The document discusses gradient descent methods for unconstrained convex optimization problems. It introduces gradient descent as an iterative method to find the minimum of a differentiable function by taking steps proportional to the negative gradient. It describes the basic gradient descent update rule and discusses convergence conditions such as Lipschitz continuity, strong convexity, and condition number. It also covers techniques like exact line search, backtracking line search, coordinate descent, and steepest descent methods.