This document provides an introduction to Bayesian methods for theory, computation, inference and prediction. It discusses key concepts in Bayesian statistics including the likelihood principle, the likelihood function, Bayes' theorem, and using Markov chain Monte Carlo methods like the Metropolis-Hastings algorithm to perform posterior integration when closed-form solutions are not possible. Examples are provided on using Bayesian regression to model the relationship between salmon body length and egg mass while incorporating prior information. The summary concludes that the Bayesian approach provides a coherent way to quantify uncertainty and make predictions accounting for both aleatory and epistemic sources of variation.
Related topics: