View video of this presentation here: https://www.youtube.com/watch?v=vxeLcoELaP4
Introducing DataFrames in Spark for Large-scale Data Science
Beyond SQL: Speeding up Spark with DataFramesDatabricks
This document summarizes Spark SQL and DataFrames in Spark. It notes that Spark SQL is part of the core Spark distribution and allows running SQL and HiveQL queries. DataFrames provide a way to select, filter, aggregate and plot structured data like in R and Pandas. DataFrames allow writing less code through a high-level API and reading less data by using optimized formats and partitioning. The optimizer can optimize queries across functions and push down predicates to read less data. This allows creating and running Spark programs faster.
Video of the presentation can be seen here: https://www.youtube.com/watch?v=uxuLRiNoDio
The Data Source API in Spark is a convenient feature that enables developers to write libraries to connect to data stored in various sources with Spark. Equipped with the Data Source API, users can load/save data from/to different data formats and systems with minimal setup and configuration. In this talk, we introduce the Data Source API and the unified load/save functions built on top of it. Then, we show examples to demonstrate how to build a data source library.
Apache Spark presentation at HasGeek FifthElelephant
https://fifthelephant.talkfunnel.com/2015/15-processing-large-data-with-apache-spark
Covering Big Data Overview, Spark Overview, Spark Internals and its supported libraries
The document discusses Apache Spark, an open source cluster computing framework for real-time data processing. It notes that Spark is up to 100 times faster than Hadoop for in-memory processing and 10 times faster on disk. The main feature of Spark is its in-memory cluster computing capability, which increases processing speeds. Spark runs on a driver-executor model and uses resilient distributed datasets and directed acyclic graphs to process data in parallel across a cluster.
Spark Shuffle Deep Dive (Explained In Depth) - How Shuffle Works in SparkBo Yang
The slides explain how shuffle works in Spark and help people understand more details about Spark internal. It shows how the major classes are implemented, including: ShuffleManager (SortShuffleManager), ShuffleWriter (SortShuffleWriter, BypassMergeSortShuffleWriter, UnsafeShuffleWriter), ShuffleReader (BlockStoreShuffleReader).
This document provides an overview of a talk on Apache Spark. It introduces the speaker and their background. It acknowledges inspiration from a previous Spark training. It then outlines the structure of the talk, which will include: a brief history of big data; a tour of Spark including its advantages over MapReduce; and explanations of Spark concepts like RDDs, transformations, and actions. The document serves to introduce the topics that will be covered in the talk.
This is the presentation I made on JavaDay Kiev 2015 regarding the architecture of Apache Spark. It covers the memory model, the shuffle implementations, data frames and some other high-level staff and can be used as an introduction to Apache Spark
Apache Spark in Depth: Core Concepts, Architecture & InternalsAnton Kirillov
Slides cover Spark core concepts of Apache Spark such as RDD, DAG, execution workflow, forming stages of tasks and shuffle implementation and also describes architecture and main components of Spark Driver. The workshop part covers Spark execution modes , provides link to github repo which contains Spark Applications examples and dockerized Hadoop environment to experiment with
Amazon S3 Best Practice and Tuning for Hadoop/Spark in the CloudNoritaka Sekiyama
This document provides an overview and summary of Amazon S3 best practices and tuning for Hadoop/Spark in the cloud. It discusses the relationship between Hadoop/Spark and S3, the differences between HDFS and S3 and their use cases, details on how S3 behaves from the perspective of Hadoop/Spark, well-known pitfalls and tunings related to S3 consistency and multipart uploads, and recent community activities related to S3. The presentation aims to help users optimize their use of S3 storage with Hadoop/Spark frameworks.
This presentation is an introduction to Apache Spark. It covers the basic API, some advanced features and describes how Spark physically executes its jobs.
This document provides an overview and introduction to Apache Flink, a stream-based big data processing engine. It discusses the evolution of big data frameworks to platforms and the shortcomings of Spark's RDD abstraction for streaming workloads. The document then introduces Flink, covering its history, key differences from Spark like its use of streaming as the core abstraction, and examples of using Flink for batch and stream processing.
The document provides an overview of Apache Spark internals and Resilient Distributed Datasets (RDDs). It discusses:
- RDDs are Spark's fundamental data structure - they are immutable distributed collections that allow transformations like map and filter to be applied.
- RDDs track their lineage or dependency graph to support fault tolerance. Transformations create new RDDs while actions trigger computation.
- Operations on RDDs include narrow transformations like map that don't require data shuffling, and wide transformations like join that do require shuffling.
- The RDD abstraction allows Spark's scheduler to optimize execution through techniques like pipelining and cache reuse.
Improving SparkSQL Performance by 30%: How We Optimize Parquet Pushdown and P...Databricks
The document discusses optimizations made to Spark SQL performance when working with Parquet files at ByteDance. It describes how Spark originally reads Parquet files and identifies two main areas for optimization: Parquet filter pushdown and the Parquet reader. For filter pushdown, sorting columns improved statistics and reduced data reads by 30%. For the reader, splitting it to first filter then read other columns prevented loading unnecessary data. These changes improved Spark SQL performance at ByteDance without changing jobs.
Introduction and Overview of Apache Kafka, TriHUG July 23, 2013mumrah
Apache Kafka is a distributed publish-subscribe messaging system that allows both publishing and subscribing to streams of records. It uses a distributed commit log that provides low latency and high throughput for handling real-time data feeds. Key features include persistence, replication, partitioning, and clustering.
"The common use cases of Spark SQL include ad hoc analysis, logical warehouse, query federation, and ETL processing. Spark SQL also powers the other Spark libraries, including structured streaming for stream processing, MLlib for machine learning, and GraphFrame for graph-parallel computation. For boosting the speed of your Spark applications, you can perform the optimization efforts on the queries prior employing to the production systems. Spark query plans and Spark UIs provide you insight on the performance of your queries. This talk discloses how to read and tune the query plans for enhanced performance. It will also cover the major related features in the recent and upcoming releases of Apache Spark.
"
Spark is an open-source distributed computing framework used for processing large datasets. It allows for in-memory cluster computing, which enhances processing speed. Spark core components include Resilient Distributed Datasets (RDDs) and a directed acyclic graph (DAG) that represents the lineage of transformations and actions on RDDs. Spark Streaming is an extension that allows for processing of live data streams with low latency.
This document discusses Spark shuffle, which is an expensive operation that involves data partitioning, serialization/deserialization, compression, and disk I/O. It provides an overview of how shuffle works in Spark and the history of optimizations like sort-based shuffle and an external shuffle service. Key concepts discussed include shuffle writers, readers, and the pluggable block transfer service that handles data transfer. The document also covers shuffle-related configuration options and potential future work.
This talk provides an in-depth overview of the key concepts of Apache Calcite. It explores the Calcite catalog, parsing, validation, and optimization with various planners.
This session covers how to work with PySpark interface to develop Spark applications. From loading, ingesting, and applying transformation on the data. The session covers how to work with different data sources of data, apply transformation, python best practices in developing Spark Apps. The demo covers integrating Apache Spark apps, In memory processing capabilities, working with notebooks, and integrating analytics tools into Spark Applications.
A Thorough Comparison of Delta Lake, Iceberg and HudiDatabricks
Recently, a set of modern table formats such as Delta Lake, Hudi, Iceberg spring out. Along with Hive Metastore these table formats are trying to solve problems that stand in traditional data lake for a long time with their declared features like ACID, schema evolution, upsert, time travel, incremental consumption etc.
Intro to Airflow: Goodbye Cron, Welcome scheduled workflow managementBurasakorn Sabyeying
This document discusses Apache Airflow, an open-source workflow management platform for authoring, scheduling, and monitoring workflows or pipelines. It provides an overview of Airflow's key features and components, including Directed Acyclic Graphs (DAGs) for defining workflows as Python code, various operators for building tasks, and its rich web UI. The document compares Airflow to traditional cron jobs, noting Airflow can handle task dependencies and failures better than cron. It also outlines how to set up an Airflow cluster on multiple nodes for scaling workflows.
Apache Spark is a In Memory Data Processing Solution that can work with existing data source like HDFS and can make use of your existing computation infrastructure like YARN/Mesos etc. This talk will cover a basic introduction of Apache Spark with its various components like MLib, Shark, GrpahX and with few examples.
Introduction to Apache Spark. With an emphasis on the RDD API, Spark SQL (DataFrame and Dataset API) and Spark Streaming.
Presented at the Desert Code Camp:
http://oct2016.desertcodecamp.com/sessions/all
Spark SQL Deep Dive @ Melbourne Spark MeetupDatabricks
This document summarizes a presentation on Spark SQL and its capabilities. Spark SQL allows users to run SQL queries on Spark, including HiveQL queries with UDFs, UDAFs, and SerDes. It provides a unified interface for reading and writing data in various formats. Spark SQL also allows users to express common operations like selecting columns, joining data, and aggregation concisely through its DataFrame API. This reduces the amount of code users need to write compared to lower-level APIs like RDDs.
Deep Dive: Memory Management in Apache SparkDatabricks
Memory management is at the heart of any data-intensive system. Spark, in particular, must arbitrate memory allocation between two main use cases: buffering intermediate data for processing (execution) and caching user data (storage). This talk will take a deep dive through the memory management designs adopted in Spark since its inception and discuss their performance and usability implications for the end user.
Apache Spark on K8S Best Practice and Performance in the CloudDatabricks
Kubernetes As of Spark 2.3, Spark can run on clusters managed by Kubernetes. we will describes the best practices about running Spark SQL on Kubernetes upon Tencent cloud includes how to deploy Kubernetes against public cloud platform to maximum resource utilization and how to tune configurations of Spark to take advantage of Kubernetes resource manager to achieve best performance. To evaluate performance, the TPC-DS benchmarking tool will be used to analysis performance impact of queries between configurations set.
Speakers: Junjie Chen, Junping Du
Apache Tez - A New Chapter in Hadoop Data ProcessingDataWorks Summit
Apache Tez is a framework for accelerating Hadoop query processing. It is based on expressing a computation as a dataflow graph and executing it in a highly customizable way. Tez is built on top of YARN and provides benefits like better performance, predictability, and utilization of cluster resources compared to traditional MapReduce. It allows applications to focus on business logic rather than Hadoop internals.
A Deep Dive into Query Execution Engine of Spark SQLDatabricks
Spark SQL enables Spark to perform efficient and fault-tolerant relational query processing with analytics database technologies. The relational queries are compiled to the executable physical plans consisting of transformations and actions on RDDs with the generated Java code. The code is compiled to Java bytecode, executed at runtime by JVM and optimized by JIT to native machine code at runtime. This talk will take a deep dive into Spark SQL execution engine. The talk includes pipelined execution, whole-stage code generation, UDF execution, memory management, vectorized readers, lineage based RDD transformation and action.
Founding committer of Spark, Patrick Wendell, gave this talk at 2015 Strata London about Apache Spark.
These slides provides an introduction to Spark, and delves into future developments, including DataFrames, Datasource API, Catalyst logical optimizer, and Project Tungsten.
Structuring Apache Spark 2.0: SQL, DataFrames, Datasets And Streaming - by Mi...Databricks
This document summarizes key aspects of structuring computation and data in Apache Spark using SQL, DataFrames, and Datasets. It discusses how structuring computation and data through these APIs enables optimizations like predicate pushdown and efficient joins. It also describes how data is encoded efficiently in Spark's internal format and how encoders translate between domain objects and Spark's internal representations. Finally, it introduces structured streaming as a high-level streaming API built on top of Spark SQL that allows running the same queries continuously on streaming data.
Amazon S3 Best Practice and Tuning for Hadoop/Spark in the CloudNoritaka Sekiyama
This document provides an overview and summary of Amazon S3 best practices and tuning for Hadoop/Spark in the cloud. It discusses the relationship between Hadoop/Spark and S3, the differences between HDFS and S3 and their use cases, details on how S3 behaves from the perspective of Hadoop/Spark, well-known pitfalls and tunings related to S3 consistency and multipart uploads, and recent community activities related to S3. The presentation aims to help users optimize their use of S3 storage with Hadoop/Spark frameworks.
This presentation is an introduction to Apache Spark. It covers the basic API, some advanced features and describes how Spark physically executes its jobs.
This document provides an overview and introduction to Apache Flink, a stream-based big data processing engine. It discusses the evolution of big data frameworks to platforms and the shortcomings of Spark's RDD abstraction for streaming workloads. The document then introduces Flink, covering its history, key differences from Spark like its use of streaming as the core abstraction, and examples of using Flink for batch and stream processing.
The document provides an overview of Apache Spark internals and Resilient Distributed Datasets (RDDs). It discusses:
- RDDs are Spark's fundamental data structure - they are immutable distributed collections that allow transformations like map and filter to be applied.
- RDDs track their lineage or dependency graph to support fault tolerance. Transformations create new RDDs while actions trigger computation.
- Operations on RDDs include narrow transformations like map that don't require data shuffling, and wide transformations like join that do require shuffling.
- The RDD abstraction allows Spark's scheduler to optimize execution through techniques like pipelining and cache reuse.
Improving SparkSQL Performance by 30%: How We Optimize Parquet Pushdown and P...Databricks
The document discusses optimizations made to Spark SQL performance when working with Parquet files at ByteDance. It describes how Spark originally reads Parquet files and identifies two main areas for optimization: Parquet filter pushdown and the Parquet reader. For filter pushdown, sorting columns improved statistics and reduced data reads by 30%. For the reader, splitting it to first filter then read other columns prevented loading unnecessary data. These changes improved Spark SQL performance at ByteDance without changing jobs.
Introduction and Overview of Apache Kafka, TriHUG July 23, 2013mumrah
Apache Kafka is a distributed publish-subscribe messaging system that allows both publishing and subscribing to streams of records. It uses a distributed commit log that provides low latency and high throughput for handling real-time data feeds. Key features include persistence, replication, partitioning, and clustering.
"The common use cases of Spark SQL include ad hoc analysis, logical warehouse, query federation, and ETL processing. Spark SQL also powers the other Spark libraries, including structured streaming for stream processing, MLlib for machine learning, and GraphFrame for graph-parallel computation. For boosting the speed of your Spark applications, you can perform the optimization efforts on the queries prior employing to the production systems. Spark query plans and Spark UIs provide you insight on the performance of your queries. This talk discloses how to read and tune the query plans for enhanced performance. It will also cover the major related features in the recent and upcoming releases of Apache Spark.
"
Spark is an open-source distributed computing framework used for processing large datasets. It allows for in-memory cluster computing, which enhances processing speed. Spark core components include Resilient Distributed Datasets (RDDs) and a directed acyclic graph (DAG) that represents the lineage of transformations and actions on RDDs. Spark Streaming is an extension that allows for processing of live data streams with low latency.
This document discusses Spark shuffle, which is an expensive operation that involves data partitioning, serialization/deserialization, compression, and disk I/O. It provides an overview of how shuffle works in Spark and the history of optimizations like sort-based shuffle and an external shuffle service. Key concepts discussed include shuffle writers, readers, and the pluggable block transfer service that handles data transfer. The document also covers shuffle-related configuration options and potential future work.
This talk provides an in-depth overview of the key concepts of Apache Calcite. It explores the Calcite catalog, parsing, validation, and optimization with various planners.
This session covers how to work with PySpark interface to develop Spark applications. From loading, ingesting, and applying transformation on the data. The session covers how to work with different data sources of data, apply transformation, python best practices in developing Spark Apps. The demo covers integrating Apache Spark apps, In memory processing capabilities, working with notebooks, and integrating analytics tools into Spark Applications.
A Thorough Comparison of Delta Lake, Iceberg and HudiDatabricks
Recently, a set of modern table formats such as Delta Lake, Hudi, Iceberg spring out. Along with Hive Metastore these table formats are trying to solve problems that stand in traditional data lake for a long time with their declared features like ACID, schema evolution, upsert, time travel, incremental consumption etc.
Intro to Airflow: Goodbye Cron, Welcome scheduled workflow managementBurasakorn Sabyeying
This document discusses Apache Airflow, an open-source workflow management platform for authoring, scheduling, and monitoring workflows or pipelines. It provides an overview of Airflow's key features and components, including Directed Acyclic Graphs (DAGs) for defining workflows as Python code, various operators for building tasks, and its rich web UI. The document compares Airflow to traditional cron jobs, noting Airflow can handle task dependencies and failures better than cron. It also outlines how to set up an Airflow cluster on multiple nodes for scaling workflows.
Apache Spark is a In Memory Data Processing Solution that can work with existing data source like HDFS and can make use of your existing computation infrastructure like YARN/Mesos etc. This talk will cover a basic introduction of Apache Spark with its various components like MLib, Shark, GrpahX and with few examples.
Introduction to Apache Spark. With an emphasis on the RDD API, Spark SQL (DataFrame and Dataset API) and Spark Streaming.
Presented at the Desert Code Camp:
http://oct2016.desertcodecamp.com/sessions/all
Spark SQL Deep Dive @ Melbourne Spark MeetupDatabricks
This document summarizes a presentation on Spark SQL and its capabilities. Spark SQL allows users to run SQL queries on Spark, including HiveQL queries with UDFs, UDAFs, and SerDes. It provides a unified interface for reading and writing data in various formats. Spark SQL also allows users to express common operations like selecting columns, joining data, and aggregation concisely through its DataFrame API. This reduces the amount of code users need to write compared to lower-level APIs like RDDs.
Deep Dive: Memory Management in Apache SparkDatabricks
Memory management is at the heart of any data-intensive system. Spark, in particular, must arbitrate memory allocation between two main use cases: buffering intermediate data for processing (execution) and caching user data (storage). This talk will take a deep dive through the memory management designs adopted in Spark since its inception and discuss their performance and usability implications for the end user.
Apache Spark on K8S Best Practice and Performance in the CloudDatabricks
Kubernetes As of Spark 2.3, Spark can run on clusters managed by Kubernetes. we will describes the best practices about running Spark SQL on Kubernetes upon Tencent cloud includes how to deploy Kubernetes against public cloud platform to maximum resource utilization and how to tune configurations of Spark to take advantage of Kubernetes resource manager to achieve best performance. To evaluate performance, the TPC-DS benchmarking tool will be used to analysis performance impact of queries between configurations set.
Speakers: Junjie Chen, Junping Du
Apache Tez - A New Chapter in Hadoop Data ProcessingDataWorks Summit
Apache Tez is a framework for accelerating Hadoop query processing. It is based on expressing a computation as a dataflow graph and executing it in a highly customizable way. Tez is built on top of YARN and provides benefits like better performance, predictability, and utilization of cluster resources compared to traditional MapReduce. It allows applications to focus on business logic rather than Hadoop internals.
A Deep Dive into Query Execution Engine of Spark SQLDatabricks
Spark SQL enables Spark to perform efficient and fault-tolerant relational query processing with analytics database technologies. The relational queries are compiled to the executable physical plans consisting of transformations and actions on RDDs with the generated Java code. The code is compiled to Java bytecode, executed at runtime by JVM and optimized by JIT to native machine code at runtime. This talk will take a deep dive into Spark SQL execution engine. The talk includes pipelined execution, whole-stage code generation, UDF execution, memory management, vectorized readers, lineage based RDD transformation and action.
Founding committer of Spark, Patrick Wendell, gave this talk at 2015 Strata London about Apache Spark.
These slides provides an introduction to Spark, and delves into future developments, including DataFrames, Datasource API, Catalyst logical optimizer, and Project Tungsten.
Structuring Apache Spark 2.0: SQL, DataFrames, Datasets And Streaming - by Mi...Databricks
This document summarizes key aspects of structuring computation and data in Apache Spark using SQL, DataFrames, and Datasets. It discusses how structuring computation and data through these APIs enables optimizations like predicate pushdown and efficient joins. It also describes how data is encoded efficiently in Spark's internal format and how encoders translate between domain objects and Spark's internal representations. Finally, it introduces structured streaming as a high-level streaming API built on top of Spark SQL that allows running the same queries continuously on streaming data.
This is an quick introduction to Scalding and Monoids. Scalding is a Scala library that makes writing MapReduce jobs very easy. Monoids on the other hand promise parallelism and quality and they make some more challenging algorithms look very easy.
The talk was held at the Helsinki Data Science meetup on January 9th 2014.
Structuring Spark: DataFrames, Datasets, and Streaming by Michael ArmbrustSpark Summit
This document summarizes Spark's structured APIs including SQL, DataFrames, and Datasets. It discusses how structuring computation in Spark enables optimizations by limiting what can be expressed. The structured APIs provide type safety, avoid errors, and share an optimization and execution pipeline. Functions allow expressing complex logic on columns. Encoders map between objects and Spark's internal data format. Structured streaming provides a high-level API to continuously query streaming data similar to batch queries.
The document introduces Hadoop and provides an overview of its key components. It discusses how Hadoop uses a distributed file system (HDFS) and the MapReduce programming model to process large datasets across clusters of computers. It also provides an example of how the WordCount algorithm can be implemented in Hadoop using mappers to extract words from documents and reducers to count word frequencies.
Structuring Spark: DataFrames, Datasets, and StreamingDatabricks
This document discusses how Spark provides structured APIs like SQL, DataFrames, and Datasets to organize data and computation. It describes how these APIs allow Spark to optimize queries by understanding their structure. The document outlines how Spark represents data internally and how encoders translate between this format and user objects. It also introduces Spark's new structured streaming functionality, which allows batch queries to run continuously on streaming data using the same API.
Apache Spark, the Next Generation Cluster ComputingGerger
This document provides a 3 sentence summary of the key points:
Apache Spark is an open source cluster computing framework that is faster than Hadoop MapReduce by running computations in memory through RDDs, DataFrames and Datasets. It provides high-level APIs for batch, streaming and interactive queries along with libraries for machine learning. Spark's performance is improved through techniques like Catalyst query optimization, Tungsten in-memory columnar formats, and whole stage code generation.
Introduction to Map-Reduce Programming with HadoopDilum Bandara
This document provides an overview of MapReduce programming with Hadoop, including descriptions of HDFS architecture, examples of common MapReduce algorithms (word count, mean, sorting, inverted index, distributed grep), and how to write MapReduce clients and customize parts of the MapReduce job like input/output formats, partitioners, and distributed caching of files.
Real-Time Spark: From Interactive Queries to StreamingDatabricks
This document summarizes Michael Armbrust's presentation on real-time Spark. It discusses:
1. The goals of real-time analytics including having the freshest answers as fast as possible while keeping the answers up to date.
2. Spark 2.0 introduces unified APIs for SQL, DataFrames and Datasets to make developing real-time analytics simpler with powerful yet simple APIs.
3. Structured streaming allows running the same SQL queries on streaming data to continuously aggregate data and update outputs, unifying batch, interactive, and streaming queries into a single API.
Scalable and Flexible Machine Learning With Scala @ LinkedInVitaly Gordon
The presentation given by Chris Severs and myself at the Bay Area Scala Enthusiasts meetup. http://www.meetup.com/Bay-Area-Scala-Enthusiasts/events/105409962/
The document discusses MapReduce model, including its computing model, basic architecture, HDFS, MapReduce and cluster deployment. It provides code examples of Mapper, Reducer and main functions in MapReduce job. It also talks about hardware selection, operating system choice, kernel tuning, disk configuration, network setup and Hadoop environment configuration for cluster deployment.
Advance Map reduce - Apache hadoop Bigdata training by Design PathshalaDesing Pathshala
Learn Hadoop and Bigdata Analytics, Join Design Pathshala training programs on Big data and analytics.
This slide covers the Advance Map reduce concepts of Hadoop and Big Data.
For training queries you can contact us:
Email: [email protected]
Call us at: +91 98 188 23045
Visit us at: http://designpathshala.com
Join us at: http://www.designpathshala.com/contact-us
Course details: http://www.designpathshala.com/course/view/65536
Big data Analytics Course details: http://www.designpathshala.com/course/view/1441792
Business Analytics Course details: http://www.designpathshala.com/course/view/196608
Stratosphere System Overview Big Data Beers Berlin. 20.11.2013Robert Metzger
Stratosphere is the next generation big data processing engine.
These slides introduce the most important features of Stratosphere by comparing it with Apache Hadoop.
For more information, visit stratosphere.eu
Based on university research, it is now a completely open-source, community driven development with focus on stability and usability.
This document summarizes machine learning concepts in Spark. It introduces Spark, its components including SparkContext, Resilient Distributed Datasets (RDDs), and common transformations and actions. Transformations like map, filter, join, and groupByKey are covered. Actions like collect, count, reduce are also discussed. A word count example in Spark using transformations and actions is provided to illustrate how to analyze text data in Spark.
A MapReduce job usually splits the input data-set into independent chunks which are processed by the map tasks in a completely parallel manner. The framework sorts the outputs of the maps, which are then input to the reduce tasks. Typically both the input and the output of the job are stored in a file-system.
Knoldus organized a Meetup on 1 April 2015. In this Meetup, we introduced Spark with Scala. Apache Spark is a fast and general engine for large-scale data processing. Spark is used at a wide range of organizations to process large datasets.
This document provides an overview of Pig Latin, a data flow language used for analyzing large datasets. Pig Latin scripts are compiled into MapReduce programs that can run on Hadoop. The key points covered include:
- Pig Latin allows expressing data transformations like filtering, joining, grouping in a declarative way similar to SQL. This is compiled into MapReduce jobs.
- It features a rich data model including tuples, bags and nested data to represent complex data structures from files.
- User defined functions (UDFs) allow custom processing like extracting terms from documents or checking for spam.
- The language provides commands like LOAD, FOREACH, FILTER, JOIN to load, transform and analyze data in parallel across
Hadoop is an open-source software framework for distributed storage and processing of large datasets across clusters of computers. It provides reliable storage through HDFS and distributed processing via MapReduce. HDFS handles storage and MapReduce provides a programming model for parallel processing of large datasets across a cluster. The MapReduce framework consists of a mapper that processes input key-value pairs in parallel, and a reducer that aggregates the output of the mappers by key.
The document discusses migrating a data warehouse to the Databricks Lakehouse Platform. It outlines why legacy data warehouses are struggling, how the Databricks Platform addresses these issues, and key considerations for modern analytics and data warehousing. The document then provides an overview of the migration methodology, approach, strategies, and key takeaways for moving to a lakehouse on Databricks.
Data Lakehouse Symposium | Day 1 | Part 1Databricks
The world of data architecture began with applications. Next came data warehouses. Then text was organized into a data warehouse.
Then one day the world discovered a whole new kind of data that was being generated by organizations. The world found that machines generated data that could be transformed into valuable insights. This was the origin of what is today called the data lakehouse. The evolution of data architecture continues today.
Come listen to industry experts describe this transformation of ordinary data into a data architecture that is invaluable to business. Simply put, organizations that take data architecture seriously are going to be at the forefront of business tomorrow.
This is an educational event.
Several of the authors of the book Building the Data Lakehouse will be presenting at this symposium.
Data Lakehouse Symposium | Day 1 | Part 2Databricks
The world of data architecture began with applications. Next came data warehouses. Then text was organized into a data warehouse.
Then one day the world discovered a whole new kind of data that was being generated by organizations. The world found that machines generated data that could be transformed into valuable insights. This was the origin of what is today called the data lakehouse. The evolution of data architecture continues today.
Come listen to industry experts describe this transformation of ordinary data into a data architecture that is invaluable to business. Simply put, organizations that take data architecture seriously are going to be at the forefront of business tomorrow.
This is an educational event.
Several of the authors of the book Building the Data Lakehouse will be presenting at this symposium.
The world of data architecture began with applications. Next came data warehouses. Then text was organized into a data warehouse.
Then one day the world discovered a whole new kind of data that was being generated by organizations. The world found that machines generated data that could be transformed into valuable insights. This was the origin of what is today called the data lakehouse. The evolution of data architecture continues today.
Come listen to industry experts describe this transformation of ordinary data into a data architecture that is invaluable to business. Simply put, organizations that take data architecture seriously are going to be at the forefront of business tomorrow.
This is an educational event.
Several of the authors of the book Building the Data Lakehouse will be presenting at this symposium.
The document discusses the challenges of modern data, analytics, and AI workloads. Most enterprises struggle with siloed data systems that make integration and productivity difficult. The future of data lies with a data lakehouse platform that can unify data engineering, analytics, data warehousing, and machine learning workloads on a single open platform. The Databricks Lakehouse platform aims to address these challenges with its open data lake approach and capabilities for data engineering, SQL analytics, governance, and machine learning.
5 Critical Steps to Clean Your Data Swamp When Migrating Off of HadoopDatabricks
In this session, learn how to quickly supplement your on-premises Hadoop environment with a simple, open, and collaborative cloud architecture that enables you to generate greater value with scaled application of analytics and AI on all your data. You will also learn five critical steps for a successful migration to the Databricks Lakehouse Platform along with the resources available to help you begin to re-skill your data teams.
Democratizing Data Quality Through a Centralized PlatformDatabricks
Bad data leads to bad decisions and broken customer experiences. Organizations depend on complete and accurate data to power their business, maintain efficiency, and uphold customer trust. With thousands of datasets and pipelines running, how do we ensure that all data meets quality standards, and that expectations are clear between producers and consumers? Investing in shared, flexible components and practices for monitoring data health is crucial for a complex data organization to rapidly and effectively scale.
At Zillow, we built a centralized platform to meet our data quality needs across stakeholders. The platform is accessible to engineers, scientists, and analysts, and seamlessly integrates with existing data pipelines and data discovery tools. In this presentation, we will provide an overview of our platform’s capabilities, including:
Giving producers and consumers the ability to define and view data quality expectations using a self-service onboarding portal
Performing data quality validations using libraries built to work with spark
Dynamically generating pipelines that can be abstracted away from users
Flagging data that doesn’t meet quality standards at the earliest stage and giving producers the opportunity to resolve issues before use by downstream consumers
Exposing data quality metrics alongside each dataset to provide producers and consumers with a comprehensive picture of health over time
Learn to Use Databricks for Data ScienceDatabricks
Data scientists face numerous challenges throughout the data science workflow that hinder productivity. As organizations continue to become more data-driven, a collaborative environment is more critical than ever — one that provides easier access and visibility into the data, reports and dashboards built against the data, reproducibility, and insights uncovered within the data.. Join us to hear how Databricks’ open and collaborative platform simplifies data science by enabling you to run all types of analytics workloads, from data preparation to exploratory analysis and predictive analytics, at scale — all on one unified platform.
Why APM Is Not the Same As ML MonitoringDatabricks
Application performance monitoring (APM) has become the cornerstone of software engineering allowing engineering teams to quickly identify and remedy production issues. However, as the world moves to intelligent software applications that are built using machine learning, traditional APM quickly becomes insufficient to identify and remedy production issues encountered in these modern software applications.
As a lead software engineer at NewRelic, my team built high-performance monitoring systems including Insights, Mobile, and SixthSense. As I transitioned to building ML Monitoring software, I found the architectural principles and design choices underlying APM to not be a good fit for this brand new world. In fact, blindly following APM designs led us down paths that would have been better left unexplored.
In this talk, I draw upon my (and my team’s) experience building an ML Monitoring system from the ground up and deploying it on customer workloads running large-scale ML training with Spark as well as real-time inference systems. I will highlight how the key principles and architectural choices of APM don’t apply to ML monitoring. You’ll learn why, understand what ML Monitoring can successfully borrow from APM, and hear what is required to build a scalable, robust ML Monitoring architecture.
The Function, the Context, and the Data—Enabling ML Ops at Stitch FixDatabricks
Autonomy and ownership are core to working at Stitch Fix, particularly on the Algorithms team. We enable data scientists to deploy and operate their models independently, with minimal need for handoffs or gatekeeping. By writing a simple function and calling out to an intuitive API, data scientists can harness a suite of platform-provided tooling meant to make ML operations easy. In this talk, we will dive into the abstractions the Data Platform team has built to enable this. We will go over the interface data scientists use to specify a model and what that hooks into, including online deployment, batch execution on Spark, and metrics tracking and visualization.
Stage Level Scheduling Improving Big Data and AI IntegrationDatabricks
In this talk, I will dive into the stage level scheduling feature added to Apache Spark 3.1. Stage level scheduling extends upon Project Hydrogen by improving big data ETL and AI integration and also enables multiple other use cases. It is beneficial any time the user wants to change container resources between stages in a single Apache Spark application, whether those resources are CPU, Memory or GPUs. One of the most popular use cases is enabling end-to-end scalable Deep Learning and AI to efficiently use GPU resources. In this type of use case, users read from a distributed file system, do data manipulation and filtering to get the data into a format that the Deep Learning algorithm needs for training or inference and then sends the data into a Deep Learning algorithm. Using stage level scheduling combined with accelerator aware scheduling enables users to seamlessly go from ETL to Deep Learning running on the GPU by adjusting the container requirements for different stages in Spark within the same application. This makes writing these applications easier and can help with hardware utilization and costs.
There are other ETL use cases where users want to change CPU and memory resources between stages, for instance there is data skew or perhaps the data size is much larger in certain stages of the application. In this talk, I will go over the feature details, cluster requirements, the API and use cases. I will demo how the stage level scheduling API can be used by Horovod to seamlessly go from data preparation to training using the Tensorflow Keras API using GPUs.
The talk will also touch on other new Apache Spark 3.1 functionality, such as pluggable caching, which can be used to enable faster dataframe access when operating from GPUs.
Simplify Data Conversion from Spark to TensorFlow and PyTorchDatabricks
In this talk, I would like to introduce an open-source tool built by our team that simplifies the data conversion from Apache Spark to deep learning frameworks.
Imagine you have a large dataset, say 20 GBs, and you want to use it to train a TensorFlow model. Before feeding the data to the model, you need to clean and preprocess your data using Spark. Now you have your dataset in a Spark DataFrame. When it comes to the training part, you may have the problem: How can I convert my Spark DataFrame to some format recognized by my TensorFlow model?
The existing data conversion process can be tedious. For example, to convert an Apache Spark DataFrame to a TensorFlow Dataset file format, you need to either save the Apache Spark DataFrame on a distributed filesystem in parquet format and load the converted data with third-party tools such as Petastorm, or save it directly in TFRecord files with spark-tensorflow-connector and load it back using TFRecordDataset. Both approaches take more than 20 lines of code to manage the intermediate data files, rely on different parsing syntax, and require extra attention for handling vector columns in the Spark DataFrames. In short, all these engineering frictions greatly reduced the data scientists’ productivity.
The Databricks Machine Learning team contributed a new Spark Dataset Converter API to Petastorm to simplify these tedious data conversion process steps. With the new API, it takes a few lines of code to convert a Spark DataFrame to a TensorFlow Dataset or a PyTorch DataLoader with default parameters.
In the talk, I will use an example to show how to use the Spark Dataset Converter to train a Tensorflow model and how simple it is to go from single-node training to distributed training on Databricks.
Scaling your Data Pipelines with Apache Spark on KubernetesDatabricks
There is no doubt Kubernetes has emerged as the next generation of cloud native infrastructure to support a wide variety of distributed workloads. Apache Spark has evolved to run both Machine Learning and large scale analytics workloads. There is growing interest in running Apache Spark natively on Kubernetes. By combining the flexibility of Kubernetes and scalable data processing with Apache Spark, you can run any data and machine pipelines on this infrastructure while effectively utilizing resources at disposal.
In this talk, Rajesh Thallam and Sougata Biswas will share how to effectively run your Apache Spark applications on Google Kubernetes Engine (GKE) and Google Cloud Dataproc, orchestrate the data and machine learning pipelines with managed Apache Airflow on GKE (Google Cloud Composer). Following topics will be covered: – Understanding key traits of Apache Spark on Kubernetes- Things to know when running Apache Spark on Kubernetes such as autoscaling- Demonstrate running analytics pipelines on Apache Spark orchestrated with Apache Airflow on Kubernetes cluster.
Scaling and Unifying SciKit Learn and Apache Spark PipelinesDatabricks
Pipelines have become ubiquitous, as the need for stringing multiple functions to compose applications has gained adoption and popularity. Common pipeline abstractions such as “fit” and “transform” are even shared across divergent platforms such as Python Scikit-Learn and Apache Spark.
Scaling pipelines at the level of simple functions is desirable for many AI applications, however is not directly supported by Ray’s parallelism primitives. In this talk, Raghu will describe a pipeline abstraction that takes advantage of Ray’s compute model to efficiently scale arbitrarily complex pipeline workflows. He will demonstrate how this abstraction cleanly unifies pipeline workflows across multiple platforms such as Scikit-Learn and Spark, and achieves nearly optimal scale-out parallelism on pipelined computations.
Attendees will learn how pipelined workflows can be mapped to Ray’s compute model and how they can both unify and accelerate their pipelines with Ray.
Sawtooth Windows for Feature AggregationsDatabricks
In this talk about zipline, we will introduce a new type of windowing construct called a sawtooth window. We will describe various properties about sawtooth windows that we utilize to achieve online-offline consistency, while still maintaining high-throughput, low-read latency and tunable write latency for serving machine learning features.We will also talk about a simple deployment strategy for correcting feature drift – due operations that are not “abelian groups”, that operate over change data.
We want to present multiple anti patterns utilizing Redis in unconventional ways to get the maximum out of Apache Spark.All examples presented are tried and tested in production at Scale at Adobe. The most common integration is spark-redis which interfaces with Redis as a Dataframe backing Store or as an upstream for Structured Streaming. We deviate from the common use cases to explore where Redis can plug gaps while scaling out high throughput applications in Spark.
Niche 1 : Long Running Spark Batch Job – Dispatch New Jobs by polling a Redis Queue
· Why?
o Custom queries on top a table; We load the data once and query N times
· Why not Structured Streaming
· Working Solution using Redis
Niche 2 : Distributed Counters
· Problems with Spark Accumulators
· Utilize Redis Hashes as distributed counters
· Precautions for retries and speculative execution
· Pipelining to improve performance
Re-imagine Data Monitoring with whylogs and SparkDatabricks
In the era of microservices, decentralized ML architectures and complex data pipelines, data quality has become a bigger challenge than ever. When data is involved in complex business processes and decisions, bad data can, and will, affect the bottom line. As a result, ensuring data quality across the entire ML pipeline is both costly, and cumbersome while data monitoring is often fragmented and performed ad hoc. To address these challenges, we built whylogs, an open source standard for data logging. It is a lightweight data profiling library that enables end-to-end data profiling across the entire software stack. The library implements a language and platform agnostic approach to data quality and data monitoring. It can work with different modes of data operations, including streaming, batch and IoT data.
In this talk, we will provide an overview of the whylogs architecture, including its lightweight statistical data collection approach and various integrations. We will demonstrate how the whylogs integration with Apache Spark achieves large scale data profiling, and we will show how users can apply this integration into existing data and ML pipelines.
Raven: End-to-end Optimization of ML Prediction QueriesDatabricks
Machine learning (ML) models are typically part of prediction queries that consist of a data processing part (e.g., for joining, filtering, cleaning, featurization) and an ML part invoking one or more trained models. In this presentation, we identify significant and unexplored opportunities for optimization. To the best of our knowledge, this is the first effort to look at prediction queries holistically, optimizing across both the ML and SQL components.
We will present Raven, an end-to-end optimizer for prediction queries. Raven relies on a unified intermediate representation that captures both data processing and ML operators in a single graph structure.
This allows us to introduce optimization rules that
(i) reduce unnecessary computations by passing information between the data processing and ML operators
(ii) leverage operator transformations (e.g., turning a decision tree to a SQL expression or an equivalent neural network) to map operators to the right execution engine, and
(iii) integrate compiler techniques to take advantage of the most efficient hardware backend (e.g., CPU, GPU) for each operator.
We have implemented Raven as an extension to Spark’s Catalyst optimizer to enable the optimization of SparkSQL prediction queries. Our implementation also allows the optimization of prediction queries in SQL Server. As we will show, Raven is capable of improving prediction query performance on Apache Spark and SQL Server by up to 13.1x and 330x, respectively. For complex models, where GPU acceleration is beneficial, Raven provides up to 8x speedup compared to state-of-the-art systems. As part of the presentation, we will also give a demo showcasing Raven in action.
Processing Large Datasets for ADAS Applications using Apache SparkDatabricks
Semantic segmentation is the classification of every pixel in an image/video. The segmentation partitions a digital image into multiple objects to simplify/change the representation of the image into something that is more meaningful and easier to analyze [1][2]. The technique has a wide variety of applications ranging from perception in autonomous driving scenarios to cancer cell segmentation for medical diagnosis.
Exponential growth in the datasets that require such segmentation is driven by improvements in the accuracy and quality of the sensors generating the data extending to 3D point cloud data. This growth is further compounded by exponential advances in cloud technologies enabling the storage and compute available for such applications. The need for semantically segmented datasets is a key requirement to improve the accuracy of inference engines that are built upon them.
Streamlining the accuracy and efficiency of these systems directly affects the value of the business outcome for organizations that are developing such functionalities as a part of their AI strategy.
This presentation details workflows for labeling, preprocessing, modeling, and evaluating performance/accuracy. Scientists and engineers leverage domain-specific features/tools that support the entire workflow from labeling the ground truth, handling data from a wide variety of sources/formats, developing models and finally deploying these models. Users can scale their deployments optimally on GPU-based cloud infrastructure to build accelerated training and inference pipelines while working with big datasets. These environments are optimized for engineers to develop such functionality with ease and then scale against large datasets with Spark-based clusters on the cloud.
Massive Data Processing in Adobe Using Delta LakeDatabricks
At Adobe Experience Platform, we ingest TBs of data every day and manage PBs of data for our customers as part of the Unified Profile Offering. At the heart of this is a bunch of complex ingestion of a mix of normalized and denormalized data with various linkage scenarios power by a central Identity Linking Graph. This helps power various marketing scenarios that are activated in multiple platforms and channels like email, advertisements etc. We will go over how we built a cost effective and scalable data pipeline using Apache Spark and Delta Lake and share our experiences.
What are we storing?
Multi Source – Multi Channel Problem
Data Representation and Nested Schema Evolution
Performance Trade Offs with Various formats
Go over anti-patterns used
(String FTW)
Data Manipulation using UDFs
Writer Worries and How to Wipe them Away
Staging Tables FTW
Datalake Replication Lag Tracking
Performance Time!
Generative Artificial Intelligence and its ApplicationsSandeepKS52
The exploration of generative AI begins with an overview of its fundamental concepts, highlighting how these technologies create new content and ideas by learning from existing data. Following this, the focus shifts to the processes involved in training and fine-tuning models, which are essential for enhancing their performance and ensuring they meet specific needs. Finally, the importance of responsible AI practices is emphasized, addressing ethical considerations and the impact of AI on society, which are crucial for developing systems that are not only effective but also beneficial and fair.
Build enterprise-ready applications using skills you already have!PhilMeredith3
Process Tempo is a rapid application development (RAD) environment that empowers data teams to create enterprise-ready applications using skills they already have.
With Process Tempo, data teams can craft beautiful, pixel-perfect applications the business will love.
Process Tempo combines features found in business intelligence tools, graphic design tools and workflow solutions - all in a single platform.
Process Tempo works with all major databases such as Databricks, Snowflake, Postgres and MySQL. It also works with leading graph database technologies such as Neo4j, Puppy Graph and Memgraph.
It is the perfect platform to accelerate the delivery of data-driven solutions.
For more information, you can find us at www.processtempo.com
Design by Contract - Building Robust Software with Contract-First DevelopmentPar-Tec S.p.A.
In the fast-paced world of software development, code quality and reliability are paramount. This SlideShare deck, presented at PyCon Italia 2025 by Antonio Spadaro, DevOps Engineer at Par-Tec, introduces the “Design by Contract” (DbC) philosophy and demonstrates how a Contract-First Development approach can elevate your projects.
Beginning with core DbC principles—preconditions, postconditions, and invariants—these slides define how formal “contracts” between classes and components lead to clearer, more maintainable code. You’ll explore:
The fundamental concepts of Design by Contract and why they matter.
How to write and enforce interface contracts to catch errors early.
Real-world examples showcasing how Contract-First Development improves error handling, documentation, and testability.
Practical Python demonstrations using libraries and tools that streamline DbC adoption in your workflow.
Eliminate the complexities of Event-Driven Architecture with Domain-Driven De...SheenBrisals
The distributed nature of modern applications and their architectures brings a great level of complexity to engineering teams. Though API contracts, asynchronous communication patterns, and event-driven architecture offer assistance, not all enterprise teams fully utilize them. While adopting cloud and modern technologies, teams are often hurried to produce outcomes without spending time in upfront thinking. This leads to building tangled applications and distributed monoliths. For those organizations, it is hard to recover from such costly mistakes.
In this talk, Sheen will explain how enterprises should decompose by starting at the organizational level, applying Domain-Driven Design, and distilling to a level where teams can operate within a boundary, ownership, and autonomy. He will provide organizational, team, and design patterns and practices to make the best use of event-driven architecture by understanding the types of events, event structure, and design choices to keep the domain model pure by guarding against corruption and complexity.
Bonk coin airdrop_ Everything You Need to Know.pdfHerond Labs
The Bonk airdrop, one of the largest in Solana’s history, distributed 50% of its total supply to community members, significantly boosting its popularity and Solana’s network activity. Below is everything you need to know about the Bonk coin airdrop, including its history, eligibility, how to claim tokens, risks, and current status.
https://blog.herond.org/bonk-coin-airdrop/
Automating Map Production With FME and PythonSafe Software
People still love a good paper map, but every time a request lands on a GIS team’s desk, it takes time to create that perfect, individual map—even when you're ready and have projects prepped. Then come the inevitable changes and iterations that add even more time to the process. This presentation explores a solution for automating map production using FME and Python. FME handles the setup of variables, leveraging GIS reference layers and parameters to manage details like map orientation, label sizes, and layout elements. Python takes over to export PDF maps for each location and template size, uploading them monthly to ArcGIS Online. The result? Fresh, regularly updated maps, ready for anyone to grab anytime—saving you time, effort, and endless revisions while keeping users happy with up-to-date, accessible maps.
AI-ASSISTED METAMORPHIC TESTING FOR DOMAIN-SPECIFIC MODELLING AND SIMULATIONmiso_uam
AI-ASSISTED METAMORPHIC TESTING FOR DOMAIN-SPECIFIC MODELLING AND SIMULATION (plenary talk at ANNSIM'2025)
Testing is essential to improve the correctness of software systems. Metamorphic testing (MT) is an approach especially suited when the system under test lacks oracles, or they are expensive to compute. However, building an MT environment for a particular domain (e.g., cloud simulation, automated driving simulation, production system simulation, etc) requires substantial effort.
To alleviate this problem, we propose a model-driven engineering approach to automate the construction of MT environments, which is especially useful to test domain-specific modelling and simulation systems. Starting from a meta-model capturing the domain concepts, and a description of the domain execution environment, our approach produces an MT environment featuring comprehensive support for the MT process. This includes the definition of domain-specific metamorphic relations, their evaluation, detailed reporting of the testing results, and the automated search-based generation of follow-up test cases.
In this talk, I presented the approach, along with ongoing work and perspectives for integrating intelligence assistance based on large language models in the MT process. The work is a joint collaboration with Pablo Gómez-Abajo, Pablo C. Cañizares and Esther Guerra from the miso research group and Alberto Núñez from UCM.
Revolutionize Your Insurance Workflow with Claims Management SoftwareInsurance Tech Services
Claims management software enhances efficiency, accuracy, and satisfaction by automating processes, reducing errors, and speeding up transparent claims handling—building trust and cutting costs. Explore More - https://www.damcogroup.com/insurance/claims-management-software
The rise of e-commerce has redefined how retailers operate—and reconciliation...Prachi Desai
As payment flows grow more fragmented, the complexity of reconciliation and revenue recognition increases. The result? Mounting operational costs, silent revenue leakages, and avoidable financial risk.
Spot the inefficiencies. Automate what’s slowing you down.
https://www.taxilla.com/ecommerce-reconciliation
Agentic Techniques in Retrieval-Augmented Generation with Azure AI SearchMaxim Salnikov
Discover how Agentic Retrieval in Azure AI Search takes Retrieval-Augmented Generation (RAG) to the next level by intelligently breaking down complex queries, leveraging full conversation history, and executing parallel searches through a new LLM-powered query planner. This session introduces a cutting-edge approach that delivers significantly more accurate, relevant, and grounded answers—unlocking new capabilities for building smarter, more responsive generative AI applications.
Traditional Retrieval-Augmented Generation (RAG) pipelines work well for simple queries—but when users ask complex, multi-part questions or refer to previous conversation history, they often fall short. That’s where Agentic Retrieval comes in: a game-changing advancement in Azure AI Search that brings LLM-powered reasoning directly into the retrieval layer.
This session unveils how agentic techniques elevate your RAG-based applications by introducing intelligent query planning, subquery decomposition, parallel execution, and result merging—all orchestrated by a new Knowledge Agent. You’ll learn how this approach significantly boosts relevance, groundedness, and answer quality, especially for sophisticated enterprise use cases.
Key takeaways:
- Understand the evolution from keyword and vector search to agentic query orchestration
- See how full conversation context improves retrieval accuracy
- Explore measurable improvements in answer relevance and completeness (up to 40% gains!)
- Get hands-on guidance on integrating Agentic Retrieval with Azure AI Foundry and SDKs
- Discover how to build scalable, AI-first applications powered by this new paradigm
Whether you're building intelligent copilots, enterprise Q&A bots, or AI-driven search solutions, this session will equip you with the tools and patterns to push beyond traditional RAG.
14 Years of Developing nCine - An Open Source 2D Game FrameworkAngelo Theodorou
A 14-year journey developing nCine, an open-source 2D game framework.
This talk covers its origins, the challenges of staying motivated over the long term, and the hurdles of open-sourcing a personal project while working in the game industry.
Along the way, it’s packed with juicy technical pills to whet the appetite of the most curious developers.
Artificial Intelligence Applications Across IndustriesSandeepKS52
Artificial Intelligence is a rapidly growing field that influences many aspects of modern life, including transportation, healthcare, and finance. Understanding the basics of AI provides insight into how machines can learn and make decisions, which is essential for grasping its applications in various industries. In the automotive sector, AI enhances vehicle safety and efficiency through advanced technologies like self-driving systems and predictive maintenance. Similarly, in healthcare, AI plays a crucial role in diagnosing diseases and personalizing treatment plans, while in financial services, it helps in fraud detection and risk management. By exploring these themes, a clearer picture of AI's transformative impact on society emerges, highlighting both its potential benefits and challenges.
Join the Denver Marketo User Group, Captello and Integrate as we dive into the best practices, tools, and strategies for maintaining robust, high-performing databases. From managing vendors and automating orchestrations to enriching data for better insights, this session will unpack the key elements that keep your data ecosystem running smoothly—and smartly.
We will hear from Steve Armenti, Twelfth, and Aaron Karpaty, Captello, and Frannie Danzinger, Integrate.
Providing Better Biodiversity Through Better DataSafe Software
This session explores how FME is transforming data workflows at Ireland’s National Biodiversity Data Centre (NBDC) by eliminating manual data manipulation, incorporating machine learning, and enhancing overall efficiency. Attendees will gain insight into how NBDC is using FME to document and understand internal processes, make decision-making fully transparent, and shine a light on underlying code to improve clarity and reduce silent failures.
The presentation will also outline NBDC’s future plans for FME, including empowering staff to access and query data independently, without relying on external consultants. It will also showcase ambitions to connect to new data sources, unlock the full potential of its valuable datasets, create living atlases, and place its valuable data directly into the hands of decision-makers across Ireland—ensuring that biodiversity is not only protected but actively enhanced.
Rebuilding Cadabra Studio: AI as Our Core FoundationCadabra Studio
Cadabra Studio set out to reconstruct its core processes, driven entirely by AI, across all functions of its software development lifecycle. This journey resulted in remarkable efficiency improvements of 40–80% and reshaped the way teams collaborate. This presentation shares our challenges and lessons learned in becoming an AI-native firm, including overcoming internal resistance and achieving significant project delivery gains. Discover our strategic approach and transformative recommendations to integrate AI not just as a feature, but as a fundamental element of your operational structure. What changes will AI bring to your company?
Online Queue Management System for Public Service Offices [Focused on Municip...Rishab Acharya
This report documents the design and development of an Online Queue Management System tailored specifically for municipal offices in Nepal. Municipal offices, as critical providers of essential public services, face challenges including overcrowded queues, long waiting times, and inefficient service delivery, causing inconvenience to citizens and pressure on municipal staff. The proposed digital platform allows citizens to book queue tokens online for various physical services, facilitating efficient queue management and real-time wait time updates. Beyond queue management, the system includes modules to oversee non-physical developmental programs, such as educational and social welfare initiatives, enabling better participation and progress monitoring. Furthermore, it incorporates a module for monitoring infrastructure development projects, promoting transparency and allowing citizens to report issues and track progress. The system development follows established software engineering methodologies, including requirement analysis, UML-based system design, and iterative testing. Emphasis has been placed on user-friendliness, security, and scalability to meet the diverse needs of municipal offices across Nepal. Implementation of this integrated digital platform will enhance service efficiency, increase transparency, and improve citizen satisfaction, thereby supporting the modernization and digital transformation of public service delivery in Nepal.
Integration Ignited Redefining Event-Driven Architecture at Wix - EventCentricNatan Silnitsky
At Wix, we revolutionized our platform by making integration events the backbone of our 4,000-microservice ecosystem. By abandoning traditional domain events for standardized Protobuf events through Kafka, we created a universal language powering our entire architecture.
We'll share how our "single-aggregate services" approach—where every CUD operation triggers semantic events—transformed scalability and extensibility, driving efficient event choreography, data lake ingestion, and search indexing.
We'll address our challenges: balancing consistency with modularity, managing event overhead, and solving consumer lag issues. Learn how event-based data prefetches dramatically improved performance while preserving the decoupling that makes our platform infinitely extensible.
Key Takeaways:
- How integration events enabled unprecedented scale and extensibility
- Practical strategies for event-based data prefetching that supercharge performance
- Solutions to common event-driven architecture challenges
- When to break conventional architectural rules for specific contexts
Best Inbound Call Tracking Software for Small BusinessesTheTelephony
The best inbound call tracking software for small businesses offers features like call recording, real-time analytics, lead attribution, and CRM integration. It helps track marketing campaign performance, improve customer service, and manage leads efficiently. Look for solutions with user-friendly dashboards, customizable reporting, and scalable pricing plans tailored for small teams. Choosing the right tool can significantly enhance communication and boost overall business growth.
Build Smarter, Deliver Faster with Choreo - An AI Native Internal Developer P...WSO2
Enterprises must deliver intelligent, cloud native applications quickly—without compromising governance or scalability. This session explores how an internal developer platform increases productivity via AI for code and accelerates AI-native app delivery via code for AI. Learn practical techniques for embedding AI in the software lifecycle, automating governance with AI agents, and applying a cell-based architecture for modularity and scalability. Real-world examples and proven patterns will illustrate how to simplify delivery, enhance developer productivity, and drive measurable outcomes.
Learn more: https://wso2.com/choreo
How to Generate Financial Statements in QuickBooks Like a Pro (1).pdfQuickBooks Training
Are you preparing your budget for the next year, applying for a business credit card or loan, or opening a company bank account? If so, you may find QuickBooks financial statements to be a very useful tool.
These statements offer a brief, well-structured overview of your company’s finances, facilitating goal-setting and money management.
Don’t worry if you’re not knowledgeable about QuickBooks financial statements. These statements are complete reports from QuickBooks that provide an overview of your company’s financial procedures.
They thoroughly view your financial situation by including important features: income, expenses, investments, and disadvantages. QuickBooks financial statements facilitate your financial management and assist you in making wise determinations, regardless of your experience as a business owner.
4. From MapReduce to Spark
public static class WordCountMapClass extends MapReduceBase
implements Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output,
Reporter reporter) throws IOException {
String line = value.toString();
StringTokenizer itr = new StringTokenizer(line);
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
output.collect(word, one);
}
}
}
public static class WorkdCountReduce extends MapReduceBase
implements Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output,
Reporter reporter) throws IOException {
int sum = 0;
while (values.hasNext()) {
sum += values.next().get();
}
output.collect(key, new IntWritable(sum));
}
}
val file = spark.textFile("hdfs://...")
val counts = file.flatMap(line => line.split(" "))
.map(word => (word, 1))
.reduceByKey(_ + _)
counts.saveAsTextFile("hdfs://...")
6. Beyond Hadoop Users
6
Early adopters
Data Scientists
Statisticians
R users …
PyData
Users
Understands
MapReduce
& functional APIs
7. RDD API
• Most data is structured (JSON, CSV, Avro, Parquet, Hive …)
– Programming RDDs inevitably ends up with a lot of tuples (_1, _2, …)
• Functional transformations (e.g. map/reduce) are not as
intuitive
7
9. DataFrames in Spark
• Distributed collection of data grouped into named
columns (i.e. RDD with schema)
• Domain-specific functions designed for common tasks
– Metadata
– Sampling
– Project, filter, aggregation, join, …
– UDFs
• Available in Python, Scala, Java, and R (via SparkR)
9
10. 10
0 2 4 6 8 10
RDD Scala
RDD Python
Spark Scala DF
Spark Python DF
Runtime performance of aggregating 10 million int pairs
(secs)
12. Learn by Demo (in a Databricks Cloud
Notebook)
• Creation
• Project
• Filter
• Aggregations
• Join
• SQL
• UDFs
• Pandas
12
For the purpose of distributing the slides online,
I’m attaching screenshots of the notebooks.
30. Plan Optimization & Execution
30
SQL
AST
DataFrame
Unresolved
Logical
Plan
Logical
Plan
Op;mized
Logical
Plan
Physical
Plans
Physical
Plans
RDDs
Selected
Physical
Plan
Analysis
Logical
Op;miza;on
Physical
Planning
Cost
Model
Physical
Plans
Code
Genera;on
Catalog
DataFrames and SQL share the same optimization/execution pipeline
34. More Than Naïve Scans
• Data Sources API can automatically prune columns and
push filters to the source
– Parquet: skip irrelevant columns and blocks of data; turn
string comparison into integer comparisons for dictionary
encoded data
– JDBC: Rewrite queries to push predicates down
34
35. 35
joined = users.join(events, users.id == events.uid)
filtered = joined.filter(events.date > ”2015-01-01”)
logical plan
filter
join
scan
(users)
scan
(events)
optimized plan
join
scan
(users)
filter
scan
(events)
optimized plan
with intelligent data sources
join
scan
(users)
filter scan
(events)
36. DataFrames in Spark
• APIs in Python, Java, Scala, and R (via SparkR)
• For new users: make it easier to program Big Data
• For existing users: make Spark programs simpler & easier to
understand, while improving performance
• Experimental API in Spark 1.3 (early March)
36
39. More Information
Blog post introducing DataFrames:
http://tinyurl.com/spark-dataframes
Build from source:
http://github.com/apache/spark (branch-1.3)