SlideShare a Scribd company logo
Introduction to Algorithms for Behavior Based
Recommendation
Tokyo Web Mining Meetup
March 26, 2016
Kimikazu Kato
Silver Egg Technology Co., Ltd.
1 / 36
About myself
加藤公一 Kimikazu Kato
Twitter: @hamukazu
LinkedIn: http://linkedin.com/in/kimikazukato
Chief Scientist at Silver Egg Technology
Ph.D in computer science, Master's degree in mathematics
Experience in numerical computation and mathematical algorithms
especially ...
Geometric computation, computer graphics
Partial differential equation, parallel computation, GPGPU
Mathematical programming
Now specialize in
Machine learning, especially, recommendation system
2 / 36
About our company
Silver Egg Technology
Established: 1998
CEO: Tom Foley
Main Service: Recommendation System, Online Advertisement
Major Clients: QVC, Senshukai (Bellemaison), Tsutaya
We provide a recommendation system to Japan's leading web sites.
3 / 36
Table of Contents
Introduction
Types of recommendation
Evaluation metrics
Algorithms
Conclusion
4 / 36
Caution
This presentation includes:
State-of-the-art algorithms for recommendation systems,
But does NOT include:
Any information about the core algorithm in Silver Egg Technology
5 / 36
Recommendation System
Recommender systems or recommendation systems (sometimes
replacing "system" with a synonym such as platform or engine) are a
subclass of information filtering system that seek to predict the
'rating' or 'preference' that user would give to an item. — Wikipedia
In this talk, we focus on collaborative filtering method, which only utilize
users' behavior, activity, and preference.
Other methods include:
Content-based methods
Method using demographic data
Hybrid
6 / 36
Rating Prediction Problem
usermovie W X Y Z
A 5 4 1 4
B 4
C 2 3
D 1 4 ?
Given rating information for some user/movie pairs,
Want to predict a rating for an unknown user/movie pair.
7 / 36
Item Prediction Problem
useritem W X Y Z
A 1 1 1 1
B 1
C 1
D 1 ? 1 ?
Given "who bought what" information (user/item pairs),
Want to predict which item is likely to be bought by a user.
8 / 36
Input/Output of the systems
Rating Prediction
Input: set of ratings for user/item pairs
Output: map from user/item pair to predicted rating
Item Prediction
Input: set of user/item pairs as shopping data, integer
Output: top items for each user which are most likely to be bought by
him/her
k
k
9 / 36
Evaluation Metrics for Recommendation
Systems
Rating prediction
The Root of the Mean Squared Error (RMSE)
The square root of the sum of squared errors
Item prediction
Precision
(# of Recommended and Purchased)/(# of Recommended)
Recall
(# of Recommended and Purchased)/(# of Purchased)
10 / 36
RMSE of Rating Prediction
Some user/item pairs are randomly chosen to be hidden.
usermovie W X Y Z
A 5 4 1 4
B 4
C 2 3
D 1 4 ?
Predicted as 3.1 but the actual is 4, then the squared error is
.
Take the sum over the error over all the hidden items and then, take the
square root of it.
|3.1 − 4 =|
2
0.9
2
( −∑
(u,i)∈hidden
predictedui
actualui )
2
− −−−−−−−−−−−−−−−−−−−−−−−−−
√
11 / 36
Precision/Recall of Item Prediction
If three items are recommended:
2 out of 3 recommended items are actually bought: the precision is 2/3.
2 out of 4 bought items are recommended: the recall is 2/4.
These are denoted by recall@3 and prec@3.
Ex. recall@5 = 3/5, prec@5 = 3/4
12 / 36
ROC and AUC
# of
recom.
1 2 3 4 5 6 7 8 9 10
# of
whites
1 1 1 2 2 3 4 5 5 6
# of
blacks
0 1 2 2 3 3 3 3 4 4
Divide the first and second row by total number of white and blacks
respectively, and plot the values in xy plane.
13 / 36
This curve is called "ROC curve." The area under this curve is called "AUC."
Higher AUC is better (max =1).
The AUC is often used in academia, but for a practical purpose...
14 / 36
Netflix Prize
The Netflix Prize was an open competition for the best collaborative
filtering algorithm to predict user ratings for films, based on previous
ratings without any other information about the users or films, i.e.
without the users or the films being identified except by numbers
assigned for the contest. — Wikipedia
Shortly, an open competition for preference prediction.
Closed in 2009.
15 / 36
Outline of Winner's Algorithm
Refer to the blog by E.Chen.
http://blog.echen.me/2011/10/24/winning-the-netflix-prize-a-summary/
Digest of the methods:
Neighborhood Method
Matrix Factorization
Restricted Boltzmann Machines
Regression
Regularization
Ensemble Methods
16 / 36
Notations
Number of users:
Set of users:
Number of items (movies):
Set of items (movies):
Input matrix: ( matrix)
n
U = {1, 2, … , n}
m
I = {1, 2, … , m}
A n × m
17 / 36
Matrix Factorization
Based on the assumption that each item is described by a small number of
latent factors
Each rating is expressed as a linear combination of the latent factors
Achieve good performance in Netflix Prize
Find such matrices , where
A ≈ YX
T
X ∈ Mat(f, n) Y ∈ Mat(f, m) f ≪ n, m
18 / 36
Find and maximize
p (A|X, Y , σ) = N ( | , σ)∏
≠0aui
Aui X
T
u Yi
p(X| ) = N ( |0, I)σX ∏
u
Xu σX
p(Y | ) = N ( |0, I)σY ∏
i
Yi σY
X Y p (X, Y |A, σ)
19 / 36
According to Bayes' Theorem,
Thus,
where means Frobenius norm.
How can this be computed? Use MCMC. See [Salakhutdinov et al., 2008].
Once and are determined, and the prediction for is
estimated by
p (X, Y |A, σ)
= p(A|X, Y , σ)p(X| )p(X| ) × const.σX σX
log p (U , V |A, σ, , )σU σV
= + ∥X + ∥Y + const.∑
Aui
( − )Aui X
T
u Yi
2
λX ∥
2
Fro
λY ∥
2
Fro
∥ ⋅ ∥Fro
X Y := YA
~
X
T
Aui
A
~
ui
20 / 36
Rating
usermovie W X Y Z
A 5 4 1 4
B 4
C 2 3
D 1 4 ?
Includes negative feedback
"1" means "boring"
Zero means "unknown"
Shopping (Browsing)
useritem W X Y Z
A 1 1 1 1
B 1
C 1
D 1 ? 1 ?
Includes no negative feedback
Zero means "unknown" or
"negative"
More degree of the freedom
Difference between Rating and Shopping
Consequently, the algorithm effective for the rating matrix is not necessarily
effective for the shopping matrix.
21 / 36
Solutions
Adding a constraint to the optimization problem
Changing the objective function itself
22 / 36
Adding a Constraint
The problem has the too much degree of freedom
Desirable characteristic is that many elements of the product should be
zero.
Assume that a certain ratio of zero elements of the input matrix remains
zero after the optimization [Sindhwani et al., 2010]
Experimentally outperform the "zero-as-negative" method
23 / 36
One-class Matrix Completion
[Sindhwani et al., 2010]
Introduced variables to relax the problem.
Minimize
subject to
pui
( − ) + ∥X + ∥Y∑
≠0Aui
Aui X
T
u Yi λX ∥
2
Fro
λY ∥
2
Fro
+ [ (0 − + (1 − )(1 − ]∑
=0Aui
pui X
T
u Yi )
2
pui X
T
u Yi )
2
+ T [− log − (1 − ) log(1 − )]∑
=0Aui
pui pui pui pui
= r
1
|{ | = 0}|Aui Aui
∑
=0Aui
pui
24 / 36
Intuitive explanation:
means how likely the -element is zero.
The second term is the error of estimation considering 's.
The third term is the entropy of the distribution.
( − ) + ∥X + ∥Y∑
≠0Aui
Aui X
T
u Yi λX ∥
2
Fro
λY ∥
2
Fro
+ [ (0 − + (1 − )(1 − ]∑
=0Aui
pui X
T
u Yi )
2
pui X
T
u Yi )
2
+ T [− log − (1 − ) log(1 − )]∑
=0Aui
pui pui pui pui
pui (u, i)
pui
25 / 36
Implicit Sparseness constraint: SLIM (Elastic Net)
In the regression model, adding L1 term makes the solution sparse:
The similar idea is used for the matrix factorization [Ning et al., 2011]:
Minimize
subject to
[ ∥Xw − y + ∥w + λρ|w ]min
w
1
2n
∥
2
2
λ(1 − ρ)
2
∥
2
2
|1
∥A − AW ∥ + ∥W + λρ|W
λ(1 − ρ)
2
∥
2
Fro
|1
diag W = 0
26 / 36
Ranking prediction
Another strategy of shopping prediction
"Learn from the order" approach
Predict whether X is more likely to be bought than Y, rather than the
probability for X or Y.
27 / 36
Bayesian Probabilistic Ranking
[Rendle et al., 2009]
Consider matrix factorization model, but the update of elements is
according to the observation of the "orders"
The parameters are the same as usual matrix factorization, but the
objective function is different
Consider a total order for each . Suppose that
means "the user is more likely to buy than .
The objective is to calculate such that and (which
means and are not bought by ).
>u u ∈ U i j(i, j ∈ I)>u
u i j
p(i j)>u = 0Aui Auj
i j u
28 / 36
Let
and define
where we assume
According to Bayes' theorem, the function to be optimized becomes:
= {(u, i, j) ∈ U × I × I| = 1, = 0} ,DA Aui Auj
p( |X, Y ) := p(i j|X, Y )∏
u∈U
>u ∏
(u,i,j)∈DA
>u
p(i j|X, Y )>u
σ(x)
= σ( − )X
T
u Yi Xu Yj
=
1
1 + e
−x
∏ p(X, Y | ) = ∏ p( |X, Y ) × p(X)p(Y ) × const.>u >u
29 / 36
Taking log of this,
Now consider the following problem:
This means "find a pair of matrices which preserve the order of the
element of the input matrix for each ."
L := log[∏ p( |X, Y ) × p(X)p(Y )]>u
= log p(i j|X, Y ) − ∥X − ∥Y∏
(u,i,j)∈DA
>u λX ∥
2
Fro
λY ∥
2
Fro
= log σ( − ) − ∥X − ∥Y∑
(u,i,j)∈DA
X
T
u Yi X
T
u Yj λX ∥
2
Fro
λY ∥
2
Fro
[ log σ( − ) − ∥X − ∥Y ]max
X,Y
∑
(u,i,j)∈DA
X
T
u Yi X
T
u Yj λX ∥
2
Fro
λY ∥
2
Fro
X, Y
u
30 / 36
Computation
The function we want to optimize:
is huge, so in practice, a stochastic method is necessary.
Let the parameters be .
The algorithm is the following:
Repeat the following
Choose randomly
Update with
This method is called Stochastic Gradient Descent (SGD).
log σ( − ) − ∥X − ∥Y∑
(u,i,j)∈DA
X
T
u Yi X
T
u Yj λX ∥
2
Fro
λY ∥
2
Fro
U × I × I
Θ = (X, Y )
(u, i, j) ∈ DA
Θ
Θ = Θ − α (log σ( − ) − ∥X − ∥Y )
∂
∂Θ
X
T
u Yi X
T
u Yj λX ∥
2
Fro
λY ∥
2
Fro
31 / 36
MyMediaLite
http://www.mymedialite.net/
Open source implemetation of recommendation systems
Written in C#
Reasonable computation time
Supports rating and item prediction
32 / 36
Practical Aspect of Recommendation
Problem
Computational time
Memory consumption
How many services can be integrated in a server rack?
Super high accuracy with a super computer is useless for real business
33 / 36
Concluding Remarks: What is Important for
Good Prediction?
Theory
Machine learning
Mathematical optimization
Implementation
Algorithms
Computer architecture
Mathematics
Human factors!
Hand tuning of parameters
Domain specific knowledge
34 / 36
References (1/2)
For beginers
比戸ら, データサイエンティスト養成読本 機械学習入門編, 技術評論社, 2016
T.Segaran. Programming Collective Intelligence, O'Reilly Media, 2007.
E.Chen. Winning the Netflix Prize: A Summary.
A.Gunawardana and G.Shani. A Survey of Accuracy Evaluation Metrics of
Recommendation Tasks, The Journal of Machine Learning Research,
Volume 10, 2009.
35 / 36
References (2/2)
Papers
Salakhutdinov, Ruslan, and Andriy Mnih. "Bayesian probabilistic matrix
factorization using Markov chain Monte Carlo." Proceedings of the 25th
international conference on Machine learning. ACM, 2008.
Sindhwani, Vikas, et al. "One-class matrix completion with low-density
factorizations." Data Mining (ICDM), 2010 IEEE 10th International
Conference on. IEEE, 2010.
Rendle, Steffen, et al. "BPR: Bayesian personalized ranking from implicit
feedback." Proceedings of the Twenty-Fifth Conference on Uncertainty in
Artificial Intelligence. AUAI Press, 2009.
Zou, Hui, and Trevor Hastie. "Regularization and variable selection via the
elastic net." Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 67.2 (2005): 301-320.
Ning, Xia, and George Karypis. "SLIM: Sparse linear methods for top-n
recommender systems." Data Mining (ICDM), 2011 IEEE 11th
International Conference on. IEEE, 2011.
36 / 36

More Related Content

What's hot (20)

Where to find better ideas? +10 categories to explore with examples
Where to find better ideas? +10 categories to explore with examplesWhere to find better ideas? +10 categories to explore with examples
Where to find better ideas? +10 categories to explore with examples
Board of Innovation
 
Product management foundations
Product management foundationsProduct management foundations
Product management foundations
Pooja T R
 
Jobs To Be Done Framework
Jobs To Be Done FrameworkJobs To Be Done Framework
Jobs To Be Done Framework
Rupali Shah
 
15 minutes on impact mapping
15 minutes on impact mapping15 minutes on impact mapping
15 minutes on impact mapping
Marcus Hammarberg
 
Product Management 101
Product Management 101Product Management 101
Product Management 101
Tarun Chaudhary
 
How to plan sprints in agile
How to plan sprints in agileHow to plan sprints in agile
How to plan sprints in agile
Niladri Choudhuri
 
Context-aware Recommendation: A Quick View
Context-aware Recommendation: A Quick ViewContext-aware Recommendation: A Quick View
Context-aware Recommendation: A Quick View
YONG ZHENG
 
Making Netflix Machine Learning Algorithms Reliable
Making Netflix Machine Learning Algorithms ReliableMaking Netflix Machine Learning Algorithms Reliable
Making Netflix Machine Learning Algorithms Reliable
Justin Basilico
 
Design thinking workshop
Design thinking  workshopDesign thinking  workshop
Design thinking workshop
Ali Gheisari
 
Design thinking
Design thinkingDesign thinking
Design thinking
Anita Kumar
 
Agile and Scrum Basics
Agile and Scrum BasicsAgile and Scrum Basics
Agile and Scrum Basics
Mazhar Khan
 
User Story Maps: Secrets for Better Backlogs and Planning
 User Story Maps: Secrets for Better Backlogs and Planning User Story Maps: Secrets for Better Backlogs and Planning
User Story Maps: Secrets for Better Backlogs and Planning
Aaron Sanders
 
Design sprint info deck
Design sprint info deckDesign sprint info deck
Design sprint info deck
Daniil Lanovyi
 
Scala Data Pipelines @ Spotify
Scala Data Pipelines @ SpotifyScala Data Pipelines @ Spotify
Scala Data Pipelines @ Spotify
Neville Li
 
Music Recommendations at Scale with Spark
Music Recommendations at Scale with SparkMusic Recommendations at Scale with Spark
Music Recommendations at Scale with Spark
Chris Johnson
 
Collaborative Filtering at Spotify
Collaborative Filtering at SpotifyCollaborative Filtering at Spotify
Collaborative Filtering at Spotify
Erik Bernhardsson
 
Creating a Product Vision
Creating a Product VisionCreating a Product Vision
Creating a Product Vision
Mike Biggs GAICD
 
Interactive Recommender Systems with Netflix and Spotify
Interactive Recommender Systems with Netflix and SpotifyInteractive Recommender Systems with Netflix and Spotify
Interactive Recommender Systems with Netflix and Spotify
Chris Johnson
 
Graph-Powered Machine Learning
Graph-Powered Machine LearningGraph-Powered Machine Learning
Graph-Powered Machine Learning
Databricks
 
Conf 2023 TLD - ChatGPT impact dans le Design
Conf 2023 TLD - ChatGPT impact dans le DesignConf 2023 TLD - ChatGPT impact dans le Design
Conf 2023 TLD - ChatGPT impact dans le Design
TanguyLeDuff1
 
Where to find better ideas? +10 categories to explore with examples
Where to find better ideas? +10 categories to explore with examplesWhere to find better ideas? +10 categories to explore with examples
Where to find better ideas? +10 categories to explore with examples
Board of Innovation
 
Product management foundations
Product management foundationsProduct management foundations
Product management foundations
Pooja T R
 
Jobs To Be Done Framework
Jobs To Be Done FrameworkJobs To Be Done Framework
Jobs To Be Done Framework
Rupali Shah
 
15 minutes on impact mapping
15 minutes on impact mapping15 minutes on impact mapping
15 minutes on impact mapping
Marcus Hammarberg
 
How to plan sprints in agile
How to plan sprints in agileHow to plan sprints in agile
How to plan sprints in agile
Niladri Choudhuri
 
Context-aware Recommendation: A Quick View
Context-aware Recommendation: A Quick ViewContext-aware Recommendation: A Quick View
Context-aware Recommendation: A Quick View
YONG ZHENG
 
Making Netflix Machine Learning Algorithms Reliable
Making Netflix Machine Learning Algorithms ReliableMaking Netflix Machine Learning Algorithms Reliable
Making Netflix Machine Learning Algorithms Reliable
Justin Basilico
 
Design thinking workshop
Design thinking  workshopDesign thinking  workshop
Design thinking workshop
Ali Gheisari
 
Agile and Scrum Basics
Agile and Scrum BasicsAgile and Scrum Basics
Agile and Scrum Basics
Mazhar Khan
 
User Story Maps: Secrets for Better Backlogs and Planning
 User Story Maps: Secrets for Better Backlogs and Planning User Story Maps: Secrets for Better Backlogs and Planning
User Story Maps: Secrets for Better Backlogs and Planning
Aaron Sanders
 
Design sprint info deck
Design sprint info deckDesign sprint info deck
Design sprint info deck
Daniil Lanovyi
 
Scala Data Pipelines @ Spotify
Scala Data Pipelines @ SpotifyScala Data Pipelines @ Spotify
Scala Data Pipelines @ Spotify
Neville Li
 
Music Recommendations at Scale with Spark
Music Recommendations at Scale with SparkMusic Recommendations at Scale with Spark
Music Recommendations at Scale with Spark
Chris Johnson
 
Collaborative Filtering at Spotify
Collaborative Filtering at SpotifyCollaborative Filtering at Spotify
Collaborative Filtering at Spotify
Erik Bernhardsson
 
Interactive Recommender Systems with Netflix and Spotify
Interactive Recommender Systems with Netflix and SpotifyInteractive Recommender Systems with Netflix and Spotify
Interactive Recommender Systems with Netflix and Spotify
Chris Johnson
 
Graph-Powered Machine Learning
Graph-Powered Machine LearningGraph-Powered Machine Learning
Graph-Powered Machine Learning
Databricks
 
Conf 2023 TLD - ChatGPT impact dans le Design
Conf 2023 TLD - ChatGPT impact dans le DesignConf 2023 TLD - ChatGPT impact dans le Design
Conf 2023 TLD - ChatGPT impact dans le Design
TanguyLeDuff1
 

Similar to Introduction to behavior based recommendation system (20)

Recommendation System --Theory and Practice
Recommendation System --Theory and PracticeRecommendation System --Theory and Practice
Recommendation System --Theory and Practice
Kimikazu Kato
 
Optimization Techniques.pdf
Optimization Techniques.pdfOptimization Techniques.pdf
Optimization Techniques.pdf
anandsimple
 
Matrix Factorizations for Recommender Systems
Matrix Factorizations for Recommender SystemsMatrix Factorizations for Recommender Systems
Matrix Factorizations for Recommender Systems
Dmitriy Selivanov
 
ML unit-1.pptx
ML unit-1.pptxML unit-1.pptx
ML unit-1.pptx
SwarnaKumariChinni
 
Facebook Talk at Netflix ML Platform meetup Sep 2019
Facebook Talk at Netflix ML Platform meetup Sep 2019Facebook Talk at Netflix ML Platform meetup Sep 2019
Facebook Talk at Netflix ML Platform meetup Sep 2019
Faisal Siddiqi
 
Stochastic optimization from mirror descent to recent algorithms
Stochastic optimization from mirror descent to recent algorithmsStochastic optimization from mirror descent to recent algorithms
Stochastic optimization from mirror descent to recent algorithms
Seonho Park
 
Recsys matrix-factorizations
Recsys matrix-factorizationsRecsys matrix-factorizations
Recsys matrix-factorizations
Dmitriy Selivanov
 
Determination of Optimal Product Mix for Profit Maximization using Linear Pro...
Determination of Optimal Product Mix for Profit Maximization using Linear Pro...Determination of Optimal Product Mix for Profit Maximization using Linear Pro...
Determination of Optimal Product Mix for Profit Maximization using Linear Pro...
IJERA Editor
 
Determination of Optimal Product Mix for Profit Maximization using Linear Pro...
Determination of Optimal Product Mix for Profit Maximization using Linear Pro...Determination of Optimal Product Mix for Profit Maximization using Linear Pro...
Determination of Optimal Product Mix for Profit Maximization using Linear Pro...
IJERA Editor
 
Linear, Machine Learning or Probabilistic Predictive Models: What's Best for ...
Linear, Machine Learning or Probabilistic Predictive Models: What's Best for ...Linear, Machine Learning or Probabilistic Predictive Models: What's Best for ...
Linear, Machine Learning or Probabilistic Predictive Models: What's Best for ...
Bohdan Pavlyshenko
 
Session 4 .pdf
Session 4 .pdfSession 4 .pdf
Session 4 .pdf
ssuser8cda84
 
ppt - Deep Learning From Scratch.pdf
ppt - Deep Learning From Scratch.pdfppt - Deep Learning From Scratch.pdf
ppt - Deep Learning From Scratch.pdf
surefooted
 
Fractional factorial design tutorial
Fractional factorial design tutorialFractional factorial design tutorial
Fractional factorial design tutorial
Gaurav Kr
 
Introduction to NumPy for Machine Learning Programmers
Introduction to NumPy for Machine Learning ProgrammersIntroduction to NumPy for Machine Learning Programmers
Introduction to NumPy for Machine Learning Programmers
Kimikazu Kato
 
MUMS: Transition & SPUQ Workshop - Practical Bayesian Optimization for Urban ...
MUMS: Transition & SPUQ Workshop - Practical Bayesian Optimization for Urban ...MUMS: Transition & SPUQ Workshop - Practical Bayesian Optimization for Urban ...
MUMS: Transition & SPUQ Workshop - Practical Bayesian Optimization for Urban ...
The Statistical and Applied Mathematical Sciences Institute
 
Vcs slides on or 2014
Vcs slides on or 2014Vcs slides on or 2014
Vcs slides on or 2014
Shakti Ranjan
 
AINL 2016: Strijov
AINL 2016: StrijovAINL 2016: Strijov
AINL 2016: Strijov
Lidia Pivovarova
 
20MEMECH Part 3- Classification.pdf
20MEMECH Part 3- Classification.pdf20MEMECH Part 3- Classification.pdf
20MEMECH Part 3- Classification.pdf
MariaKhan905189
 
Panel Data Regression Notes Part 4 and penultimate.pptx
Panel Data Regression Notes Part 4 and penultimate.pptxPanel Data Regression Notes Part 4 and penultimate.pptx
Panel Data Regression Notes Part 4 and penultimate.pptx
KishoreJohn4
 
Jaya with Experienced Learning
Jaya with Experienced LearningJaya with Experienced Learning
Jaya with Experienced Learning
IRJET Journal
 
Recommendation System --Theory and Practice
Recommendation System --Theory and PracticeRecommendation System --Theory and Practice
Recommendation System --Theory and Practice
Kimikazu Kato
 
Optimization Techniques.pdf
Optimization Techniques.pdfOptimization Techniques.pdf
Optimization Techniques.pdf
anandsimple
 
Matrix Factorizations for Recommender Systems
Matrix Factorizations for Recommender SystemsMatrix Factorizations for Recommender Systems
Matrix Factorizations for Recommender Systems
Dmitriy Selivanov
 
Facebook Talk at Netflix ML Platform meetup Sep 2019
Facebook Talk at Netflix ML Platform meetup Sep 2019Facebook Talk at Netflix ML Platform meetup Sep 2019
Facebook Talk at Netflix ML Platform meetup Sep 2019
Faisal Siddiqi
 
Stochastic optimization from mirror descent to recent algorithms
Stochastic optimization from mirror descent to recent algorithmsStochastic optimization from mirror descent to recent algorithms
Stochastic optimization from mirror descent to recent algorithms
Seonho Park
 
Recsys matrix-factorizations
Recsys matrix-factorizationsRecsys matrix-factorizations
Recsys matrix-factorizations
Dmitriy Selivanov
 
Determination of Optimal Product Mix for Profit Maximization using Linear Pro...
Determination of Optimal Product Mix for Profit Maximization using Linear Pro...Determination of Optimal Product Mix for Profit Maximization using Linear Pro...
Determination of Optimal Product Mix for Profit Maximization using Linear Pro...
IJERA Editor
 
Determination of Optimal Product Mix for Profit Maximization using Linear Pro...
Determination of Optimal Product Mix for Profit Maximization using Linear Pro...Determination of Optimal Product Mix for Profit Maximization using Linear Pro...
Determination of Optimal Product Mix for Profit Maximization using Linear Pro...
IJERA Editor
 
Linear, Machine Learning or Probabilistic Predictive Models: What's Best for ...
Linear, Machine Learning or Probabilistic Predictive Models: What's Best for ...Linear, Machine Learning or Probabilistic Predictive Models: What's Best for ...
Linear, Machine Learning or Probabilistic Predictive Models: What's Best for ...
Bohdan Pavlyshenko
 
ppt - Deep Learning From Scratch.pdf
ppt - Deep Learning From Scratch.pdfppt - Deep Learning From Scratch.pdf
ppt - Deep Learning From Scratch.pdf
surefooted
 
Fractional factorial design tutorial
Fractional factorial design tutorialFractional factorial design tutorial
Fractional factorial design tutorial
Gaurav Kr
 
Introduction to NumPy for Machine Learning Programmers
Introduction to NumPy for Machine Learning ProgrammersIntroduction to NumPy for Machine Learning Programmers
Introduction to NumPy for Machine Learning Programmers
Kimikazu Kato
 
Vcs slides on or 2014
Vcs slides on or 2014Vcs slides on or 2014
Vcs slides on or 2014
Shakti Ranjan
 
20MEMECH Part 3- Classification.pdf
20MEMECH Part 3- Classification.pdf20MEMECH Part 3- Classification.pdf
20MEMECH Part 3- Classification.pdf
MariaKhan905189
 
Panel Data Regression Notes Part 4 and penultimate.pptx
Panel Data Regression Notes Part 4 and penultimate.pptxPanel Data Regression Notes Part 4 and penultimate.pptx
Panel Data Regression Notes Part 4 and penultimate.pptx
KishoreJohn4
 
Jaya with Experienced Learning
Jaya with Experienced LearningJaya with Experienced Learning
Jaya with Experienced Learning
IRJET Journal
 
Ad

More from Kimikazu Kato (20)

Tokyo webmining 2017-10-28
Tokyo webmining 2017-10-28Tokyo webmining 2017-10-28
Tokyo webmining 2017-10-28
Kimikazu Kato
 
機械学習ゴリゴリ派のための数学とPython
機械学習ゴリゴリ派のための数学とPython機械学習ゴリゴリ派のための数学とPython
機械学習ゴリゴリ派のための数学とPython
Kimikazu Kato
 
Pythonを使った機械学習の学習
Pythonを使った機械学習の学習Pythonを使った機械学習の学習
Pythonを使った機械学習の学習
Kimikazu Kato
 
Fast and Probvably Seedings for k-Means
Fast and Probvably Seedings for k-MeansFast and Probvably Seedings for k-Means
Fast and Probvably Seedings for k-Means
Kimikazu Kato
 
Pythonで機械学習入門以前
Pythonで機械学習入門以前Pythonで機械学習入門以前
Pythonで機械学習入門以前
Kimikazu Kato
 
Pythonによる機械学習
Pythonによる機械学習Pythonによる機械学習
Pythonによる機械学習
Kimikazu Kato
 
Pythonによる機械学習の最前線
Pythonによる機械学習の最前線Pythonによる機械学習の最前線
Pythonによる機械学習の最前線
Kimikazu Kato
 
Sparse pca via bipartite matching
Sparse pca via bipartite matchingSparse pca via bipartite matching
Sparse pca via bipartite matching
Kimikazu Kato
 
正しいプログラミング言語の覚え方
正しいプログラミング言語の覚え方正しいプログラミング言語の覚え方
正しいプログラミング言語の覚え方
Kimikazu Kato
 
養成読本と私
養成読本と私養成読本と私
養成読本と私
Kimikazu Kato
 
A Safe Rule for Sparse Logistic Regression
A Safe Rule for Sparse Logistic RegressionA Safe Rule for Sparse Logistic Regression
A Safe Rule for Sparse Logistic Regression
Kimikazu Kato
 
特定の不快感を与えるツイートの分類と自動生成について
特定の不快感を与えるツイートの分類と自動生成について特定の不快感を与えるツイートの分類と自動生成について
特定の不快感を与えるツイートの分類と自動生成について
Kimikazu Kato
 
Effective Numerical Computation in NumPy and SciPy
Effective Numerical Computation in NumPy and SciPyEffective Numerical Computation in NumPy and SciPy
Effective Numerical Computation in NumPy and SciPy
Kimikazu Kato
 
Sapporo20140709
Sapporo20140709Sapporo20140709
Sapporo20140709
Kimikazu Kato
 
【論文紹介】Approximate Bayesian Image Interpretation Using Generative Probabilisti...
【論文紹介】Approximate Bayesian Image Interpretation Using Generative Probabilisti...【論文紹介】Approximate Bayesian Image Interpretation Using Generative Probabilisti...
【論文紹介】Approximate Bayesian Image Interpretation Using Generative Probabilisti...
Kimikazu Kato
 
Zuang-FPSGD
Zuang-FPSGDZuang-FPSGD
Zuang-FPSGD
Kimikazu Kato
 
About Our Recommender System
About Our Recommender SystemAbout Our Recommender System
About Our Recommender System
Kimikazu Kato
 
ネット通販向けレコメンドシステム提供サービスについて
ネット通販向けレコメンドシステム提供サービスについてネット通販向けレコメンドシステム提供サービスについて
ネット通販向けレコメンドシステム提供サービスについて
Kimikazu Kato
 
関東GPGPU勉強会資料
関東GPGPU勉強会資料関東GPGPU勉強会資料
関東GPGPU勉強会資料
Kimikazu Kato
 
2012-03-08 MSS研究会
2012-03-08 MSS研究会2012-03-08 MSS研究会
2012-03-08 MSS研究会
Kimikazu Kato
 
Tokyo webmining 2017-10-28
Tokyo webmining 2017-10-28Tokyo webmining 2017-10-28
Tokyo webmining 2017-10-28
Kimikazu Kato
 
機械学習ゴリゴリ派のための数学とPython
機械学習ゴリゴリ派のための数学とPython機械学習ゴリゴリ派のための数学とPython
機械学習ゴリゴリ派のための数学とPython
Kimikazu Kato
 
Pythonを使った機械学習の学習
Pythonを使った機械学習の学習Pythonを使った機械学習の学習
Pythonを使った機械学習の学習
Kimikazu Kato
 
Fast and Probvably Seedings for k-Means
Fast and Probvably Seedings for k-MeansFast and Probvably Seedings for k-Means
Fast and Probvably Seedings for k-Means
Kimikazu Kato
 
Pythonで機械学習入門以前
Pythonで機械学習入門以前Pythonで機械学習入門以前
Pythonで機械学習入門以前
Kimikazu Kato
 
Pythonによる機械学習
Pythonによる機械学習Pythonによる機械学習
Pythonによる機械学習
Kimikazu Kato
 
Pythonによる機械学習の最前線
Pythonによる機械学習の最前線Pythonによる機械学習の最前線
Pythonによる機械学習の最前線
Kimikazu Kato
 
Sparse pca via bipartite matching
Sparse pca via bipartite matchingSparse pca via bipartite matching
Sparse pca via bipartite matching
Kimikazu Kato
 
正しいプログラミング言語の覚え方
正しいプログラミング言語の覚え方正しいプログラミング言語の覚え方
正しいプログラミング言語の覚え方
Kimikazu Kato
 
A Safe Rule for Sparse Logistic Regression
A Safe Rule for Sparse Logistic RegressionA Safe Rule for Sparse Logistic Regression
A Safe Rule for Sparse Logistic Regression
Kimikazu Kato
 
特定の不快感を与えるツイートの分類と自動生成について
特定の不快感を与えるツイートの分類と自動生成について特定の不快感を与えるツイートの分類と自動生成について
特定の不快感を与えるツイートの分類と自動生成について
Kimikazu Kato
 
Effective Numerical Computation in NumPy and SciPy
Effective Numerical Computation in NumPy and SciPyEffective Numerical Computation in NumPy and SciPy
Effective Numerical Computation in NumPy and SciPy
Kimikazu Kato
 
【論文紹介】Approximate Bayesian Image Interpretation Using Generative Probabilisti...
【論文紹介】Approximate Bayesian Image Interpretation Using Generative Probabilisti...【論文紹介】Approximate Bayesian Image Interpretation Using Generative Probabilisti...
【論文紹介】Approximate Bayesian Image Interpretation Using Generative Probabilisti...
Kimikazu Kato
 
About Our Recommender System
About Our Recommender SystemAbout Our Recommender System
About Our Recommender System
Kimikazu Kato
 
ネット通販向けレコメンドシステム提供サービスについて
ネット通販向けレコメンドシステム提供サービスについてネット通販向けレコメンドシステム提供サービスについて
ネット通販向けレコメンドシステム提供サービスについて
Kimikazu Kato
 
関東GPGPU勉強会資料
関東GPGPU勉強会資料関東GPGPU勉強会資料
関東GPGPU勉強会資料
Kimikazu Kato
 
2012-03-08 MSS研究会
2012-03-08 MSS研究会2012-03-08 MSS研究会
2012-03-08 MSS研究会
Kimikazu Kato
 
Ad

Recently uploaded (20)

The case for on-premises AI
The case for on-premises AIThe case for on-premises AI
The case for on-premises AI
Principled Technologies
 
Dr Jimmy Schwarzkopf presentation on the SUMMIT 2025 A
Dr Jimmy Schwarzkopf presentation on the SUMMIT 2025 ADr Jimmy Schwarzkopf presentation on the SUMMIT 2025 A
Dr Jimmy Schwarzkopf presentation on the SUMMIT 2025 A
Dr. Jimmy Schwarzkopf
 
Cognitive Chasms - A Typology of GenAI Failure Failure Modes
Cognitive Chasms - A Typology of GenAI Failure Failure ModesCognitive Chasms - A Typology of GenAI Failure Failure Modes
Cognitive Chasms - A Typology of GenAI Failure Failure Modes
Dr. Tathagat Varma
 
Jira Administration Training – Day 1 : Introduction
Jira Administration Training – Day 1 : IntroductionJira Administration Training – Day 1 : Introduction
Jira Administration Training – Day 1 : Introduction
Ravi Teja
 
ELNL2025 - Unlocking the Power of Sensitivity Labels - A Comprehensive Guide....
ELNL2025 - Unlocking the Power of Sensitivity Labels - A Comprehensive Guide....ELNL2025 - Unlocking the Power of Sensitivity Labels - A Comprehensive Guide....
ELNL2025 - Unlocking the Power of Sensitivity Labels - A Comprehensive Guide....
Jasper Oosterveld
 
Nix(OS) for Python Developers - PyCon 25 (Bologna, Italia)
Nix(OS) for Python Developers - PyCon 25 (Bologna, Italia)Nix(OS) for Python Developers - PyCon 25 (Bologna, Italia)
Nix(OS) for Python Developers - PyCon 25 (Bologna, Italia)
Peter Bittner
 
Let’s Get Slack Certified! 🚀- Slack Community
Let’s Get Slack Certified! 🚀- Slack CommunityLet’s Get Slack Certified! 🚀- Slack Community
Let’s Get Slack Certified! 🚀- Slack Community
SanjeetMishra29
 
Jeremy Millul - A Talented Software Developer
Jeremy Millul - A Talented Software DeveloperJeremy Millul - A Talented Software Developer
Jeremy Millul - A Talented Software Developer
Jeremy Millul
 
Kubernetes Cloud Native Indonesia Meetup - May 2025
Kubernetes Cloud Native Indonesia Meetup - May 2025Kubernetes Cloud Native Indonesia Meetup - May 2025
Kubernetes Cloud Native Indonesia Meetup - May 2025
Prasta Maha
 
European Accessibility Act & Integrated Accessibility Testing
European Accessibility Act & Integrated Accessibility TestingEuropean Accessibility Act & Integrated Accessibility Testing
European Accessibility Act & Integrated Accessibility Testing
Julia Undeutsch
 
Introducing the OSA 3200 SP and OSA 3250 ePRC
Introducing the OSA 3200 SP and OSA 3250 ePRCIntroducing the OSA 3200 SP and OSA 3250 ePRC
Introducing the OSA 3200 SP and OSA 3250 ePRC
Adtran
 
STKI Israel Market Study 2025 final v1 version
STKI Israel Market Study 2025 final v1 versionSTKI Israel Market Study 2025 final v1 version
STKI Israel Market Study 2025 final v1 version
Dr. Jimmy Schwarzkopf
 
End-to-end Assurance for SD-WAN & SASE with ThousandEyes
End-to-end Assurance for SD-WAN & SASE with ThousandEyesEnd-to-end Assurance for SD-WAN & SASE with ThousandEyes
End-to-end Assurance for SD-WAN & SASE with ThousandEyes
ThousandEyes
 
Protecting Your Sensitive Data with Microsoft Purview - IRMS 2025
Protecting Your Sensitive Data with Microsoft Purview - IRMS 2025Protecting Your Sensitive Data with Microsoft Purview - IRMS 2025
Protecting Your Sensitive Data with Microsoft Purview - IRMS 2025
Nikki Chapple
 
Introducing FME Realize: A New Era of Spatial Computing and AR
Introducing FME Realize: A New Era of Spatial Computing and ARIntroducing FME Realize: A New Era of Spatial Computing and AR
Introducing FME Realize: A New Era of Spatial Computing and AR
Safe Software
 
Gihbli AI and Geo sitution |use/misuse of Ai Technology
Gihbli AI and Geo sitution |use/misuse of Ai TechnologyGihbli AI and Geo sitution |use/misuse of Ai Technology
Gihbli AI and Geo sitution |use/misuse of Ai Technology
zainkhurram1111
 
Offshore IT Support: Balancing In-House and Offshore Help Desk Technicians
Offshore IT Support: Balancing In-House and Offshore Help Desk TechniciansOffshore IT Support: Balancing In-House and Offshore Help Desk Technicians
Offshore IT Support: Balancing In-House and Offshore Help Desk Technicians
john823664
 
New Ways to Reduce Database Costs with ScyllaDB
New Ways to Reduce Database Costs with ScyllaDBNew Ways to Reduce Database Costs with ScyllaDB
New Ways to Reduce Database Costs with ScyllaDB
ScyllaDB
 
ECS25 - The adventures of a Microsoft 365 Platform Owner - Website.pptx
ECS25 - The adventures of a Microsoft 365 Platform Owner - Website.pptxECS25 - The adventures of a Microsoft 365 Platform Owner - Website.pptx
ECS25 - The adventures of a Microsoft 365 Platform Owner - Website.pptx
Jasper Oosterveld
 
Securiport - A Border Security Company
Securiport  -  A Border Security CompanySecuriport  -  A Border Security Company
Securiport - A Border Security Company
Securiport
 
Dr Jimmy Schwarzkopf presentation on the SUMMIT 2025 A
Dr Jimmy Schwarzkopf presentation on the SUMMIT 2025 ADr Jimmy Schwarzkopf presentation on the SUMMIT 2025 A
Dr Jimmy Schwarzkopf presentation on the SUMMIT 2025 A
Dr. Jimmy Schwarzkopf
 
Cognitive Chasms - A Typology of GenAI Failure Failure Modes
Cognitive Chasms - A Typology of GenAI Failure Failure ModesCognitive Chasms - A Typology of GenAI Failure Failure Modes
Cognitive Chasms - A Typology of GenAI Failure Failure Modes
Dr. Tathagat Varma
 
Jira Administration Training – Day 1 : Introduction
Jira Administration Training – Day 1 : IntroductionJira Administration Training – Day 1 : Introduction
Jira Administration Training – Day 1 : Introduction
Ravi Teja
 
ELNL2025 - Unlocking the Power of Sensitivity Labels - A Comprehensive Guide....
ELNL2025 - Unlocking the Power of Sensitivity Labels - A Comprehensive Guide....ELNL2025 - Unlocking the Power of Sensitivity Labels - A Comprehensive Guide....
ELNL2025 - Unlocking the Power of Sensitivity Labels - A Comprehensive Guide....
Jasper Oosterveld
 
Nix(OS) for Python Developers - PyCon 25 (Bologna, Italia)
Nix(OS) for Python Developers - PyCon 25 (Bologna, Italia)Nix(OS) for Python Developers - PyCon 25 (Bologna, Italia)
Nix(OS) for Python Developers - PyCon 25 (Bologna, Italia)
Peter Bittner
 
Let’s Get Slack Certified! 🚀- Slack Community
Let’s Get Slack Certified! 🚀- Slack CommunityLet’s Get Slack Certified! 🚀- Slack Community
Let’s Get Slack Certified! 🚀- Slack Community
SanjeetMishra29
 
Jeremy Millul - A Talented Software Developer
Jeremy Millul - A Talented Software DeveloperJeremy Millul - A Talented Software Developer
Jeremy Millul - A Talented Software Developer
Jeremy Millul
 
Kubernetes Cloud Native Indonesia Meetup - May 2025
Kubernetes Cloud Native Indonesia Meetup - May 2025Kubernetes Cloud Native Indonesia Meetup - May 2025
Kubernetes Cloud Native Indonesia Meetup - May 2025
Prasta Maha
 
European Accessibility Act & Integrated Accessibility Testing
European Accessibility Act & Integrated Accessibility TestingEuropean Accessibility Act & Integrated Accessibility Testing
European Accessibility Act & Integrated Accessibility Testing
Julia Undeutsch
 
Introducing the OSA 3200 SP and OSA 3250 ePRC
Introducing the OSA 3200 SP and OSA 3250 ePRCIntroducing the OSA 3200 SP and OSA 3250 ePRC
Introducing the OSA 3200 SP and OSA 3250 ePRC
Adtran
 
STKI Israel Market Study 2025 final v1 version
STKI Israel Market Study 2025 final v1 versionSTKI Israel Market Study 2025 final v1 version
STKI Israel Market Study 2025 final v1 version
Dr. Jimmy Schwarzkopf
 
End-to-end Assurance for SD-WAN & SASE with ThousandEyes
End-to-end Assurance for SD-WAN & SASE with ThousandEyesEnd-to-end Assurance for SD-WAN & SASE with ThousandEyes
End-to-end Assurance for SD-WAN & SASE with ThousandEyes
ThousandEyes
 
Protecting Your Sensitive Data with Microsoft Purview - IRMS 2025
Protecting Your Sensitive Data with Microsoft Purview - IRMS 2025Protecting Your Sensitive Data with Microsoft Purview - IRMS 2025
Protecting Your Sensitive Data with Microsoft Purview - IRMS 2025
Nikki Chapple
 
Introducing FME Realize: A New Era of Spatial Computing and AR
Introducing FME Realize: A New Era of Spatial Computing and ARIntroducing FME Realize: A New Era of Spatial Computing and AR
Introducing FME Realize: A New Era of Spatial Computing and AR
Safe Software
 
Gihbli AI and Geo sitution |use/misuse of Ai Technology
Gihbli AI and Geo sitution |use/misuse of Ai TechnologyGihbli AI and Geo sitution |use/misuse of Ai Technology
Gihbli AI and Geo sitution |use/misuse of Ai Technology
zainkhurram1111
 
Offshore IT Support: Balancing In-House and Offshore Help Desk Technicians
Offshore IT Support: Balancing In-House and Offshore Help Desk TechniciansOffshore IT Support: Balancing In-House and Offshore Help Desk Technicians
Offshore IT Support: Balancing In-House and Offshore Help Desk Technicians
john823664
 
New Ways to Reduce Database Costs with ScyllaDB
New Ways to Reduce Database Costs with ScyllaDBNew Ways to Reduce Database Costs with ScyllaDB
New Ways to Reduce Database Costs with ScyllaDB
ScyllaDB
 
ECS25 - The adventures of a Microsoft 365 Platform Owner - Website.pptx
ECS25 - The adventures of a Microsoft 365 Platform Owner - Website.pptxECS25 - The adventures of a Microsoft 365 Platform Owner - Website.pptx
ECS25 - The adventures of a Microsoft 365 Platform Owner - Website.pptx
Jasper Oosterveld
 
Securiport - A Border Security Company
Securiport  -  A Border Security CompanySecuriport  -  A Border Security Company
Securiport - A Border Security Company
Securiport
 

Introduction to behavior based recommendation system

  • 1. Introduction to Algorithms for Behavior Based Recommendation Tokyo Web Mining Meetup March 26, 2016 Kimikazu Kato Silver Egg Technology Co., Ltd. 1 / 36
  • 2. About myself 加藤公一 Kimikazu Kato Twitter: @hamukazu LinkedIn: http://linkedin.com/in/kimikazukato Chief Scientist at Silver Egg Technology Ph.D in computer science, Master's degree in mathematics Experience in numerical computation and mathematical algorithms especially ... Geometric computation, computer graphics Partial differential equation, parallel computation, GPGPU Mathematical programming Now specialize in Machine learning, especially, recommendation system 2 / 36
  • 3. About our company Silver Egg Technology Established: 1998 CEO: Tom Foley Main Service: Recommendation System, Online Advertisement Major Clients: QVC, Senshukai (Bellemaison), Tsutaya We provide a recommendation system to Japan's leading web sites. 3 / 36
  • 4. Table of Contents Introduction Types of recommendation Evaluation metrics Algorithms Conclusion 4 / 36
  • 5. Caution This presentation includes: State-of-the-art algorithms for recommendation systems, But does NOT include: Any information about the core algorithm in Silver Egg Technology 5 / 36
  • 6. Recommendation System Recommender systems or recommendation systems (sometimes replacing "system" with a synonym such as platform or engine) are a subclass of information filtering system that seek to predict the 'rating' or 'preference' that user would give to an item. — Wikipedia In this talk, we focus on collaborative filtering method, which only utilize users' behavior, activity, and preference. Other methods include: Content-based methods Method using demographic data Hybrid 6 / 36
  • 7. Rating Prediction Problem usermovie W X Y Z A 5 4 1 4 B 4 C 2 3 D 1 4 ? Given rating information for some user/movie pairs, Want to predict a rating for an unknown user/movie pair. 7 / 36
  • 8. Item Prediction Problem useritem W X Y Z A 1 1 1 1 B 1 C 1 D 1 ? 1 ? Given "who bought what" information (user/item pairs), Want to predict which item is likely to be bought by a user. 8 / 36
  • 9. Input/Output of the systems Rating Prediction Input: set of ratings for user/item pairs Output: map from user/item pair to predicted rating Item Prediction Input: set of user/item pairs as shopping data, integer Output: top items for each user which are most likely to be bought by him/her k k 9 / 36
  • 10. Evaluation Metrics for Recommendation Systems Rating prediction The Root of the Mean Squared Error (RMSE) The square root of the sum of squared errors Item prediction Precision (# of Recommended and Purchased)/(# of Recommended) Recall (# of Recommended and Purchased)/(# of Purchased) 10 / 36
  • 11. RMSE of Rating Prediction Some user/item pairs are randomly chosen to be hidden. usermovie W X Y Z A 5 4 1 4 B 4 C 2 3 D 1 4 ? Predicted as 3.1 but the actual is 4, then the squared error is . Take the sum over the error over all the hidden items and then, take the square root of it. |3.1 − 4 =| 2 0.9 2 ( −∑ (u,i)∈hidden predictedui actualui ) 2 − −−−−−−−−−−−−−−−−−−−−−−−−− √ 11 / 36
  • 12. Precision/Recall of Item Prediction If three items are recommended: 2 out of 3 recommended items are actually bought: the precision is 2/3. 2 out of 4 bought items are recommended: the recall is 2/4. These are denoted by recall@3 and prec@3. Ex. recall@5 = 3/5, prec@5 = 3/4 12 / 36
  • 13. ROC and AUC # of recom. 1 2 3 4 5 6 7 8 9 10 # of whites 1 1 1 2 2 3 4 5 5 6 # of blacks 0 1 2 2 3 3 3 3 4 4 Divide the first and second row by total number of white and blacks respectively, and plot the values in xy plane. 13 / 36
  • 14. This curve is called "ROC curve." The area under this curve is called "AUC." Higher AUC is better (max =1). The AUC is often used in academia, but for a practical purpose... 14 / 36
  • 15. Netflix Prize The Netflix Prize was an open competition for the best collaborative filtering algorithm to predict user ratings for films, based on previous ratings without any other information about the users or films, i.e. without the users or the films being identified except by numbers assigned for the contest. — Wikipedia Shortly, an open competition for preference prediction. Closed in 2009. 15 / 36
  • 16. Outline of Winner's Algorithm Refer to the blog by E.Chen. http://blog.echen.me/2011/10/24/winning-the-netflix-prize-a-summary/ Digest of the methods: Neighborhood Method Matrix Factorization Restricted Boltzmann Machines Regression Regularization Ensemble Methods 16 / 36
  • 17. Notations Number of users: Set of users: Number of items (movies): Set of items (movies): Input matrix: ( matrix) n U = {1, 2, … , n} m I = {1, 2, … , m} A n × m 17 / 36
  • 18. Matrix Factorization Based on the assumption that each item is described by a small number of latent factors Each rating is expressed as a linear combination of the latent factors Achieve good performance in Netflix Prize Find such matrices , where A ≈ YX T X ∈ Mat(f, n) Y ∈ Mat(f, m) f ≪ n, m 18 / 36
  • 19. Find and maximize p (A|X, Y , σ) = N ( | , σ)∏ ≠0aui Aui X T u Yi p(X| ) = N ( |0, I)σX ∏ u Xu σX p(Y | ) = N ( |0, I)σY ∏ i Yi σY X Y p (X, Y |A, σ) 19 / 36
  • 20. According to Bayes' Theorem, Thus, where means Frobenius norm. How can this be computed? Use MCMC. See [Salakhutdinov et al., 2008]. Once and are determined, and the prediction for is estimated by p (X, Y |A, σ) = p(A|X, Y , σ)p(X| )p(X| ) × const.σX σX log p (U , V |A, σ, , )σU σV = + ∥X + ∥Y + const.∑ Aui ( − )Aui X T u Yi 2 λX ∥ 2 Fro λY ∥ 2 Fro ∥ ⋅ ∥Fro X Y := YA ~ X T Aui A ~ ui 20 / 36
  • 21. Rating usermovie W X Y Z A 5 4 1 4 B 4 C 2 3 D 1 4 ? Includes negative feedback "1" means "boring" Zero means "unknown" Shopping (Browsing) useritem W X Y Z A 1 1 1 1 B 1 C 1 D 1 ? 1 ? Includes no negative feedback Zero means "unknown" or "negative" More degree of the freedom Difference between Rating and Shopping Consequently, the algorithm effective for the rating matrix is not necessarily effective for the shopping matrix. 21 / 36
  • 22. Solutions Adding a constraint to the optimization problem Changing the objective function itself 22 / 36
  • 23. Adding a Constraint The problem has the too much degree of freedom Desirable characteristic is that many elements of the product should be zero. Assume that a certain ratio of zero elements of the input matrix remains zero after the optimization [Sindhwani et al., 2010] Experimentally outperform the "zero-as-negative" method 23 / 36
  • 24. One-class Matrix Completion [Sindhwani et al., 2010] Introduced variables to relax the problem. Minimize subject to pui ( − ) + ∥X + ∥Y∑ ≠0Aui Aui X T u Yi λX ∥ 2 Fro λY ∥ 2 Fro + [ (0 − + (1 − )(1 − ]∑ =0Aui pui X T u Yi ) 2 pui X T u Yi ) 2 + T [− log − (1 − ) log(1 − )]∑ =0Aui pui pui pui pui = r 1 |{ | = 0}|Aui Aui ∑ =0Aui pui 24 / 36
  • 25. Intuitive explanation: means how likely the -element is zero. The second term is the error of estimation considering 's. The third term is the entropy of the distribution. ( − ) + ∥X + ∥Y∑ ≠0Aui Aui X T u Yi λX ∥ 2 Fro λY ∥ 2 Fro + [ (0 − + (1 − )(1 − ]∑ =0Aui pui X T u Yi ) 2 pui X T u Yi ) 2 + T [− log − (1 − ) log(1 − )]∑ =0Aui pui pui pui pui pui (u, i) pui 25 / 36
  • 26. Implicit Sparseness constraint: SLIM (Elastic Net) In the regression model, adding L1 term makes the solution sparse: The similar idea is used for the matrix factorization [Ning et al., 2011]: Minimize subject to [ ∥Xw − y + ∥w + λρ|w ]min w 1 2n ∥ 2 2 λ(1 − ρ) 2 ∥ 2 2 |1 ∥A − AW ∥ + ∥W + λρ|W λ(1 − ρ) 2 ∥ 2 Fro |1 diag W = 0 26 / 36
  • 27. Ranking prediction Another strategy of shopping prediction "Learn from the order" approach Predict whether X is more likely to be bought than Y, rather than the probability for X or Y. 27 / 36
  • 28. Bayesian Probabilistic Ranking [Rendle et al., 2009] Consider matrix factorization model, but the update of elements is according to the observation of the "orders" The parameters are the same as usual matrix factorization, but the objective function is different Consider a total order for each . Suppose that means "the user is more likely to buy than . The objective is to calculate such that and (which means and are not bought by ). >u u ∈ U i j(i, j ∈ I)>u u i j p(i j)>u = 0Aui Auj i j u 28 / 36
  • 29. Let and define where we assume According to Bayes' theorem, the function to be optimized becomes: = {(u, i, j) ∈ U × I × I| = 1, = 0} ,DA Aui Auj p( |X, Y ) := p(i j|X, Y )∏ u∈U >u ∏ (u,i,j)∈DA >u p(i j|X, Y )>u σ(x) = σ( − )X T u Yi Xu Yj = 1 1 + e −x ∏ p(X, Y | ) = ∏ p( |X, Y ) × p(X)p(Y ) × const.>u >u 29 / 36
  • 30. Taking log of this, Now consider the following problem: This means "find a pair of matrices which preserve the order of the element of the input matrix for each ." L := log[∏ p( |X, Y ) × p(X)p(Y )]>u = log p(i j|X, Y ) − ∥X − ∥Y∏ (u,i,j)∈DA >u λX ∥ 2 Fro λY ∥ 2 Fro = log σ( − ) − ∥X − ∥Y∑ (u,i,j)∈DA X T u Yi X T u Yj λX ∥ 2 Fro λY ∥ 2 Fro [ log σ( − ) − ∥X − ∥Y ]max X,Y ∑ (u,i,j)∈DA X T u Yi X T u Yj λX ∥ 2 Fro λY ∥ 2 Fro X, Y u 30 / 36
  • 31. Computation The function we want to optimize: is huge, so in practice, a stochastic method is necessary. Let the parameters be . The algorithm is the following: Repeat the following Choose randomly Update with This method is called Stochastic Gradient Descent (SGD). log σ( − ) − ∥X − ∥Y∑ (u,i,j)∈DA X T u Yi X T u Yj λX ∥ 2 Fro λY ∥ 2 Fro U × I × I Θ = (X, Y ) (u, i, j) ∈ DA Θ Θ = Θ − α (log σ( − ) − ∥X − ∥Y ) ∂ ∂Θ X T u Yi X T u Yj λX ∥ 2 Fro λY ∥ 2 Fro 31 / 36
  • 32. MyMediaLite http://www.mymedialite.net/ Open source implemetation of recommendation systems Written in C# Reasonable computation time Supports rating and item prediction 32 / 36
  • 33. Practical Aspect of Recommendation Problem Computational time Memory consumption How many services can be integrated in a server rack? Super high accuracy with a super computer is useless for real business 33 / 36
  • 34. Concluding Remarks: What is Important for Good Prediction? Theory Machine learning Mathematical optimization Implementation Algorithms Computer architecture Mathematics Human factors! Hand tuning of parameters Domain specific knowledge 34 / 36
  • 35. References (1/2) For beginers 比戸ら, データサイエンティスト養成読本 機械学習入門編, 技術評論社, 2016 T.Segaran. Programming Collective Intelligence, O'Reilly Media, 2007. E.Chen. Winning the Netflix Prize: A Summary. A.Gunawardana and G.Shani. A Survey of Accuracy Evaluation Metrics of Recommendation Tasks, The Journal of Machine Learning Research, Volume 10, 2009. 35 / 36
  • 36. References (2/2) Papers Salakhutdinov, Ruslan, and Andriy Mnih. "Bayesian probabilistic matrix factorization using Markov chain Monte Carlo." Proceedings of the 25th international conference on Machine learning. ACM, 2008. Sindhwani, Vikas, et al. "One-class matrix completion with low-density factorizations." Data Mining (ICDM), 2010 IEEE 10th International Conference on. IEEE, 2010. Rendle, Steffen, et al. "BPR: Bayesian personalized ranking from implicit feedback." Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence. AUAI Press, 2009. Zou, Hui, and Trevor Hastie. "Regularization and variable selection via the elastic net." Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67.2 (2005): 301-320. Ning, Xia, and George Karypis. "SLIM: Sparse linear methods for top-n recommender systems." Data Mining (ICDM), 2011 IEEE 11th International Conference on. IEEE, 2011. 36 / 36