SlideShare a Scribd company logo
From Data to AI with the
MACHINE LEARNING
CANVAS
@louisdorard #BDS16
“A breakthrough in machine
learning would be worth ten
Microsofts”
–Bill Gates
“In the next 20 years, machine
learning will have more impact
than mobile has.”
–Vinod Khosla
4
Skiing down the Gartner hype cycle
with Waldo & the Machine Learning Canvas
@louisdorard
W
H
O
S
Y
O
U
R
P
A
P
I
RED
ICT
IVE
PPLI
CATI
ON
ROGR
AMMI
NG
NTER
FACE
?
From Data to AI with the Machine Learning Canvas
What is ML?
From Data to AI with the Machine Learning Canvas
From Data to AI with the Machine Learning Canvas
Bedrooms Bathrooms Surface (foot²) Year built Type Price ($)
3 1 860 1950 house 565,000
3 1 1012 1951 house
2 1.5 968 1976 townhouse 447,000
4 1315 1950 house 648,000
3 2 1599 1964 house
3 2 987 1951 townhouse 790,000
1 1 530 2007 condo 122,000
4 2 1574 1964 house 835,000
4 2001 house 855,000
3 2.5 1472 2005 house
4 3.5 1714 2005 townhouse
2 2 1113 1999 condo
1 769 1999 condo 315,000
Bedrooms Bathrooms Surface (foot²) Year built Type Price ($)
3 1 860 1950 house 565,000
3 1 1012 1951 house
2 1.5 968 1976 townhouse 447,000
4 1315 1950 house 648,000
3 2 1599 1964 house
3 2 987 1951 townhouse 790,000
1 1 530 2007 condo 122,000
4 2 1574 1964 house 835,000
4 2001 house 855,000
3 2.5 1472 2005 house
4 3.5 1714 2005 townhouse
2 2 1113 1999 condo
1 769 1999 condo 315,000
last column = output (by convention)
From Data to AI with the Machine Learning Canvas
From Data to AI with the Machine Learning Canvas
16
Some use cases
• Real-estate
• Spam filtering
• City bikes
• Reduce churn
• Anticipate demand
property price
email spam indicator
location, context #bikes
customer churn indicator
product, store, date #sales
Zillow
Gmail
BikePredict
ChurnSpotter
Blue Yonder
RULES
@louisdorard
1. Descriptive analysis
2. Predictive analysis
3. Prescriptive analysis
4. Automated decisions
18
(Big?) Data analysis
reporting &
old-school BI…
now we’re talking!
Decisions from predictions
From Data to AI with the Machine Learning Canvas
1. Show churn rate against time
2. Predict which customers will churn next
3. Suggest what to do about each customer

(e.g. propose to switch plan, send promotional offer, etc.)
21
Churn analysis
• Who: SaaS company selling monthly subscription
• Question asked:“Is this customer going to leave within 1
month?”
• Input: customer
• Output: no-churn or churn
• Data collection: history up until 1 month ago
22
Churn prediction
Assume we know who’s going to churn. What do we do?
• Contact them (in which order?)
• Switch to different plan
• Give special offer
• No action?
23
Churn prediction prevention
“3. Suggest what to do about each customer”

→ prioritised list of actions, based on…
• Customer representation
• Churn prediction
• Prediction confidence
• Revenue brought by customer
• Constraints on frequency of solicitations
24
Churn prevention
• Taking action for each TP (and FP) has a cost
• For each TP we“gain”: (success rate of action) *
(revenue /cust. /month)
• Imagine…
• perfect predictions
• revenue /cust. /month = 10€
• success rate of action = 20%
• cost of action = 2€
• What is the ROI?
25
Churn prevention ROI
Machine Learning Canvas
27
The Canvas Concept
28
The Machine Learning Canvas
The   Machine   Learning   Canvas   (v0.4)                 Designed   for:                                                                                                                                            Designed   by:                                                                                                                                         Date:                                                                                         Iteration:                         . 
Decisions 
How   are   predictions   used   to 
make   decisions   that   provide 
the   proposed   value   to   the   end­user? 
 
ML   task 
Input,   output   to   predict, 
type   of   problem. 
 
Value 
Propositions 
What   are   we   trying   to   do   for   the 
end­user(s)   of   the   predictive   system? 
What   objectives   are   we   serving? 
Data   Sources 
Which   raw   data   sources   can 
we   use   (internal   and 
external)? 
Collecting   Data 
How   do   we   get   new   data   to 
learn   from   (inputs   and 
outputs)? 
Making 
Predictions 
When   do   we   make   predictions   on   new 
inputs?   How   long   do   we   have   to 
featurize   a   new   input   and   make   a 
prediction? 
Offline 
Evaluation 
Methods   and   metrics   to   evaluate   the 
system   before   deployment. 
 
Features 
Input   representations 
extracted   from   raw   data 
sources. 
Building   Models 
When   do   we   create/update 
models   with   new   training 
data?   How   long   do   we   have   to 
featurize   training   inputs   and   create   a 
model? 
 
Live   Evaluation   and 
Monitoring 
Methods   and   metrics   to   evaluate   the 
system   after   deployment,   and   to 
quantify   value   creation.  
     
machinelearningcanvas.com    by   Louis   Dorard,   Ph.D.                                         Licensed   under   a   Creative   Commons   Attribution­ShareAlike   4.0   International   License.  
• (Not an adaptation of the Business Model Canvas)
• Describe the Learning part of a predictive system / an intelligent
application:
• What data are we learning from?
• How are we using predictions powered by that learning?
• How are we making sure that the whole thing“works”through
time?
29
The Machine Learning Canvas
30
Cross Industry Standard Process for Data Mining
By Kenneth Jensen -
Own work, CC BY-SA 3.0
ML Canvas
–Ingolf Mollat, Principal Consultant at Blue Yonder
“The Machine Learning Canvas is providing our
clients real business value by supplying the first
critical entry point for their implementation
of predictive applications.”
The   Machine   Learning   Canvas   (v0.4)                 Designed   for:                                                                                                                                            Designed   by:                                                                                                                                         Date:                                                                                         Iteration:                         . 
Decisions 
How   are   predictions   used   to 
make   decisions   that   provide 
the   proposed   value   to   the   end­user? 
 
ML   task 
Input,   output   to   predict, 
type   of   problem. 
 
Value 
Propositions 
What   are   we   trying   to   do   for   the 
end­user(s)   of   the   predictive   system? 
What   objectives   are   we   serving? 
Data   Sources 
Which   raw   data   sources   can 
we   use   (internal   and 
external)? 
Collecting   Data 
How   do   we   get   new   data   to 
learn   from   (inputs   and 
outputs)? 
Making 
Predictions 
When   do   we   make   predictions   on   new 
inputs?   How   long   do   we   have   to 
featurize   a   new   input   and   make   a 
prediction? 
Offline 
Evaluation 
Methods   and   metrics   to   evaluate   the 
system   before   deployment. 
 
Features 
Input   representations 
extracted   from   raw   data 
sources. 
Building   Models 
When   do   we   create/update 
models   with   new   training 
data?   How   long   do   we   have   to 
featurize   training   inputs   and   create   a 
model? 
 
Live   Evaluation   and 
Monitoring 
Methods   and   metrics   to   evaluate   the 
system   after   deployment,   and   to 
quantify   value   creation.  
     
machinelearningcanvas.com    by   Louis   Dorard,   Ph.D.                                         Licensed   under   a   Creative   Commons   Attribution­ShareAlike   4.0   International   License.  
LEARNPREDICT
EVALUATE
GOAL
(what, why, who)
how how
how well
The   Machine   Learning   Canvas   (v0.4)                 Designed   for:                                                                                                                                            Designed   by:                                                                                                                                         Date:                                                                                         Iteration:                         . 
Decisions 
How   are   predictions   used   to 
make   decisions   that   provide 
the   proposed   value   to   the   end­user? 
 
ML   task 
Input,   output   to   predict, 
type   of   problem. 
 
Value 
Propositions 
What   are   we   trying   to   do   for   the 
end­user(s)   of   the   predictive   system? 
What   objectives   are   we   serving? 
Data   Sources 
Which   raw   data   sources   can 
we   use   (internal   and 
external)? 
Collecting   Data 
How   do   we   get   new   data   to 
learn   from   (inputs   and 
outputs)? 
Making 
Predictions 
When   do   we   make   predictions   on   new 
inputs?   How   long   do   we   have   to 
featurize   a   new   input   and   make   a 
prediction? 
Offline 
Evaluation 
Methods   and   metrics   to   evaluate   the 
system   before   deployment. 
 
Features 
Input   representations 
extracted   from   raw   data 
sources. 
Building   Models 
When   do   we   create/update 
models   with   new   training 
data?   How   long   do   we   have   to 
featurize   training   inputs   and   create   a 
model? 
 
Live   Evaluation   and 
Monitoring 
Methods   and   metrics   to   evaluate   the 
system   after   deployment,   and   to 
quantify   value   creation.  
     
machinelearningcanvas.com    by   Louis   Dorard,   Ph.D.                                         Licensed   under   a   Creative   Commons   Attribution­ShareAlike   4.0   International   License.  
background
specifics
The   Machine   Learning   Canvas   (v0.4)                 Designed   for:                                                                                                                                            Designed   by:                                                                                                                                         Date:                                                                                         Iteration:                         . 
Decisions 
How   are   predictions   used   to 
make   decisions   that   provide 
the   proposed   value   to   the   end­user? 
 
ML   task 
Input,   output   to   predict, 
type   of   problem. 
 
Value 
Propositions 
What   are   we   trying   to   do   for   the 
end­user(s)   of   the   predictive   system? 
What   objectives   are   we   serving? 
Data   Sources 
Which   raw   data   sources   can 
we   use   (internal   and 
external)? 
Collecting   Data 
How   do   we   get   new   data   to 
learn   from   (inputs   and 
outputs)? 
Making 
Predictions 
When   do   we   make   predictions   on   new 
inputs?   How   long   do   we   have   to 
featurize   a   new   input   and   make   a 
prediction? 
Offline 
Evaluation 
Methods   and   metrics   to   evaluate   the 
system   before   deployment. 
 
Features 
Input   representations 
extracted   from   raw   data 
sources. 
Building   Models 
When   do   we   create/update 
models   with   new   training 
data?   How   long   do   we   have   to 
featurize   training   inputs   and   create   a 
model? 
 
Live   Evaluation   and 
Monitoring 
Methods   and   metrics   to   evaluate   the 
system   after   deployment,   and   to 
quantify   value   creation.  
     
machinelearningcanvas.com    by   Louis   Dorard,   Ph.D.                                         Licensed   under   a   Creative   Commons   Attribution­ShareAlike   4.0   International   License.  
background
specifics
The   Machine   Learning   Canvas   (v0.4)                 Designed   for:                                                                                                                                            Designed   by:                                                                                                                                         Date:                                                                                         Iteration:                         . 
Decisions 
How   are   predictions   used   to 
make   decisions   that   provide 
the   proposed   value   to   the   end­user? 
 
ML   task 
Input,   output   to   predict, 
type   of   problem. 
 
Value 
Propositions 
What   are   we   trying   to   do   for   the 
end­user(s)   of   the   predictive   system? 
What   objectives   are   we   serving? 
Data   Sources 
Which   raw   data   sources   can 
we   use   (internal   and 
external)? 
Collecting   Data 
How   do   we   get   new   data   to 
learn   from   (inputs   and 
outputs)? 
Making 
Predictions 
When   do   we   make   predictions   on   new 
inputs?   How   long   do   we   have   to 
featurize   a   new   input   and   make   a 
prediction? 
Offline 
Evaluation 
Methods   and   metrics   to   evaluate   the 
system   before   deployment. 
 
Features 
Input   representations 
extracted   from   raw   data 
sources. 
Building   Models 
When   do   we   create/update 
models   with   new   training 
data?   How   long   do   we   have   to 
featurize   training   inputs   and   create   a 
model? 
 
Live   Evaluation   and 
Monitoring 
Methods   and   metrics   to   evaluate   the 
system   after   deployment,   and   to 
quantify   value   creation.  
     
machinelearningcanvas.com    by   Louis   Dorard,   Ph.D.                                         Licensed   under   a   Creative   Commons   Attribution­ShareAlike   4.0   International   License.  
background
specifics
LEARNPREDICT
EVALUATE
GOAL
(what, why, who)
Domain
Integration
Predictive
Engine
The   Machine   Learning   Canvas   (v0.4)                 Designed   for:                                                                                                                                            Designed   by:                                                                                                                                         Date:                                                                                         Iteration:                         . 
Decisions 
How   are   predictions   used   to 
make   decisions   that   provide 
the   proposed   value   to   the   end­user? 
 
ML   task 
Input,   output   to   predict, 
type   of   problem. 
 
Value 
Propositions 
What   are   we   trying   to   do   for   the 
end­user(s)   of   the   predictive   system? 
What   objectives   are   we   serving? 
Data   Sources 
Which   raw   data   sources   can 
we   use   (internal   and 
external)? 
Collecting   Data 
How   do   we   get   new   data   to 
learn   from   (inputs   and 
outputs)? 
Making 
Predictions 
When   do   we   make   predictions   on   new 
inputs?   How   long   do   we   have   to 
featurize   a   new   input   and   make   a 
prediction? 
Offline 
Evaluation 
Methods   and   metrics   to   evaluate   the 
system   before   deployment. 
 
Features 
Input   representations 
extracted   from   raw   data 
sources. 
Building   Models 
When   do   we   create/update 
models   with   new   training 
data?   How   long   do   we   have   to 
featurize   training   inputs   and   create   a 
model? 
 
Live   Evaluation   and 
Monitoring 
Methods   and   metrics   to   evaluate   the 
system   after   deployment,   and   to 
quantify   value   creation.  
     
machinelearningcanvas.com    by   Louis   Dorard,   Ph.D.                                         Licensed   under   a   Creative   Commons   Attribution­ShareAlike   4.0   International   License.  
On 1st day of every month:
• Filter out ‘no-churn’
• Sort remaining by
descending (churn prob.) x
(monthly revenue) and
show prediction path for
each
• Solicit customers
Predict answer to “Is this
customer going to churn in
the coming month?”
• Input: customer
• Output: ‘churn’ or ‘no-
churn’ class (‘churn’ is the
Positive class)
• Binary Classification
Context:
• Company sells SaaS with
monthly subscription
• End-user of predictive
system is CRM team
We want to help them…
• Identify important clients
who may churn, so
appropriate action can be
taken
• Reduce churn rate among
high-revenue customers
• Improve success rate of
retention efforts by
understanding why
customers may churn
• CRM tool
• Payments database
• Website analytics
• Customer support
• Emailing to customers
Every month, we see which of
last month’s customers
churned or not, by looking
through the payments
database.
Associated inputs are
customer “snapshots” taken
last month.
Every month we (re-)featurize
all current customers and
make predictions for them.
We do this overnight.
Basic customer info at time t
(age, city, etc.)
Events between (t - 1 month)
and t:
• Usage of product: # times
logged in, functionalities
used, etc.
• Cust. support interactions
• Other contextual, e.g.
devices used
Every month we create a new
model from the previous
month’s customers.
• Monitor churn rate
• Monitor (#non-churn among solicited) / #solicitations
Customer retention Louis Dorard Sept. 2016 1
The   Machine   Learning   Canvas   (v0.4)                 Designed   for:                                                                                                                                            Designed   by:                                                                                                                                         Date:                                                                                         Iteration:                         . 
Decisions 
How   are   predictions   used   to 
make   decisions   that   provide 
the   proposed   value   to   the   end­user? 
 
ML   task 
Input,   output   to   predict, 
type   of   problem. 
 
Value 
Propositions 
What   are   we   trying   to   do   for   the 
end­user(s)   of   the   predictive   system? 
What   objectives   are   we   serving? 
Data   Sources 
Which   raw   data   sources   can 
we   use   (internal   and 
external)? 
Collecting   Data 
How   do   we   get   new   data   to 
learn   from   (inputs   and 
outputs)? 
Making 
Predictions 
When   do   we   make   predictions   on   new 
inputs?   How   long   do   we   have   to 
featurize   a   new   input   and   make   a 
prediction? 
Offline 
Evaluation 
Methods   and   metrics   to   evaluate   the 
system   before   deployment. 
 
Features 
Input   representations 
extracted   from   raw   data 
sources. 
Building   Models 
When   do   we   create/update 
models   with   new   training 
data?   How   long   do   we   have   to 
featurize   training   inputs   and   create   a 
model? 
 
Live   Evaluation   and 
Monitoring 
Methods   and   metrics   to   evaluate   the 
system   after   deployment,   and   to 
quantify   value   creation.  
     
machinelearningcanvas.com    by   Louis   Dorard,   Ph.D.                                         Licensed   under   a   Creative   Commons   Attribution­ShareAlike   4.0   International   License.  
On 1st day of every month:
• Filter out ‘no-churn’
• Sort remaining by
descending (churn prob.) x
(monthly revenue) and
show prediction path for
each
• Solicit customers
Predict answer to “Is this
customer going to churn in
the coming month?”
• Input: customer
• Output: ‘churn’ or ‘no-
churn’ class (‘churn’ is the
Positive class)
• Binary Classification
Context:
• Company sells SaaS with
monthly subscription
• End-user of predictive
system is CRM team
We want to help them…
• Identify important clients
who may churn, so
appropriate action can be
taken
• Reduce churn rate among
high-revenue customers
• Improve success rate of
retention efforts by
understanding why
customers may churn
• CRM tool
• Payments database
• Website analytics
• Customer support
• Emailing to customers
Every month, we see which of
last month’s customers
churned or not, by looking
through the payments
database.
Associated inputs are
customer “snapshots” taken
last month.
Every month we (re-)featurize
all current customers and
make predictions for them.
We do this overnight.
Basic customer info at time t
(age, city, etc.)
Events between (t - 1 month)
and t:
• Usage of product: # times
logged in, functionalities
used, etc.
• Cust. support interactions
• Other contextual, e.g.
devices used
Every month we create a new
model from the previous
month’s customers.
• Monitor churn rate
• Monitor (#non-churn among solicited) / #solicitations
Customer retention Louis Dorard Sept. 2016 1
• We predict customer would churn but they don’t…
• Great! Prevention works!
• Sh*t! Data inconsistent…
• (Store which actions were taken?)
From Data to AI with the Machine Learning Canvas
The   Machine   Learning   Canvas   (v0.4)                 Designed   for:                                                                                                                                            Designed   by:                                                                                                                                         Date:                                                                                         Iteration:                         . 
Decisions 
How   are   predictions   used   to 
make   decisions   that   provide 
the   proposed   value   to   the   end­user? 
 
ML   task 
Input,   output   to   predict, 
type   of   problem. 
 
Value 
Propositions 
What   are   we   trying   to   do   for   the 
end­user(s)   of   the   predictive   system? 
What   objectives   are   we   serving? 
Data   Sources 
Which   raw   data   sources   can 
we   use   (internal   and 
external)? 
Collecting   Data 
How   do   we   get   new   data   to 
learn   from   (inputs   and 
outputs)? 
Making 
Predictions 
When   do   we   make   predictions   on   new 
inputs?   How   long   do   we   have   to 
featurize   a   new   input   and   make   a 
prediction? 
Offline 
Evaluation 
Methods   and   metrics   to   evaluate   the 
system   before   deployment. 
 
Features 
Input   representations 
extracted   from   raw   data 
sources. 
Building   Models 
When   do   we   create/update 
models   with   new   training 
data?   How   long   do   we   have   to 
featurize   training   inputs   and   create   a 
model? 
 
Live   Evaluation   and 
Monitoring 
Methods   and   metrics   to   evaluate   the 
system   after   deployment,   and   to 
quantify   value   creation.  
     
machinelearningcanvas.com    by   Louis   Dorard,   Ph.D.                                         Licensed   under   a   Creative   Commons   Attribution­ShareAlike   4.0   International   License.  
On 1st day of every month:
• Randomly filter out 50% of
customers (hold-out set)
• Filter out ‘no-churn’
• Sort remaining by
descending (churn prob.) x
(monthly revenue) and
show prediction path for
each
• Solicit customers
Predict answer to “Is this
customer going to churn in
the coming month?”
• Input: customer
• Output: ‘churn’ or ‘no-
churn’ class (‘churn’ is the
Positive class)
• Binary Classification
Context:
• Company sells SaaS with
monthly subscription
• End-user of predictive
system is CRM team
We want to help them…
• Identify important clients
who may churn, so
appropriate action can be
taken
• Reduce churn rate among
high-revenue customers
• Improve success rate of
retention efforts by
understanding why
customers may churn
• CRM tool
• Payments database
• Website analytics
• Customer support
• Emailing to customers
Every month, we see which of
last month’s customers
churned or not, by looking
through the payments
database.
Associated inputs are
customer “snapshots” taken
last month.
Every month we (re-)featurize
all current customers and
make predictions for them.
We do this overnight.
Basic customer info at time t
(age, city, etc.)
Events between (t - 1 month)
and t:
• Usage of product: # times
logged in, functionalities
used, etc.
• Cust. support interactions
• Other contextual, e.g.
devices used
• Monitor churn rate
• Monitor (#non-churn among solicited) / #solicitations
Customer retention Louis Dorard Sept. 2016 1
Every month we create a new
model from the previous
month’s customers.
The   Machine   Learning   Canvas   (v0.4)                 Designed   for:                                                                                                                                            Designed   by:                                                                                                                                         Date:                                                                                         Iteration:                         . 
Decisions 
How   are   predictions   used   to 
make   decisions   that   provide 
the   proposed   value   to   the   end­user? 
 
ML   task 
Input,   output   to   predict, 
type   of   problem. 
 
Value 
Propositions 
What   are   we   trying   to   do   for   the 
end­user(s)   of   the   predictive   system? 
What   objectives   are   we   serving? 
Data   Sources 
Which   raw   data   sources   can 
we   use   (internal   and 
external)? 
Collecting   Data 
How   do   we   get   new   data   to 
learn   from   (inputs   and 
outputs)? 
Making 
Predictions 
When   do   we   make   predictions   on   new 
inputs?   How   long   do   we   have   to 
featurize   a   new   input   and   make   a 
prediction? 
Offline 
Evaluation 
Methods   and   metrics   to   evaluate   the 
system   before   deployment. 
 
Features 
Input   representations 
extracted   from   raw   data 
sources. 
Building   Models 
When   do   we   create/update 
models   with   new   training 
data?   How   long   do   we   have   to 
featurize   training   inputs   and   create   a 
model? 
 
Live   Evaluation   and 
Monitoring 
Methods   and   metrics   to   evaluate   the 
system   after   deployment,   and   to 
quantify   value   creation.  
     
machinelearningcanvas.com    by   Louis   Dorard,   Ph.D.                                         Licensed   under   a   Creative   Commons   Attribution­ShareAlike   4.0   International   License.  
On 1st day of every month:
• Randomly filter out 50% of
customers (hold-out set)
• Filter out ‘no-churn’
• Sort remaining by
descending (churn prob.) x
(monthly revenue) and
show prediction path for
each
• Solicit customers
Predict answer to “Is this
customer going to churn in
the coming month?”
• Input: customer
• Output: ‘churn’ or ‘no-
churn’ class (‘churn’ is the
Positive class)
• Binary Classification
Context:
• Company sells SaaS with
monthly subscription
• End-user of predictive
system is CRM team
We want to help them…
• Identify important clients
who may churn, so
appropriate action can be
taken
• Reduce churn rate among
high-revenue customers
• Improve success rate of
retention efforts by
understanding why
customers may churn
• CRM tool
• Payments database
• Website analytics
• Customer support
• Emailing to customers
Every month, we see which of
last month’s customers
churned or not, by looking
through the payments
database.
Associated inputs are
customer “snapshots” taken
last month.
Every month we (re-)featurize
all current customers and
make predictions for them.
We do this overnight.
Basic customer info at time t
(age, city, etc.)
Events between (t - 1 month)
and t:
• Usage of product: # times
logged in, functionalities
used, etc.
• Cust. support interactions
• Other contextual, e.g.
devices used
Every month we create a new
model from the previous
month’s hold-out set (or the
whole set, when initializing
this system).
We do this overnight (along
with making predictions).
• Monitor churn rate
• Monitor (#non-churn among solicited) / #solicitations
Customer retention Louis Dorard Sept. 2016 1
The   Machine   Learning   Canvas   (v0.4)                 Designed   for:                                                                                                                                            Designed   by:                                                                                                                                         Date:                                                                                         Iteration:                         . 
Decisions 
How   are   predictions   used   to 
make   decisions   that   provide 
the   proposed   value   to   the   end­user? 
 
ML   task 
Input,   output   to   predict, 
type   of   problem. 
 
Value 
Propositions 
What   are   we   trying   to   do   for   the 
end­user(s)   of   the   predictive   system? 
What   objectives   are   we   serving? 
Data   Sources 
Which   raw   data   sources   can 
we   use   (internal   and 
external)? 
Collecting   Data 
How   do   we   get   new   data   to 
learn   from   (inputs   and 
outputs)? 
Making 
Predictions 
When   do   we   make   predictions   on   new 
inputs?   How   long   do   we   have   to 
featurize   a   new   input   and   make   a 
prediction? 
Offline 
Evaluation 
Methods   and   metrics   to   evaluate   the 
system   before   deployment. 
 
Features 
Input   representations 
extracted   from   raw   data 
sources. 
Building   Models 
When   do   we   create/update 
models   with   new   training 
data?   How   long   do   we   have   to 
featurize   training   inputs   and   create   a 
model? 
 
Live   Evaluation   and 
Monitoring 
Methods   and   metrics   to   evaluate   the 
system   after   deployment,   and   to 
quantify   value   creation.  
     
machinelearningcanvas.com    by   Louis   Dorard,   Ph.D.                                         Licensed   under   a   Creative   Commons   Attribution­ShareAlike   4.0   International   License.  
On 1st day of every month:
• Randomly filter out 50% of
customers (hold-out set)
• Filter out ‘no-churn’
• Sort remaining by
descending (churn prob.) x
(monthly revenue) and
show prediction path for
each
• Solicit customers
Predict answer to “Is this
customer going to churn in
the coming month?”
• Input: customer
• Output: ‘churn’ or ‘no-
churn’ class (‘churn’ is the
Positive class)
• Binary Classification
Context:
• Company sells SaaS with
monthly subscription
• End-user of predictive
system is CRM team
We want to help them…
• Identify important clients
who may churn, so
appropriate action can be
taken
• Reduce churn rate among
high-revenue customers
• Improve success rate of
retention efforts by
understanding why
customers may churn
• CRM tool
• Payments database
• Website analytics
• Customer support
• Emailing to customers
Every month, we see which of
last month’s customers
churned or not, by looking
through the payments
database.
Associated inputs are
customer “snapshots” taken
last month.
Every month we (re-)featurize
all current customers and
make predictions for them.
We do this overnight.
Basic customer info at time t
(age, city, etc.)
Events between (t - 1 month)
and t:
• Usage of product: # times
logged in, functionalities
used, etc.
• Cust. support interactions
• Other contextual, e.g.
devices used
Every month we create a new
model from the previous
month’s hold-out set (or the
whole set, when initializing
this system).
We do this overnight (along
with making predictions).
• Accuracy of last month’s predictions on hold-out set
• Compare churn rate & lost revenue between last month’s
hold-out set and remaining set
• Monitor (#non-churn among solicited) / #solicitations
• Monitor ROI (based on diff. in lost revenue & cost of
solicitations)
Customer retention Louis Dorard Sept. 2016 1
The   Machine   Learning   Canvas   (v0.4)                 Designed   for:                                                                                                                                            Designed   by:                                                                                                                                         Date:                                                                                         Iteration:                         . 
Decisions 
How   are   predictions   used   to 
make   decisions   that   provide 
the   proposed   value   to   the   end­user? 
 
ML   task 
Input,   output   to   predict, 
type   of   problem. 
 
Value 
Propositions 
What   are   we   trying   to   do   for   the 
end­user(s)   of   the   predictive   system? 
What   objectives   are   we   serving? 
Data   Sources 
Which   raw   data   sources   can 
we   use   (internal   and 
external)? 
Collecting   Data 
How   do   we   get   new   data   to 
learn   from   (inputs   and 
outputs)? 
Making 
Predictions 
When   do   we   make   predictions   on   new 
inputs?   How   long   do   we   have   to 
featurize   a   new   input   and   make   a 
prediction? 
Offline 
Evaluation 
Methods   and   metrics   to   evaluate   the 
system   before   deployment. 
 
Features 
Input   representations 
extracted   from   raw   data 
sources. 
Building   Models 
When   do   we   create/update 
models   with   new   training 
data?   How   long   do   we   have   to 
featurize   training   inputs   and   create   a 
model? 
 
Live   Evaluation   and 
Monitoring 
Methods   and   metrics   to   evaluate   the 
system   after   deployment,   and   to 
quantify   value   creation.  
     
machinelearningcanvas.com    by   Louis   Dorard,   Ph.D.                                         Licensed   under   a   Creative   Commons   Attribution­ShareAlike   4.0   International   License.  
On 1st day of every month:
• Randomly filter out 50% of
customers (hold-out set)
• Filter out ‘no-churn’
• Sort remaining by
descending (churn prob.) x
(monthly revenue) and
show prediction path for
each
• Solicit customers
Before soliciting customers:
• Evaluate new model’s
accuracy on pre-defined
customer profiles
• Simulate decisions taken
on last month’s customers
(using model learnt from
customers 2 months ago).
Compute ROI w. different #
customers to solicit &
hypotheses on retention
success rate (is it >0?)
Predict answer to “Is this
customer going to churn in
the coming month?”
• Input: customer
• Output: ‘churn’ or ‘no-
churn’ class (‘churn’ is the
Positive class)
• Binary Classification
Context:
• Company sells SaaS with
monthly subscription
• End-user of predictive
system is CRM team
We want to help them…
• Identify important clients
who may churn, so
appropriate action can be
taken
• Reduce churn rate among
high-revenue customers
• Improve success rate of
retention efforts by
understanding why
customers may churn
• CRM tool
• Payments database
• Website analytics
• Customer support
• Emailing to customers
Every month, we see which of
last month’s customers
churned or not, by looking
through the payments
database.
Associated inputs are
customer “snapshots” taken
last month.
Every month we (re-)featurize
all current customers and
make predictions for them.
We do this overnight (along
with building the model that
powers these predictions and
evaluating it).
Basic customer info at time t
(age, city, etc.)
Events between (t - 1 month)
and t:
• Usage of product: # times
logged in, functionalities
used, etc.
• Cust. support interactions
• Other contextual, e.g.
devices used
Every month we create a new
model from the previous
month’s hold-out set (or the
whole set, when initializing
this system).
We do this overnight (along
with offline evaluation and
making predictions).
• Accuracy of last month’s predictions on hold-out set
• Compare churn rate & lost revenue between last month’s
hold-out set and remaining set
• Monitor (#non-churn among solicited) / #solicitations
• Monitor ROI (based on diff. in lost revenue & cost of
solicitations)
Customer retention Louis Dorard Sept. 2016 1
The   Machine   Learning   Canvas   (v0.4)                 Designed   for:                                                                                                                                            Designed   by:                                                                                                                                         Date:                                                                                         Iteration:                         . 
Decisions 
How   are   predictions   used   to 
make   decisions   that   provide 
the   proposed   value   to   the   end­user? 
 
ML   task 
Input,   output   to   predict, 
type   of   problem. 
 
Value 
Propositions 
What   are   we   trying   to   do   for   the 
end­user(s)   of   the   predictive   system? 
What   objectives   are   we   serving? 
Data   Sources 
Which   raw   data   sources   can 
we   use   (internal   and 
external)? 
Collecting   Data 
How   do   we   get   new   data   to 
learn   from   (inputs   and 
outputs)? 
Making 
Predictions 
When   do   we   make   predictions   on   new 
inputs?   How   long   do   we   have   to 
featurize   a   new   input   and   make   a 
prediction? 
Offline 
Evaluation 
Methods   and   metrics   to   evaluate   the 
system   before   deployment. 
 
Features 
Input   representations 
extracted   from   raw   data 
sources. 
Building   Models 
When   do   we   create/update 
models   with   new   training 
data?   How   long   do   we   have   to 
featurize   training   inputs   and   create   a 
model? 
 
Live   Evaluation   and 
Monitoring 
Methods   and   metrics   to   evaluate   the 
system   after   deployment,   and   to 
quantify   value   creation.  
     
machinelearningcanvas.com    by   Louis   Dorard,   Ph.D.                                         Licensed   under   a   Creative   Commons   Attribution­ShareAlike   4.0   International   License.  
Before soliciting customers:
• Evaluate new model’s
accuracy on pre-defined
customer profiles
• Simulate decisions taken
on last month’s customers
(using model learnt from
customers 2 months ago).
Compute ROI w. different #
customers to solicit &
hypotheses on retention
success rate (is it >0?)
Predict answer to “Is this
customer going to churn in
the coming month?”
• Input: customer
• Output: ‘churn’ or ‘no-
churn’ class (‘churn’ is the
Positive class)
• Binary Classification
Context:
• Company sells SaaS with
monthly subscription
• End-user of predictive
system is CRM team
We want to help them…
• Identify important clients
who may churn, so
appropriate action can be
taken
• Reduce churn rate among
high-revenue customers
• Improve success rate of
retention efforts by
understanding why
customers may churn
• CRM tool
• Payments database
• Website analytics
• Customer support
• Emailing to customers
Every month, we see which of
last month’s customers
churned or not, by looking
through the payments
database.
Associated inputs are
customer “snapshots” taken
last month.
Every month we (re-)featurize
all current customers and
make predictions for them.
We do this overnight (along
with building the model that
powers these predictions and
evaluating it).
Basic customer info at time t
(age, city, etc.)
Events between (t - 1 month)
and t:
• Usage of product: # times
logged in, functionalities
used, etc.
• Cust. support interactions
• Other contextual, e.g.
devices used
Every month we create a new
model from the previous
month’s hold-out set (or the
whole set, when initializing
this system).
We do this overnight (along
with offline evaluation and
making predictions).
• Accuracy of last month’s predictions on hold-out set
• Compare churn rate & lost revenue between last month’s
hold-out set and remaining set
• Monitor (#non-churn among solicited) / #solicitations
• Monitor ROI (based on diff. in lost revenue & cost of
solicitations)
Customer retention Louis Dorard Sept. 2016 1
On 1st day of every month:
• Randomly filter out 50% of
customers (hold-out set)
• Filter out ‘no-churn’
• Sort remaining by
descending (churn prob.) x
(monthly revenue) and
show prediction path for
each
• Solicit as many customers
as suggested by simulation
• Assist data scientists, software engineers, product and business
managers, in aligning their activities
• Make sure all efforts are directed at solving the right problem!
• Choose right algorithm / infrastructure / ML solution prior to
implementation
• Guide project management
• machinelearningcanvas.com
45
Why fill in ML canvas?
From Data to AI with the Machine Learning Canvas
–Jeremy Howard
“Great predictive modeling is an important
part of the solution, but it no longer stands on its
own; as products become more sophisticated, it
disappears into the plumbing.”
twitter.com/louisdorard
2 Shameless Plugs
50
follow us: @papisdotio
WE’RE HIRING!
THANK YOU!

More Related Content

PDF
Logistics and Transportation
PDF
Modern Go-To-Market Framework
PDF
Seven building blocks for MDM
PDF
generative-ai-fundamentals and Large language models
PDF
Elastic Observability keynote
PDF
100 dinamicas-para-adultos
PDF
28 Pitching Essentials
PDF
How to Write a B2B Sales Playbook
Logistics and Transportation
Modern Go-To-Market Framework
Seven building blocks for MDM
generative-ai-fundamentals and Large language models
Elastic Observability keynote
100 dinamicas-para-adultos
28 Pitching Essentials
How to Write a B2B Sales Playbook

What's hot (20)

PDF
From data to AI with the Machine Learning Canvas by Louis Dorard Slides
PDF
Churn prediction data modeling
PPTX
Prediction of customer propensity to churn - Telecom Industry
PDF
Classification Based Machine Learning Algorithms
PPTX
Introduction to Machine Learning
PPTX
Linear Regression Analysis | Linear Regression in Python | Machine Learning A...
PDF
Telecommunication Analysis (3 use-cases) with IBM watson analytics
PPTX
Data Analysis: Evaluation Metrics for Supervised Learning Models of Machine L...
PPTX
Generative AI Use-cases for Enterprise - First Session
PPTX
Predictive Analytics: Context and Use Cases
PPTX
Machine Learning (Classification Models)
PPTX
Support Vector Machine - How Support Vector Machine works | SVM in Machine Le...
PPTX
Feature Engineering
PDF
GAN - Theory and Applications
PPT
Computational Learning Theory
PPTX
Feature selection concepts and methods
PDF
UNLEASHING INNOVATION Exploring Generative AI in the Enterprise.pdf
PPTX
PAC Learning and The VC Dimension
PDF
Generative AI at the edge.pdf
PDF
From Data to Artificial Intelligence with the Machine Learning Canvas — ODSC ...
From data to AI with the Machine Learning Canvas by Louis Dorard Slides
Churn prediction data modeling
Prediction of customer propensity to churn - Telecom Industry
Classification Based Machine Learning Algorithms
Introduction to Machine Learning
Linear Regression Analysis | Linear Regression in Python | Machine Learning A...
Telecommunication Analysis (3 use-cases) with IBM watson analytics
Data Analysis: Evaluation Metrics for Supervised Learning Models of Machine L...
Generative AI Use-cases for Enterprise - First Session
Predictive Analytics: Context and Use Cases
Machine Learning (Classification Models)
Support Vector Machine - How Support Vector Machine works | SVM in Machine Le...
Feature Engineering
GAN - Theory and Applications
Computational Learning Theory
Feature selection concepts and methods
UNLEASHING INNOVATION Exploring Generative AI in the Enterprise.pdf
PAC Learning and The VC Dimension
Generative AI at the edge.pdf
From Data to Artificial Intelligence with the Machine Learning Canvas — ODSC ...
Ad

Viewers also liked (12)

PDF
Bootstrapping Machine Learning
PPTX
AIをあなたのツール化するための第一歩
PDF
Scala製機械学習サーバ「Apache PredictionIO」
PDF
5.4 Arbres et forêts aléatoires
PDF
( Big ) Data Management - Data Mining and Machine Learning - Global concepts ...
PPTX
Big Data Science Team Building
PDF
Building an AI Startup: Realities & Tactics
PDF
Building & Scaling Data Teams
PPTX
Big Data Case Studies
PDF
"How To Build and Lead a Winning Data Team" by Cahyo Listyanto (Bizzy.co.id)
PDF
How to Build a Successful Data Team - Florian Douetteau @ PAPIs Connect
PDF
[db tech showcase Tokyo 2017] D35: 何を基準に選定すべきなのか!? ~ビッグデータ×IoT×AI時代のデータベースのアー...
Bootstrapping Machine Learning
AIをあなたのツール化するための第一歩
Scala製機械学習サーバ「Apache PredictionIO」
5.4 Arbres et forêts aléatoires
( Big ) Data Management - Data Mining and Machine Learning - Global concepts ...
Big Data Science Team Building
Building an AI Startup: Realities & Tactics
Building & Scaling Data Teams
Big Data Case Studies
"How To Build and Lead a Winning Data Team" by Cahyo Listyanto (Bizzy.co.id)
How to Build a Successful Data Team - Florian Douetteau @ PAPIs Connect
[db tech showcase Tokyo 2017] D35: 何を基準に選定すべきなのか!? ~ビッグデータ×IoT×AI時代のデータベースのアー...
Ad

Similar to From Data to AI with the Machine Learning Canvas (20)

PDF
Demystifying Machine Learning
PPTX
GVTI Pitch Deck (1).pptx
PDF
Pragmatic machine learning for the real world
PPTX
GVI Pitch Deck (1).pptx
PDF
Creative disruption 4 SMEs
PDF
Online advertising money: how do we spend it in 2014
PPTX
Jaakko Kankaanpää - IoT Took My Money - Mindtrek 2016
PPTX
Smart contract
PDF
FBIC Global Deborah Weinswig New Tech Presentation Dec. 3 2014
PDF
Construction Technology Quarterly, Q2, 2021
PPTX
20240626 Finance Transformation - PSU Event Series.pptx
PPTX
Digital Futures Webinar with Amaze CSO Rick Curtis Jan 2014
PDF
Presentatie revenue profs hsmai 15 november
PPTX
NVI Deconstructing IoT 3 jJly 2013 by Maurizio Pilu - CDEC
PDF
Entrepreneurial GIS Services: Innovative Practices at King County GIS, 2006 U...
PPTX
5G Edge Computing IoT Presentation
PDF
Big Data 2.0
PPTX
Artificial Intelligence, Social Justice and Digital Civics
PPTX
IoT Overview and Challenges - Sachin Pukale IOT Mumbai
PDF
AI Unboxed - How to Approach AI for Maximum Return
Demystifying Machine Learning
GVTI Pitch Deck (1).pptx
Pragmatic machine learning for the real world
GVI Pitch Deck (1).pptx
Creative disruption 4 SMEs
Online advertising money: how do we spend it in 2014
Jaakko Kankaanpää - IoT Took My Money - Mindtrek 2016
Smart contract
FBIC Global Deborah Weinswig New Tech Presentation Dec. 3 2014
Construction Technology Quarterly, Q2, 2021
20240626 Finance Transformation - PSU Event Series.pptx
Digital Futures Webinar with Amaze CSO Rick Curtis Jan 2014
Presentatie revenue profs hsmai 15 november
NVI Deconstructing IoT 3 jJly 2013 by Maurizio Pilu - CDEC
Entrepreneurial GIS Services: Innovative Practices at King County GIS, 2006 U...
5G Edge Computing IoT Presentation
Big Data 2.0
Artificial Intelligence, Social Justice and Digital Civics
IoT Overview and Challenges - Sachin Pukale IOT Mumbai
AI Unboxed - How to Approach AI for Maximum Return

More from Louis Dorard (11)

PDF
Machine Learning: je m'y mets demain!
PDF
Trusting AI with important decisions
PDF
Predictive apps for startups
PDF
Pragmatic Machine Learning @ ML Spain
PDF
Future of AI-powered automation in business
PDF
Intro to machine learning for web folks @ BlendWebMix
PDF
A developer's overview of the world of predictive APIs
PDF
Using predictive APIs to create smarter apps
PDF
Predictive APIs at APIdays Berlin
PDF
Data Summit Brussels: Introduction
PPT
Exploration & Exploitation Challenge 2011
Machine Learning: je m'y mets demain!
Trusting AI with important decisions
Predictive apps for startups
Pragmatic Machine Learning @ ML Spain
Future of AI-powered automation in business
Intro to machine learning for web folks @ BlendWebMix
A developer's overview of the world of predictive APIs
Using predictive APIs to create smarter apps
Predictive APIs at APIdays Berlin
Data Summit Brussels: Introduction
Exploration & Exploitation Challenge 2011

Recently uploaded (20)

PDF
August Patch Tuesday
PPTX
Final SEM Unit 1 for mit wpu at pune .pptx
PDF
Univ-Connecticut-ChatGPT-Presentaion.pdf
PDF
WOOl fibre morphology and structure.pdf for textiles
PDF
Hybrid model detection and classification of lung cancer
PDF
A comparative study of natural language inference in Swahili using monolingua...
PPTX
Programs and apps: productivity, graphics, security and other tools
PDF
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
PDF
Enhancing emotion recognition model for a student engagement use case through...
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PDF
Assigned Numbers - 2025 - Bluetooth® Document
PDF
STKI Israel Market Study 2025 version august
PPTX
TechTalks-8-2019-Service-Management-ITIL-Refresh-ITIL-4-Framework-Supports-Ou...
PDF
Web App vs Mobile App What Should You Build First.pdf
PPTX
O2C Customer Invoices to Receipt V15A.pptx
PDF
Getting started with AI Agents and Multi-Agent Systems
PDF
gpt5_lecture_notes_comprehensive_20250812015547.pdf
PDF
Getting Started with Data Integration: FME Form 101
PPTX
Group 1 Presentation -Planning and Decision Making .pptx
PDF
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf
August Patch Tuesday
Final SEM Unit 1 for mit wpu at pune .pptx
Univ-Connecticut-ChatGPT-Presentaion.pdf
WOOl fibre morphology and structure.pdf for textiles
Hybrid model detection and classification of lung cancer
A comparative study of natural language inference in Swahili using monolingua...
Programs and apps: productivity, graphics, security and other tools
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
Enhancing emotion recognition model for a student engagement use case through...
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
Assigned Numbers - 2025 - Bluetooth® Document
STKI Israel Market Study 2025 version august
TechTalks-8-2019-Service-Management-ITIL-Refresh-ITIL-4-Framework-Supports-Ou...
Web App vs Mobile App What Should You Build First.pdf
O2C Customer Invoices to Receipt V15A.pptx
Getting started with AI Agents and Multi-Agent Systems
gpt5_lecture_notes_comprehensive_20250812015547.pdf
Getting Started with Data Integration: FME Form 101
Group 1 Presentation -Planning and Decision Making .pptx
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf

From Data to AI with the Machine Learning Canvas