¸ 
è ø 
Fd L +πd μ 
m m 
R 
m 
T = 
2πd - μL 
æ ö 
ç ¸ 
è ø 
Fdπd μ - L 
m m 
L 
m 
T = 
2πd +μL 
Considering μ = tanρ ; 
m ( ) 
R 
Fd 
T = tanλ + ρ 
2 
m ( ) 
L 
Fd 
T = tanρ - λ 
2 
If μ ³ tanλ or m > 
L 
πd 
m 
or r > l or TL>0, then screw is self locking. 
If the friction between the stationary member and the collar of the screw 
is taken into consideration; 
m ( ) c c 
R 
Fd μ d F 
T = tanλ + ρ + 
2 2 
m ( ) c c 
L 
Fd μ d F 
T = tanρ - λ + 
2 2 
Condition for self locking is : TL>0 
T FL 
Efficiency of screws: o 
ε = = 
T 2πT 
R R 
when collar friction is negligible, we 
tanλ 
obtain e as, ε = 
tanλ ( + ρ 
) 
Thread Stresses: 
· Bearing Stresses 
b ( 2 2 ) 
r 
4pF 
σ = 
πh d - d or b 
Fp 
m 
σ = 
πd th 
where 
p 
t = 
2 
· Shear Stresses 
For Screw Thread For Nut Thread
ts 
2F 
= 
πd h 
r 
tn 
2F 
= 
πdh 
· Bending Stresses 
The maximum bending stress, 
6F 
mh 
σ = 
πd 
Stresses on the body of screw: 
· Tensile or Compressive stresses 
x 
F 
t 
σ = 
A 
2 
t 
t 
πd 
A = 
4 
r m 
t 
d + d 
d = 
2 
· Shear Stresses 
16T 
= 
πd 
t R 
xy 3 
t 
· Combined stresses: 
Based on distortion energy theory; 
Sy 
σ' = σx 2 + 3 t 2 
xy n = 
σ' 
Based on maximum shear stress theory; 
t 2 t 2 
x xy 
1 
S 
max =σ + 4 2 t 
sy 
max 
n = 
8. Design of Bolted Joints 
Feb and Fep are forces shared by the bolt and by the members respectively. 
C = k 
Fe=Feb+Fep Feb=CFeFep=(1-C)Fe stiffness ratio: b 
k + k 
b m 
Fb=Fi+CFe Fm=Fi-(1-C)Fe
Stiffness of bolt: b b 
b 
A E 
k = 
L 
Stiffness of members: 
1 1 1 1 
= + +..........+ 
k k k k 
m 1 2 n 
· Shigley and Mishke approach; 
For cone angle of a = 300 , 
1.813E d 
i 
æ ö 
ç ¸ 
è ø 
i 
i 
i 
k = 
1.15L + 0.5d 
ln 5 
1 1 1 1 
= + +..........+ 
k k k k 
1.15L + 2.5d m 1 2 n 
If L1=L2=L/2 and materials are same, æ ö 
çè ø¸ 
m 
1.813Ed 
k = 
2.885L + 2.5d 
2ln 
0.577L + 2.5d 
For cone angle of a = 450 , 
i 
i 
i 
( ) 
( ) 
æ ö 
ç ¸ 
è ø 
i 
πE d 
k = 
5 2L + 0.5d 
ln 
2L + 2.5d 
If L1=L2=L/2 and materials are same, æ ö 
çè ø¸ 
m 
πEd 
k = 
L + 0.5d 
2ln 5 
L + 2.5d 
· Wileman approach; 
(Bid/L) 
km = EdAie where Ai and Bi are constants related to the material. 
For Steel Ai=0.78715 and Bi=0.62873, for Aliminium Ai=0.79670 and 
Bi=0.63816, for Gray cast iron Ai=0.77871 and Bi=0.61616. 
· Filiz approach; 
π-B d 5 1 L 
æ öæ ö 
çè ø¸èç ø¸ 
m eq 
2 
π 1 
k = E d e 
2 1-B 
E E 
where 1 2 
eq 
1 2 
E = 
E +E 
2 
æ ö 
çè ø¸ 
1 
0.1d 
B = 
L 
8 
æ L 
ö 
ç 1 
¸ 
è ø 
1 
2 
B = 1- 
L
Static loading; 
Fb £ SyAt or Fb < SpAt ( Sp = 0.85Sy ) Fm ³ 0 
( 1-C ) nFe £ F i £ 
SpAt - CnFe n=load factor of safety 
N ns N 
Critical load per bolt = i 
ce 
F 
F = 
1-C 
Dynamic Loading: 
CnF 
e 
a 
t 
σ = 
2A 
i 
m a 
t 
F 
σ = + σ 
A 
s 
1 
a m 
e u 
n = 
σ σ 
+ 
S S 
æ ö 
ç ¸ 
è ø 
A S CnF S 
t u e u 
F = - +1 
imax 
n 2N S 
s e 
where: ns is strength factor of safety and N is the number of bolts 
Constraints: 
· 0.6Fp £ Fi £ 0.9Fp where Fp = AtSp 
· 
æ ö 
ç ¸ 
è ø 
e ut 
imax t ut 
e 
cF n S 
F = A S - +1 
2N S 
F cF 
· e £ £ e 
(1- c) F A S - 
i t p 
N N 
c = p 
D 
· 3.5d £ cb £ 10d and b 
b 
N 
9 . Design of Riveted Joints
Shearing of Rivets: 
t 
F 
= 
A 
, F=Force on each rivet 
πd2 
A = 
4 
Secondary Shear Force: 
Mr 
å 
i 
i N 2 
i 
1 
F'' = 
r 
Bearing (compression) Failure: 
s F 
= - 
A 
, A=td, t=thickness of the 
plate 
Plate Tension Failure: 
s 
F 
= 
A 
, A = ( w -Nd) t 
w=width of plate 
N=number of rivets on the selected 
cross section 
Primary Shear Force: 
å N 
i 
1 
F 
F' = 
A 
10 . Design of Welded Joints 
· Primary Shear Stress 
t 
F 
' = 
A 
· J = 0.707hJu 
· Secondary Shear Stress 
t 
Mr 
'' = 
J 
· I = 0.707hIu 
· Bending Stress 
Mc 
σ = 
I 
Table 9-3 Minimum weld-metal properties
AWS electrode 
Number 
Tensile 
Strength 
Yield Strength 
MPa 
Percent 
Elongation 
E60xx 420 340 17-25 
E70xx 480 390 22 
E80xx 530 460 19 
E90xx 620 530 14-17 
E100xx 690 600 13-16 
E120xx 830 740 14 
Table 9-5 Fatigue-strength reduction factors 
Type of Weld Kf 
Reinforced butt weld 1.2 
Toe of transverse fillet weld 1.5 
End of parallel fillet weld 2.7 
T-butt joint with sharp corners 2.0
Table 9-1 Torsional Properties of Fillet Welds* 
Weld Throat Area Location of G Unit Polar Moment of 
Inertia 
*G is centroid of weld group; h is weld size; plane of torque couple is in the 
plane of the paper; all welds are of the same size.
Table 9-2 Bending Properties of Fillet Welds* 
Weld Throat Area Location of G Unit Moment of Inertia 
*Iu, unit moment of inertia, is taken about a horizontal axis through G, the 
centroid of the weld group; h is weld size; the plane of the bending couple is 
normal to the paper; all welds are of the same size

Formul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep

  • 1.
    1. Stress Analysis Moment of Inertias 1. Atalet moment of inertia; 2. Polar moment of inertia; Ix = ò y 2 dA ò 2 Iy = x dA ò 2 2 Jz = (x + y )dA Shape Ix Iy J Rectangle bh3/12 hb3/12 1b2h (b2+h2 ) Triangle bh3/36 hb3/36 æ ö ç ¸ çè ø¸ h2+b2 bh 18 Circle πd4/64 πd4/64 πd4/32 Stresses Normal Stresses Shear Stresses Axial Tensile F σ = A Torsional t Tr = J · t = 16T/πd3 for solid circular beam Compression F σ = A Bending b Mc σ = I 32M σ = · b 3 πd for solid circular beam Transverse (Flexural) t = VQ Ib , - Q = A y · max t = 4V/3A for solid circular beam · t max = 2V/A for hollow circular section · t max = 3V/2A for rectangular beam σ + σ - σ - σ Principle stresses æ ö σ = + + ç ¸ è ø t 2 x y x y 2 1,2 xy 2 2 2 t xy x y tan2φ = σ - σ Max. and min. shear stresses 2 - σ - σ = + + æ ö ç ¸ è ø x y 2 t t 1,2 xy 2
  • 2.
    σ' = σ1- σ1σ2 + σ2 or t 2 2 Von-Mises stresses 2 2 σ' = σx + 3 xy (for biaxial) Stresses States Triaxial stress state 1 2 3 1 σ σ + σ ε = - μ E E 2 1 3 2 σ σ + σ ε = - μ E E 3 1 2 2 σ σ + σ ε = - μ E E Stress in Cylinders Thick-Walled (t/r>1/20) Wessels (internally and externally pressurized cyclinders): 2 2 2 2 2 i o o i p a - p b - a b (p - p )/r σ = t 2 2 b - a 2 2 2 2 2 i o o i p a - p b + a b (p - p )/r σ = r 2 2 b - a 2 i p a σ = l 2 2 b - a · If the external pressure is zero (po=0); 2 2 æ ö ç ¸ è ø a p b i σ = 1+ t 2 2 2 b - a r 2 2 æ ö ç ¸ è ø a p b i σ = 1- r 2 2 2 b - a r At the inner surface; r=aÞ σr = -pi 2 2 b + a σ = p t i 2 2 b - a At the outer surface; r=bÞ σr = 0 2 2a σ = p t i 2 2 b - a · If the internal pressure is zero (pi=0); 2 2 æ ö ç ¸ è ø b a σ = -p 1+ t o 2 2 2 b - a r 2 2 æ ö ç ¸ è ø b a σ = -p 1- r o 2 2 2 b - a r
  • 3.
    At the innersurface; r=aÞ σr = 0 2 2b σ = -p t o 2 2 b - a At the outer surface; r=bÞ σr = -po 2 2 b + a σ = -p t o 2 2 b - a a=inside radius of the cylinder b=outside radius of the cylinder pi=internal pressure po=external pressure Thin-Walled Wessels(t/r<1/20): i t pd σ = 2t i l pd σ = 4t Curved Members In Flexure: · ò A r = dA ρ · My σ = Ae(r - y) Þ o o o Mc σ = Aer , i i i Mc σ = Aer Press and Shrink Fit: · 2 2 b + a σ = -p it 2 2 b - a · 2 2 c + b σ = -p ot 2 2 c - b · æ ö ç ¸ è ø d 2 2 bp c + b = +μ E c - b o 2 2 o o · bp æ b + a ö = - -μ ç ¸ è ø d 2 2 i 2 2 i E b - a i · æ ö æ ö ç ¸ ç ¸ è ø è ø = - +μ - μ d d d 2 2 2 2 bp c + b bp b + a = + o i 2 2 o 2 2 i E c - b E b - a o i · ( ) ( ) é ù ê ú êë úû d 2 2 2 2 E c - b b - a ( ) if E = E = E; interface pressure = p = o i 2 2 2 b 2b c - a
  • 4.
    2. Deflection Analysis F k = y , k=spring constant T GJ k = = θ l , k=Torsional spring rate k = AE for tension or compression loading l Castigliano’s Theorem: Strain Energy Axial Load F2L U = 2AE Direct Shear Force F2L U = 2AG Torsional Load T2L U = 2GJ Bending Moment ò M2 U = dx 2EI Flexural Shear ò CF2 U = dx 2GA , C is constant C=1.2 for rectangular shape C=1.11 Circular C=2.0 for thin walled tubular, Buckling Consideration: Slenderness ratio=æ ö l k çè ø¸ , I k = A æ ö çè ø¸1 2π2EC Sy l = k Euler column U Total energy F Force on the deflection point θ Angular deflection ¶ ¶ y = U F Tl θ = GJ
  • 5.
    · ³ Þ( ) æ ö æ ö l l P Cπ E çè ø¸ èç ø¸ 2 cr 2 1 Critical Unit Load = = k k A l/k or 2 2 P = Cπ EI cr l Johnson's Column æ l ö æ l ö P æ S ö æ 1 öæ l ö çè < Critital Unit Load = S - k ø¸ èç k ø¸ A ç 2π ¸ è ø èç CE ø¸èç k ø¸ · Þ 2 2 cr y y 1 = 1. Both ends are rounded-simply supported ÞC=1 2. Both ends are fixed ÞC=4 3. One end fixed, one end rounded and guided ÞC=2 4. One end fixed, one end free ÞC=1/4
  • 6.
    3.Design For StaticStrength Ductile Materials 1. Max. Normal Stress Theory (MNST): · If, σ1 > σ2 > σ3 · y 1 S n = σ 3. Distortion Energy Theory · If, σ1 > σ2 > σ3 · 2 2 2 (σ1 - σ2 ) + (σ2 - σ3 ) + (σ3 - σ1) σ' = 2 · For biaxial stress state; 2 2 σ' = σx + 3τxy · y S n = σ' 2. Max. Shear Stress Theory (MSST): · Yield strength in shear (Ssy)=Sy/2 · ( ) t 1 3 max σ - σ = 2 for biaxial stress state; 1 2 2 =σ + 4τ 2 t max x xy S sy max n = τ Brittle Materials 1. Max. Normal Stress Theory (MNST): 3. The Modified Mohr Theory (MMT) · If, σ1 > σ2 > σ3 · ut 1 S n = σ · If, σ1 > σ2 > σ3
  • 7.
    or uc 3 n = S σ · uc 3 S uc ut 1 ut 3 S = S - S σ -1 Sσ · 3 3 S n = σ 2. The Column Mohr Theory (CMT) or Internal Friction Theory (IFT): · uc 3 S uc 1 ut 3 S = S σ -1 Sσ · 3 3 S n = σ
  • 8.
    5. Design forFatigue Strength Endurance limit for test specimen (Se’); · For ductile materials: Se’=0.5 Sut if Sut<1400 MPa Se’=700 MPa if Sut ³ 1400 MPa · For irons: Se’=0.4 Sut if Sut<400 MPa Se’=160 MPa if Sut³ 400 MPa · For Aliminiums: Se’=0.4 Sut if Sut<330 MPa Se’=130 MPa if Sut³ 330 MPa · For copper alloys: Se’ » 0.4 Sut if Sut<280 MPa Se’ » 100 MPa if Sut³ 280 MPa Se = ka kb kc kd ke Se’ Sf=10c Nb é ù ê ú ë û 1 0.8S u e b = - log 3 S é( 0.8S ) 2 ù ê u ú êë e úû c = log S
  • 9.
    · ka :surface factor, ka=aSut b Surface Finish Factor a Factor b Ground 1.58 -0.065 Machined or Cold Drawn 4.51 -0.265 Hot Rolled 57.7 -0.718 As Forged 272 -0.995 · kb : size factor; kb=1 if d£ 8 mm and kb= 1.189d-0.097 if 8 mm<d£ 250 mm for bending & torsional loading. For non-rotating element, -0.097 kb = 1.189deq deq=0.37d For pure axial loading, kb=1 and Se’=0.45Sut For combined loading, a =1.11 if Sut £ 1520 MPa and a =1 if Sut ³ 1520 MPa for ductile materials. · kc : reliability factor · kd : temperature effects, kd=1 if T£ 3500 and kd=0.5 if 3500<T£ 5000 · ke : stress concentration factor, ke=1/Kf Kf=1+q(Kt-1) Kt : geometric stress concentration factor, q=notch sensitivity. Modified Goodman Soderberg Infinite Life Finite Life Infinite Life Finite Life
  • 10.
    1 a m e u n = σ σ + S S n = 1 σ + σ a m f u S S 1 a m e y n = σ σ + S S 1 a m f y n = σ σ + S S · Fa=(Fmax-Fmin)/2 · Fm=(Fmax+Fmin)/2 6. Tolerances and Fits Clearance fit: TF=Cmax-Cmin Cmax=DU-dL Cmin=DL-dU Transition fit: TF=Imax+Cmax Cmax=DU-dL Imax=dU-DL Interference fit: TF=Imax-Imin Imax=dU-DL Imin=dL-Du Tolerances on the shaft, on the hole and on the fit
  • 11.
    TS=dU-dL TH=DU-DL TF=TH+TS 7. Design of Power Screws æ ö ç ¸ è ø Fd L +πd μ m m R m T = 2πd - μL æ ö ç ¸ è ø Fdπd μ - L m m L m T = 2πd +μL Considering μ = tanρ ; m ( ) R Fd T = tanλ + ρ 2 m ( ) L Fd T = tanρ - λ 2 If μ ³ tanλ or m > L πd m or r > l or TL>0, then screw is self locking. If the friction between the stationary member and the collar of the screw is taken into consideration; m ( ) c c R Fd μ d F T = tanλ + ρ + 2 2 m ( ) c c L Fd μ d F T = tanρ - λ + 2 2 Condition for self locking is : TL>0 T FL Efficiency of screws: o ε = = T 2πT R R when collar friction is negligible, we tanλ obtain e as, ε = tanλ ( + ρ ) Thread Stresses: · Bearing Stresses b ( 2 2 ) r 4pF σ = πh d - d or b Fp m σ = πd th where p t = 2 · Shear Stresses For Screw Thread For Nut Thread
  • 12.
    ts 2F = πd h r tn 2F = πdh · Bending Stresses The maximum bending stress, 6F mh σ = πd Stresses on the body of screw: · Tensile or Compressive stresses x F t σ = A 2 t t πd A = 4 r m t d + d d = 2 · Shear Stresses 16T = πd t R xy 3 t · Combined stresses: Based on distortion energy theory; Sy σ' = σx 2 + 3 t 2 xy n = σ' Based on maximum shear stress theory; t 2 t 2 x xy 1 S max =σ + 4 2 t sy max n = 8. Design of Bolted Joints Feb and Fep are forces shared by the bolt and by the members respectively. C = k Fe=Feb+Fep Feb=CFeFep=(1-C)Fe stiffness ratio: b k + k b m Fb=Fi+CFe Fm=Fi-(1-C)Fe
  • 13.
    Stiffness of bolt:b b b A E k = L Stiffness of members: 1 1 1 1 = + +..........+ k k k k m 1 2 n · Shigley and Mishke approach; For cone angle of a = 300 , 1.813E d i æ ö ç ¸ è ø i i i k = 1.15L + 0.5d ln 5 1 1 1 1 = + +..........+ k k k k 1.15L + 2.5d m 1 2 n If L1=L2=L/2 and materials are same, æ ö çè ø¸ m 1.813Ed k = 2.885L + 2.5d 2ln 0.577L + 2.5d For cone angle of a = 450 , i i i ( ) ( ) æ ö ç ¸ è ø i πE d k = 5 2L + 0.5d ln 2L + 2.5d If L1=L2=L/2 and materials are same, æ ö çè ø¸ m πEd k = L + 0.5d 2ln 5 L + 2.5d · Wileman approach; (Bid/L) km = EdAie where Ai and Bi are constants related to the material. For Steel Ai=0.78715 and Bi=0.62873, for Aliminium Ai=0.79670 and Bi=0.63816, for Gray cast iron Ai=0.77871 and Bi=0.61616. · Filiz approach; π-B d 5 1 L æ öæ ö çè ø¸èç ø¸ m eq 2 π 1 k = E d e 2 1-B E E where 1 2 eq 1 2 E = E +E 2 æ ö çè ø¸ 1 0.1d B = L 8 æ L ö ç 1 ¸ è ø 1 2 B = 1- L
  • 14.
    Static loading; Fb£ SyAt or Fb < SpAt ( Sp = 0.85Sy ) Fm ³ 0 ( 1-C ) nFe £ F i £ SpAt - CnFe n=load factor of safety N ns N Critical load per bolt = i ce F F = 1-C Dynamic Loading: CnF e a t σ = 2A i m a t F σ = + σ A s 1 a m e u n = σ σ + S S æ ö ç ¸ è ø A S CnF S t u e u F = - +1 imax n 2N S s e where: ns is strength factor of safety and N is the number of bolts Constraints: · 0.6Fp £ Fi £ 0.9Fp where Fp = AtSp · æ ö ç ¸ è ø e ut imax t ut e cF n S F = A S - +1 2N S F cF · e £ £ e (1- c) F A S - i t p N N c = p D · 3.5d £ cb £ 10d and b b N 9 . Design of Riveted Joints
  • 15.
    Shearing of Rivets: t F = A , F=Force on each rivet πd2 A = 4 Secondary Shear Force: Mr å i i N 2 i 1 F'' = r Bearing (compression) Failure: s F = - A , A=td, t=thickness of the plate Plate Tension Failure: s F = A , A = ( w -Nd) t w=width of plate N=number of rivets on the selected cross section Primary Shear Force: å N i 1 F F' = A 10 . Design of Welded Joints · Primary Shear Stress t F ' = A · J = 0.707hJu · Secondary Shear Stress t Mr '' = J · I = 0.707hIu · Bending Stress Mc σ = I Table 9-3 Minimum weld-metal properties
  • 16.
    AWS electrode Number Tensile Strength Yield Strength MPa Percent Elongation E60xx 420 340 17-25 E70xx 480 390 22 E80xx 530 460 19 E90xx 620 530 14-17 E100xx 690 600 13-16 E120xx 830 740 14 Table 9-5 Fatigue-strength reduction factors Type of Weld Kf Reinforced butt weld 1.2 Toe of transverse fillet weld 1.5 End of parallel fillet weld 2.7 T-butt joint with sharp corners 2.0
  • 17.
    Table 9-1 TorsionalProperties of Fillet Welds* Weld Throat Area Location of G Unit Polar Moment of Inertia *G is centroid of weld group; h is weld size; plane of torque couple is in the plane of the paper; all welds are of the same size.
  • 18.
    Table 9-2 BendingProperties of Fillet Welds* Weld Throat Area Location of G Unit Moment of Inertia *Iu, unit moment of inertia, is taken about a horizontal axis through G, the centroid of the weld group; h is weld size; the plane of the bending couple is normal to the paper; all welds are of the same size