Formul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep
1. The document discusses various topics related to stress analysis and design including moment of inertias, stresses, deflection analysis, design for static strength, fatigue design, tolerances and fits, power screws, and bolted joints.
2. Formulas are provided for calculating stresses and strains under different loading conditions as well as determining critical loads, deflections, endurance limits, and stresses in various mechanical elements.
3. Design considerations for different materials, loading types, and failure theories are outlined for static and fatigue strength analysis. Guidelines for screw thread stresses, efficiency, and joint stiffness are also summarized.
Explains types of stress including normal, shear, and principle stresses. Defines moments of inertia and stress states in solids, including thick-walled and thin-walled structures.
Discusses deflection analysis, including formulas for energy and buckling. Introduces critical unit load in structural contexts.
Covers design theories for static strength in materials, including ductile and brittle materials, and stress theories like maximum normal stress and shear stress.
Defines endurance limits for various materials and introduces factors for design under fatigue strength, including surface and size factors.
Details design of screws, bolted joints, and riveted joints, focusing on stresses, stiffness, and loading conditions.
Presents stresses in welded joints and relevant properties like fatigue strength factors, highlighting different types of welds and their characteristics.
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep
1.
1. Stress Analysis
Moment of Inertias
1. Atalet moment of inertia; 2. Polar moment of inertia;
Ix = ò y 2
dA ò 2
Iy = x dA ò 2 2
Jz = (x + y )dA
Shape Ix Iy J
Rectangle bh3/12 hb3/12 1b2h (b2+h2 )
Triangle bh3/36 hb3/36
æ ö
ç ¸
çè ø¸
h2+b2 bh
18
Circle πd4/64 πd4/64 πd4/32
Stresses
Normal Stresses Shear Stresses
Axial
Tensile
F
σ =
A
Torsional
t
Tr
=
J
· t = 16T/πd3 for solid
circular beam
Compression
F
σ =
A
Bending
b
Mc
σ =
I
32M
σ =
· b 3
πd
for solid
circular
beam
Transverse
(Flexural)
t =
VQ
Ib
,
-
Q = A y
· max t = 4V/3A for
solid circular beam
· t max = 2V/A for
hollow circular
section
· t max = 3V/2A for
rectangular beam
σ + σ - σ - σ
Principle stresses æ ö
σ = + +
ç ¸
è ø
t
2
x y x y 2
1,2 xy
2 2 2
t xy
x y
tan2φ =
σ - σ
Max. and min. shear
stresses
2
- σ - σ
= + +
æ ö
ç ¸
è ø
x y 2
t t
1,2 xy
2
2.
σ' = σ1- σ1σ2 + σ2 or t 2 2
Von-Mises stresses 2 2
σ' = σx + 3 xy (for biaxial)
Stresses States
Triaxial stress state
1 2 3
1
σ σ + σ
ε = - μ
E E
2 1 3
2
σ σ + σ
ε = - μ
E E
3 1 2
2
σ σ + σ
ε = - μ
E E
Stress in Cylinders
Thick-Walled (t/r>1/20) Wessels (internally and externally pressurized
cyclinders):
2 2 2 2 2
i o o i
p a - p b - a b (p - p )/r
σ =
t 2 2
b - a
2 2 2 2 2
i o o i
p a - p b + a b (p - p )/r
σ =
r 2 2
b - a
2
i
p a
σ =
l 2 2
b - a
· If the external pressure is zero (po=0);
2 2
æ ö
ç ¸
è ø
a p b
i
σ = 1+
t 2 2 2
b - a r
2 2
æ ö
ç ¸
è ø
a p b
i
σ = 1-
r 2 2 2
b - a r
At the inner surface;
r=aÞ σr = -pi
2 2
b + a
σ = p
t i 2 2
b - a
At the outer surface;
r=bÞ σr = 0
2
2a
σ = p
t i 2 2
b - a
· If the internal pressure is zero (pi=0);
2 2
æ ö
ç ¸
è ø
b a
σ = -p 1+
t o 2 2 2
b - a r
2 2
æ ö
ç ¸
è ø
b a
σ = -p 1-
r o 2 2 2
b - a r
3.
At the innersurface;
r=aÞ σr = 0
2
2b
σ = -p
t o 2 2
b - a
At the outer surface;
r=bÞ σr = -po
2 2
b + a
σ = -p
t o 2 2
b - a
a=inside radius of the cylinder b=outside radius of the cylinder pi=internal
pressure po=external pressure
Thin-Walled Wessels(t/r<1/20):
i
t
pd
σ =
2t
i
l
pd
σ =
4t
Curved Members In Flexure:
·
ò
A
r =
dA
ρ
· My
σ =
Ae(r - y)
Þ o
o
o
Mc
σ =
Aer
, i
i
i
Mc
σ =
Aer
Press and Shrink Fit:
·
2 2
b + a
σ = -p
it 2 2
b - a
·
2 2
c + b
σ = -p
ot 2 2
c - b
·
æ ö
ç ¸
è ø
d
2 2
bp c + b
= +μ
E c - b
o 2 2 o
o
· bp æ b + a
ö
= - -μ
ç ¸
è ø
d
2 2
i 2 2 i
E b - a
i
·
æ ö æ ö
ç ¸ ç ¸
è ø è ø
= - +μ - μ
d d d
2 2 2 2
bp c + b bp b + a
= +
o i 2 2 o 2 2 i
E c - b E b - a
o i
· ( ) ( )
é ù
ê ú
êë úû
d 2 2 2 2
E c - b b - a
( )
if E = E = E; interface pressure = p =
o i 2 2 2
b 2b c - a
4.
2. Deflection Analysis
F
k =
y
, k=spring constant
T GJ
k = =
θ l
, k=Torsional spring rate
k = AE for tension or compression loading l
Castigliano’s Theorem:
Strain Energy
Axial Load
F2L
U =
2AE
Direct Shear Force
F2L
U =
2AG
Torsional Load
T2L
U =
2GJ
Bending Moment ò
M2
U = dx
2EI
Flexural Shear ò
CF2
U = dx
2GA
, C is constant C=1.2 for rectangular shape
C=1.11 Circular
C=2.0 for thin walled tubular,
Buckling Consideration:
Slenderness ratio=æ ö
l
k
çè ø¸
, I
k =
A
æ ö
çè ø¸1
2π2EC
Sy
l
=
k
Euler column
U Total energy
F Force on the deflection point
θ Angular deflection
¶
¶
y =
U
F
Tl
θ =
GJ
5.
· ³ Þ( ) æ ö æ ö
l l P Cπ E
çè ø¸ èç ø¸
2
cr
2
1
Critical Unit Load = =
k k A l/k
or
2
2
P = Cπ EI cr l
Johnson's Column
æ l ö æ l ö P æ S ö æ 1 öæ l
ö
çè < Critital Unit Load = S -
k ø¸ èç k ø¸ A ç 2π ¸ è ø
èç CE ø¸èç k
ø¸ · Þ
2 2
cr y
y
1
=
1. Both ends are rounded-simply supported ÞC=1
2. Both ends are fixed ÞC=4
3. One end fixed, one end rounded and guided ÞC=2
4. One end fixed, one end free ÞC=1/4
6.
3.Design For StaticStrength
Ductile Materials
1. Max. Normal Stress Theory
(MNST):
· If, σ1 > σ2 > σ3
· y
1
S
n =
σ
3. Distortion Energy Theory
· If, σ1 > σ2 > σ3
·
2 2 2
(σ1 - σ2 ) + (σ2 - σ3 ) + (σ3 - σ1)
σ' =
2
· For biaxial stress state;
2 2
σ' = σx + 3τxy
· y S
n =
σ'
2. Max. Shear Stress Theory
(MSST):
· Yield strength in shear
(Ssy)=Sy/2
· ( ) t 1 3
max
σ - σ
=
2
for biaxial stress state;
1 2 2 =σ + 4τ
2
t max x xy
S
sy
max
n =
τ
Brittle Materials
1. Max. Normal Stress Theory (MNST): 3. The Modified Mohr Theory
(MMT)
· If, σ1 > σ2 > σ3
· ut
1
S
n =
σ
· If, σ1 > σ2 > σ3
7.
or uc
3
n = S
σ ·
uc
3
S
uc ut 1
ut 3
S =
S - S σ
-1
Sσ
· 3
3
S
n =
σ
2. The Column Mohr Theory (CMT) or
Internal Friction Theory (IFT):
·
uc
3
S
uc 1
ut 3
S =
S σ
-1
Sσ
· 3
3
S
n =
σ
8.
5. Design forFatigue Strength
Endurance limit for test specimen (Se’);
· For ductile materials:
Se’=0.5 Sut if Sut<1400 MPa
Se’=700 MPa if Sut ³ 1400 MPa
· For irons:
Se’=0.4 Sut if Sut<400 MPa
Se’=160 MPa if Sut³ 400 MPa
· For Aliminiums:
Se’=0.4 Sut if Sut<330 MPa
Se’=130 MPa if Sut³ 330 MPa
· For copper alloys:
Se’ » 0.4 Sut if Sut<280 MPa
Se’ » 100 MPa if Sut³ 280 MPa
Se = ka kb kc kd ke Se’
Sf=10c Nb
é ù
ê ú
ë û
1 0.8S
u
e
b = - log
3 S
é( 0.8S
) 2
ù
ê u
ú
êë e
úû
c = log
S
9.
· ka :surface factor, ka=aSut
b
Surface Finish Factor a Factor b
Ground 1.58 -0.065
Machined or Cold Drawn 4.51 -0.265
Hot Rolled 57.7 -0.718
As Forged 272 -0.995
· kb : size factor;
kb=1 if d£ 8 mm and kb= 1.189d-0.097 if 8 mm<d£ 250 mm for
bending & torsional loading.
For non-rotating element, -0.097
kb = 1.189deq deq=0.37d
For pure axial loading, kb=1 and Se’=0.45Sut
For combined loading, a =1.11 if Sut £ 1520 MPa and a =1 if Sut ³
1520 MPa for ductile materials.
· kc : reliability factor
· kd : temperature effects, kd=1 if T£ 3500 and kd=0.5 if 3500<T£ 5000
· ke : stress concentration factor, ke=1/Kf Kf=1+q(Kt-1)
Kt : geometric stress concentration factor, q=notch sensitivity.
Modified Goodman Soderberg
Infinite Life Finite Life Infinite Life Finite Life
10.
1
a m
e u
n =
σ σ
+
S S
n = 1 σ + σ
a m
f u
S S
1
a m
e y
n =
σ σ
+
S S
1
a m
f y
n =
σ σ
+
S S
· Fa=(Fmax-Fmin)/2 · Fm=(Fmax+Fmin)/2
6. Tolerances and Fits
Clearance fit:
TF=Cmax-Cmin Cmax=DU-dL Cmin=DL-dU
Transition fit:
TF=Imax+Cmax Cmax=DU-dL Imax=dU-DL
Interference fit:
TF=Imax-Imin Imax=dU-DL Imin=dL-Du
Tolerances on the shaft, on the hole and on the fit
11.
TS=dU-dL TH=DU-DL TF=TH+TS
7. Design of Power Screws
æ ö
ç ¸
è ø
Fd L +πd μ
m m
R
m
T =
2πd - μL
æ ö
ç ¸
è ø
Fdπd μ - L
m m
L
m
T =
2πd +μL
Considering μ = tanρ ;
m ( )
R
Fd
T = tanλ + ρ
2
m ( )
L
Fd
T = tanρ - λ
2
If μ ³ tanλ or m >
L
πd
m
or r > l or TL>0, then screw is self locking.
If the friction between the stationary member and the collar of the screw
is taken into consideration;
m ( ) c c
R
Fd μ d F
T = tanλ + ρ +
2 2
m ( ) c c
L
Fd μ d F
T = tanρ - λ +
2 2
Condition for self locking is : TL>0
T FL
Efficiency of screws: o
ε = =
T 2πT
R R
when collar friction is negligible, we
tanλ
obtain e as, ε =
tanλ ( + ρ
)
Thread Stresses:
· Bearing Stresses
b ( 2 2 )
r
4pF
σ =
πh d - d or b
Fp
m
σ =
πd th
where
p
t =
2
· Shear Stresses
For Screw Thread For Nut Thread
12.
ts
2F
=
πd h
r
tn
2F
=
πdh
· Bending Stresses
The maximum bending stress,
6F
mh
σ =
πd
Stresses on the body of screw:
· Tensile or Compressive stresses
x
F
t
σ =
A
2
t
t
πd
A =
4
r m
t
d + d
d =
2
· Shear Stresses
16T
=
πd
t R
xy 3
t
· Combined stresses:
Based on distortion energy theory;
Sy
σ' = σx 2 + 3 t 2
xy n =
σ'
Based on maximum shear stress theory;
t 2 t 2
x xy
1
S
max =σ + 4 2 t
sy
max
n =
8. Design of Bolted Joints
Feb and Fep are forces shared by the bolt and by the members respectively.
C = k
Fe=Feb+Fep Feb=CFeFep=(1-C)Fe stiffness ratio: b
k + k
b m
Fb=Fi+CFe Fm=Fi-(1-C)Fe
13.
Stiffness of bolt:b b
b
A E
k =
L
Stiffness of members:
1 1 1 1
= + +..........+
k k k k
m 1 2 n
· Shigley and Mishke approach;
For cone angle of a = 300 ,
1.813E d
i
æ ö
ç ¸
è ø
i
i
i
k =
1.15L + 0.5d
ln 5
1 1 1 1
= + +..........+
k k k k
1.15L + 2.5d m 1 2 n
If L1=L2=L/2 and materials are same, æ ö
çè ø¸
m
1.813Ed
k =
2.885L + 2.5d
2ln
0.577L + 2.5d
For cone angle of a = 450 ,
i
i
i
( )
( )
æ ö
ç ¸
è ø
i
πE d
k =
5 2L + 0.5d
ln
2L + 2.5d
If L1=L2=L/2 and materials are same, æ ö
çè ø¸
m
πEd
k =
L + 0.5d
2ln 5
L + 2.5d
· Wileman approach;
(Bid/L)
km = EdAie where Ai and Bi are constants related to the material.
For Steel Ai=0.78715 and Bi=0.62873, for Aliminium Ai=0.79670 and
Bi=0.63816, for Gray cast iron Ai=0.77871 and Bi=0.61616.
· Filiz approach;
π-B d 5 1 L
æ öæ ö
çè ø¸èç ø¸
m eq
2
π 1
k = E d e
2 1-B
E E
where 1 2
eq
1 2
E =
E +E
2
æ ö
çè ø¸
1
0.1d
B =
L
8
æ L
ö
ç 1
¸
è ø
1
2
B = 1-
L
14.
Static loading;
Fb£ SyAt or Fb < SpAt ( Sp = 0.85Sy ) Fm ³ 0
( 1-C ) nFe £ F i £
SpAt - CnFe n=load factor of safety
N ns N
Critical load per bolt = i
ce
F
F =
1-C
Dynamic Loading:
CnF
e
a
t
σ =
2A
i
m a
t
F
σ = + σ
A
s
1
a m
e u
n =
σ σ
+
S S
æ ö
ç ¸
è ø
A S CnF S
t u e u
F = - +1
imax
n 2N S
s e
where: ns is strength factor of safety and N is the number of bolts
Constraints:
· 0.6Fp £ Fi £ 0.9Fp where Fp = AtSp
·
æ ö
ç ¸
è ø
e ut
imax t ut
e
cF n S
F = A S - +1
2N S
F cF
· e £ £ e
(1- c) F A S -
i t p
N N
c = p
D
· 3.5d £ cb £ 10d and b
b
N
9 . Design of Riveted Joints
15.
Shearing of Rivets:
t
F
=
A
, F=Force on each rivet
πd2
A =
4
Secondary Shear Force:
Mr
å
i
i N 2
i
1
F'' =
r
Bearing (compression) Failure:
s F
= -
A
, A=td, t=thickness of the
plate
Plate Tension Failure:
s
F
=
A
, A = ( w -Nd) t
w=width of plate
N=number of rivets on the selected
cross section
Primary Shear Force:
å N
i
1
F
F' =
A
10 . Design of Welded Joints
· Primary Shear Stress
t
F
' =
A
· J = 0.707hJu
· Secondary Shear Stress
t
Mr
'' =
J
· I = 0.707hIu
· Bending Stress
Mc
σ =
I
Table 9-3 Minimum weld-metal properties
16.
AWS electrode
Number
Tensile
Strength
Yield Strength
MPa
Percent
Elongation
E60xx 420 340 17-25
E70xx 480 390 22
E80xx 530 460 19
E90xx 620 530 14-17
E100xx 690 600 13-16
E120xx 830 740 14
Table 9-5 Fatigue-strength reduction factors
Type of Weld Kf
Reinforced butt weld 1.2
Toe of transverse fillet weld 1.5
End of parallel fillet weld 2.7
T-butt joint with sharp corners 2.0
17.
Table 9-1 TorsionalProperties of Fillet Welds*
Weld Throat Area Location of G Unit Polar Moment of
Inertia
*G is centroid of weld group; h is weld size; plane of torque couple is in the
plane of the paper; all welds are of the same size.
18.
Table 9-2 BendingProperties of Fillet Welds*
Weld Throat Area Location of G Unit Moment of Inertia
*Iu, unit moment of inertia, is taken about a horizontal axis through G, the
centroid of the weld group; h is weld size; the plane of the bending couple is
normal to the paper; all welds are of the same size