This presentation about Hadoop for beginners will help you understand what is Hadoop, why Hadoop, what is Hadoop HDFS, Hadoop MapReduce, Hadoop YARN, a use case of Hadoop and finally a demo on HDFS (Hadoop Distributed File System), MapReduce and YARN. Big Data is a massive amount of data which cannot be stored, processed, and analyzed using traditional systems. To overcome this problem, we use Hadoop. Hadoop is a framework which stores and handles Big Data in a distributed and parallel fashion. Hadoop overcomes the challenges of Big Data. Hadoop has three components HDFS, MapReduce, and YARN. HDFS is the storage unit of Hadoop, MapReduce is its processing unit, and YARN is the resource management unit of Hadoop. In this video, we will look into these units individually and also see a demo on each of these units.
Below topics are explained in this Hadoop presentation:
1. What is Hadoop
2. Why Hadoop
3. Big Data generation
4. Hadoop HDFS
5. Hadoop MapReduce
6. Hadoop YARN
7. Use of Hadoop
8. Demo on HDFS, MapReduce and YARN
What is this Big Data Hadoop training course about?
The Big Data Hadoop and Spark developer course have been designed to impart an in-depth knowledge of Big Data processing using Hadoop and Spark. The course is packed with real-life projects and case studies to be executed in the CloudLab.
What are the course objectives?
This course will enable you to:
1. Understand the different components of the Hadoop ecosystem such as Hadoop 2.7, Yarn, MapReduce, Pig, Hive, Impala, HBase, Sqoop, Flume, and Apache Spark
2. Understand Hadoop Distributed File System (HDFS) and YARN as well as their architecture, and learn how to work with them for storage and resource management
3. Understand MapReduce and its characteristics, and assimilate some advanced MapReduce concepts
4. Get an overview of Sqoop and Flume and describe how to ingest data using them
5. Create database and tables in Hive and Impala, understand HBase, and use Hive and Impala for partitioning
6. Understand different types of file formats, Avro Schema, using Arvo with Hive, and Sqoop and Schema evolution
7. Understand Flume, Flume architecture, sources, flume sinks, channels, and flume configurations
8. Understand HBase, its architecture, data storage, and working with HBase. You will also understand the difference between HBase and RDBMS
9. Gain a working knowledge of Pig and its components
10. Do functional programming in Spark
11. Understand resilient distribution datasets (RDD) in detail
12. Implement and build Spark applications
13. Gain an in-depth understanding of parallel processing in Spark and Spark RDD optimization techniques
14. Understand the common use-cases of Spark and the various interactive algorithms
15. Learn Spark SQL, creating, transforming, and querying Data frames
Learn more at https://www.simplilearn.com/big-data-and-analytics/big-data-and-hadoop-training