GANDHINAGAR INSTITUTE OF TECHNOLOGY
Computer Aided Design (2161903)
Active Learning Assignment
On
Homogeneous representation in geometric transformation
Branch : Mechanical Engineering
Batch : 6 C-3
Prepared by: Guided By:
Suthar Chandresh (140120119229) Prof. Jatin Patel
Contents
• Definition & Motivation
• Geometric Transformation
:- Translation
:- Scaling
:- Shearing
• Matrix Representation
• Homogeneous Co-ordinates
Geometric transformation
• Definition
:- Translation , Scaling , Shearing
• Motivation – Why do we need geometric
transformations in CG?
:- As a viewing aid
:- As a modeling tool
:- As an image manipulation tool
Example: 2D Translation
Modeling
Coordinates
Translate(5, 3)
World Coordinates
EXAMPLE: 2D SCALING
Modeling
Coordinates
World Coordinates
Scale(0.3, 0.3)
Basic 2D Transformations
• Translation
–
–
• Scale
–
–
• Shear
–
–
txxx 
tyyy 
sxxx 
syyy 
yhxxx 
xhyyy 
Matrix Representation
• Represent a 2D Transformation by a Matrix
• Apply the Transformation to a Point




















y
x
dc
ba
y
x
dycxy
byaxx








dc
ba
Transformation
Matrix
Point
Matrix Representation
• Transformations can be combined by matrix
multiplication
































y
x
lk
ji
hg
fe
dc
ba
y
x
Matrices are a convenient and efficient way
to represent a sequence of transformations
Transformation
Matrix
2×2 Matrices
• What types of transformations can be
represented with a 2×2 matrix?
2D Translation
txxx 
tyyy  



















y
x
ty
tx
y
x
0
0
2×2 Matrices
• What types of transformations can be
represented with a 2×2 matrix?2D
Scaling
ysyy
xsxx






















y
x
sy
sx
y
x
0
0
2×2 Matrices
• What types of transformations can be
represented with a 2×2 matrix?
2D Shearing




















y
x
shy
shx
y
x
1
1
yxshyy
yshxxx


Basic 2D Transformations
• Basic 2D transformations as 3x3 Matrices

































1100
10
01
1
y
x
ty
tx
y
x

































1100
00
00
1
y
x
sy
sx
y
x

































1100
01
01
1
y
x
shy
shx
y
x
Translate
Shear
Scale
Homogeneous representation in geometric transformation

Homogeneous representation in geometric transformation

  • 1.
    GANDHINAGAR INSTITUTE OFTECHNOLOGY Computer Aided Design (2161903) Active Learning Assignment On Homogeneous representation in geometric transformation Branch : Mechanical Engineering Batch : 6 C-3 Prepared by: Guided By: Suthar Chandresh (140120119229) Prof. Jatin Patel
  • 2.
    Contents • Definition &Motivation • Geometric Transformation :- Translation :- Scaling :- Shearing • Matrix Representation • Homogeneous Co-ordinates
  • 3.
    Geometric transformation • Definition :-Translation , Scaling , Shearing • Motivation – Why do we need geometric transformations in CG? :- As a viewing aid :- As a modeling tool :- As an image manipulation tool
  • 4.
  • 5.
  • 6.
    Basic 2D Transformations •Translation – – • Scale – – • Shear – – txxx  tyyy  sxxx  syyy  yhxxx  xhyyy 
  • 7.
    Matrix Representation • Representa 2D Transformation by a Matrix • Apply the Transformation to a Point                     y x dc ba y x dycxy byaxx         dc ba Transformation Matrix Point
  • 8.
    Matrix Representation • Transformationscan be combined by matrix multiplication                                 y x lk ji hg fe dc ba y x Matrices are a convenient and efficient way to represent a sequence of transformations Transformation Matrix
  • 9.
    2×2 Matrices • Whattypes of transformations can be represented with a 2×2 matrix? 2D Translation txxx  tyyy                      y x ty tx y x 0 0
  • 10.
    2×2 Matrices • Whattypes of transformations can be represented with a 2×2 matrix?2D Scaling ysyy xsxx                       y x sy sx y x 0 0
  • 11.
    2×2 Matrices • Whattypes of transformations can be represented with a 2×2 matrix? 2D Shearing                     y x shy shx y x 1 1 yxshyy yshxxx  
  • 12.
    Basic 2D Transformations •Basic 2D transformations as 3x3 Matrices                                  1100 10 01 1 y x ty tx y x                                  1100 00 00 1 y x sy sx y x                                  1100 01 01 1 y x shy shx y x Translate Shear Scale