This document evaluates the performance of various classification algorithms (logistic regression, K-nearest neighbors, decision tree, random forest, support vector machine, naive Bayes) on a heart disease dataset. It provides details on each algorithm and evaluates their performance based on metrics like confusion matrix, precision, recall, F1-score and accuracy. The results show that naive Bayes had the best performance in correctly classifying samples with an accuracy of 80.21%, while SVM had the worst at 46.15%. In general, random forest and naive Bayes performed best according to the evaluation.