LEARNING WITH F#
Phillip Trelford, Applied Games, Microsoft
Research
Overview
 Learning Probabilistic Models
 Factor Graphs
 Inference in Factor Graphs
 Projects
 TrueSkill Analysis
 Internal adCenter competition
 Benefits of F#
Overview
 Learning Probabilistic Models
 Factor Graphs
 Inference in Factor Graphs
 Projects
 TrueSkill Analysis
 Internal adCenter competition
 Benefits of F#
Factor Graphs
 Bi-partite graphs
 Random variables
 Factors
 Two purposes:
 Representation of the structure of a probability
distribution (more fine grained than Bayes Nets)
 Represent an algorithm where computations are
performed along the edges (schedules)
TrueSkill™ Factor Graph
s1
s1 s2
s2 s3
s3 s4
s4
t1
t1
y1
2
y1
2
t2
t2 t3
t3
y2
3
y2
3
Inference in Factor Graphs
 Computational question:
 What are the marginals of the joint probability?
 What is the mode of the joint probability?
 Naive approach require exponential run-time:
 Marginals:
 Mode:
Message Passing in Factor
Graphs
w1w1 w2w2
++
ss
cc
Overview
 Learning Probabilistic Models
 Factor Graphs
 Inference in Factor Graphs
 Projects
 TrueSkill Analysis
 Internal adCenter competition
 Benefits of F#
 Given:
 Match outcomes: Orderings among k teams
consisting of n1, n2 , ..., nk players, respectively
 Questions:
 Skill si for each player such that
 Global ranking among all players
 Fair matches between teams of players
TrueSkill Rating Problem
Xbox 360 Live
 Launched in September 2005
 Every game uses TrueSkill™ to match players
 > 6 million players
 > 1 million matches per day
 > 2 billion hours of gameplay
Xbox Live Activity viewer
 Code size: 1400 LOC + 1400 LOC
 Project size: 2 project / 21 files
 Development time: 2 month
 Features
 Parser: High performance (> 2GB logs in 1 hour)
 Parser: Recreation of matchmaking server status
 Viewer: SQL database integration (deep schema)
Xbox 360 & Halo 3
 Xbox 360 Live
 Launched in September 2005
 Every game uses TrueSkill™ to match players
 > 6 million players
 > 1 million matches per day
 > 2 billion hours of gameplay
 Halo 3
 Launched on 25th
September 2007
 Largest entertainment launch in history
 > 500,000 player concurrently playing
F# Tools for Halo 3
 Questions
 Controllable player skill progression (slow-down!)
 Controllable skill distributions (re-ordering)
 Simulations
 Large scale simulation of > 8,000,000,000
matches
 Distributed application written in C# using .Net
remoting
 Tools
 Result viewer (Logged results: 52 GB of data)
 Real-time simulator of partial update
Halo 3 Simulation Result
Viewer
 Code size: 1800 LOC
 Project size: 11 files
 Development time: 2 month
 Features
 Multithreaded histogram viewer (due to file size)
 Real-time spline editor (monotonically increasing)
 Based on WinForms (compatability)
Halo 3 Partial Update Analyser
 Code size: 2600 LOC
 Project size: 10 files
 Development time: 1 month
 Features
 SQL database integration (analysis of beta test
data)
 Full integration of C# TrueSkill code (.Net library)
 Real time changes
Overview
 Learning Probabilistic Models
 Factor Graphs
 Inference in Factor Graphs
 Projects
 TrueSkill Analysis
 Internal adCenter competition
 Benefits of F#
The adCenter Problem
 Cash-cow of Search
 Selling “web space” at www.live.com
and www.msn.com.
 “Paid Search” (prices by auctions)
 The internal competition focuses on
Paid Search.
The Internal adCenter
Competition
 Start of competition: February 2007
 Start of training phase: May 2007
 End of training phase: June 2007
 Task:
 Predict the probability of click of a few days of real
data from several weeks of training data (logged page
views)
 Resources:
 4 (2 x 2) 64-bit CPU machine
 16 GB of RAM
 200 GB HD
The Scale of Things
 Weeks of data in training:
7,000,000,000 impressions
 2 weeks of CPU time during training:
2 wks × 7 days × 86,400 sec/day =
1,209,600 seconds
 Learning algorithmspeed requirement:
 5,787 impression updates / sec
 172.8 μs per impression update
Tool Chain: Existing Tools
 Excel 2007
 Scientific Visualisation
 Small Scale Simulations
 SQL Server2005
 1.6 TB of “active” data (for 2 weeks of data + indices)
 Ad-Hoc Queries and Stored Procedures
 Visual Studio 2005 & F#
 54 projects solution (many small tools)
 FSI for rapid development and code testing
 Strong typing as a surrogate for correctness
SQL Schema Generator
 Code size: 500 LOC
 Project size: 1 file
 Development time: 2 weeks
 Features
 Code defines the schema (unlike LINQ)!
 High-performance insertion via computed bulk-
insertion with automated key propagation
 Code sample is now part of the F# distribution
Strong Typing and SQL
Datastores
/// A single page-view
type PageView =
{
ClientDateTime : DateTime
GmtSeconds : int
TargetDomainId : int16
Medium : MediumType option
StartPosition : int
PageNum : byte
[<SqlStringLengthAttribute(256)>]
Query : string
Gender : Gender option
AgeBucket : AgeGroup option
ReturnedAdCnt : byte
AbTestingType : byte option
AlgorithmId : int option
ANID : int128 option
GUID : int128 option
[<SqlStringLengthAttribute(15)>]
PassportZipCode : string option
[<SqlStringLengthAttribute(2)>]
PassportCountry : string option
PassportRegion : int
[<SqlStringLengthAttribute(2)>]
PassportOccupation : char
LocationCountry : int
LocationState : int
LocationMetroArea : int
CategoryId : int16
SubCategoryId : int16
FormCode : int16
ReturnedAds : Advertisement array
}
/// A single page-view
type PageView =
{
ClientDateTime : DateTime
GmtSeconds : int
TargetDomainId : int16
Medium : MediumType option
StartPosition : int
PageNum : byte
[<SqlStringLengthAttribute(256)>]
Query : string
Gender : Gender option
AgeBucket : AgeGroup option
ReturnedAdCnt : byte
AbTestingType : byte option
AlgorithmId : int option
ANID : int128 option
GUID : int128 option
[<SqlStringLengthAttribute(15)>]
PassportZipCode : string option
[<SqlStringLengthAttribute(2)>]
PassportCountry : string option
PassportRegion : int
[<SqlStringLengthAttribute(2)>]
PassportOccupation : char
LocationCountry : int
LocationState : int
LocationMetroArea : int
CategoryId : int16
SubCategoryId : int16
FormCode : int16
ReturnedAds : Advertisement array
}
/// Different types of media
type MediumType =
| PaidSearch
| ContextualSearch
/// A single displayed advertisement
type Advertisement =
{
AdId : int
OrderItemId : int
CampDayId : int16
CampHourNum : byte
ProductId : ProductType
MatchType : MatchType
AdLayoutId : AdLayout
RelativePosition : byte
DeliveryEngineRank : int16
ActualBid : int
ProbabilityOfClick : int16
MatchScore : int
ImpressionCnt : int
ClickCnt : int
ConversionCnt : int
TotalCost : int
}
/// Different types of media
type MediumType =
| PaidSearch
| ContextualSearch
/// A single displayed advertisement
type Advertisement =
{
AdId : int
OrderItemId : int
CampDayId : int16
CampHourNum : byte
ProductId : ProductType
MatchType : MatchType
AdLayoutId : AdLayout
RelativePosition : byte
DeliveryEngineRank : int16
ActualBid : int
ProbabilityOfClick : int16
MatchScore : int
ImpressionCnt : int
ClickCnt : int
ConversionCnt : int
TotalCost : int
}
/// Create the SQL schema
let schema = bulkBuild ("cpidssdm18", “Cambridge", “June10")
/// Try to open the CSV file and read it pageview by pageview
File.OpenTextReader “HourlyRelevanceFeed.csv"
|> Seq.map (fun s -> s.Split [|','|])
|> Seq.chunkBy (fun xs -> xs.[0])
|> Seq.iteri (fun i (rguid,xss) ->
/// Write the current in-memory bulk to the Sql database
if i % 10000 = 0 then
schema.Flush ()
/// Get the strongly typed object from the list of CSV file lines
let pageView = PageView.Parse xss
/// Insert it
pageView |> schema.Insert
)
/// One final flush
schema.Flush ()
/// Create the SQL schema
let schema = bulkBuild ("cpidssdm18", “Cambridge", “June10")
/// Try to open the CSV file and read it pageview by pageview
File.OpenTextReader “HourlyRelevanceFeed.csv"
|> Seq.map (fun s -> s.Split [|','|])
|> Seq.chunkBy (fun xs -> xs.[0])
|> Seq.iteri (fun i (rguid,xss) ->
/// Write the current in-memory bulk to the Sql database
if i % 10000 = 0 then
schema.Flush ()
/// Get the strongly typed object from the list of CSV file lines
let pageView = PageView.Parse xss
/// Insert it
pageView |> schema.Insert
)
/// One final flush
schema.Flush ()
Overview
 Learning Probabilistic Models
 Factor Graphs
 Inference in Factor Graphs
 Projects
 TrueSkill Analysis
 Internal adCenter competition
 Benefits of F#
Overview
 Learning Probabilistic Models
 Factor Graphs
 Inference in Factor Graphs
 Projects
 TrueSkill Analysis
 Internal adCenter competition
 Benefits of F#
Benefits of F#
 Four main reasons:
1. A language that both developers and
researchers speak!
2. It leads to
1. “Correct” programs
2. Succinct programs
3. Highly performant code
3. Interoperability with .NET
4. It’s fun to program!

Learning with F#

  • 1.
    LEARNING WITH F# PhillipTrelford, Applied Games, Microsoft Research
  • 2.
    Overview  Learning ProbabilisticModels  Factor Graphs  Inference in Factor Graphs  Projects  TrueSkill Analysis  Internal adCenter competition  Benefits of F#
  • 3.
    Overview  Learning ProbabilisticModels  Factor Graphs  Inference in Factor Graphs  Projects  TrueSkill Analysis  Internal adCenter competition  Benefits of F#
  • 4.
    Factor Graphs  Bi-partitegraphs  Random variables  Factors  Two purposes:  Representation of the structure of a probability distribution (more fine grained than Bayes Nets)  Represent an algorithm where computations are performed along the edges (schedules)
  • 5.
    TrueSkill™ Factor Graph s1 s1s2 s2 s3 s3 s4 s4 t1 t1 y1 2 y1 2 t2 t2 t3 t3 y2 3 y2 3
  • 6.
    Inference in FactorGraphs  Computational question:  What are the marginals of the joint probability?  What is the mode of the joint probability?  Naive approach require exponential run-time:  Marginals:  Mode:
  • 7.
    Message Passing inFactor Graphs w1w1 w2w2 ++ ss cc
  • 8.
    Overview  Learning ProbabilisticModels  Factor Graphs  Inference in Factor Graphs  Projects  TrueSkill Analysis  Internal adCenter competition  Benefits of F#
  • 9.
     Given:  Matchoutcomes: Orderings among k teams consisting of n1, n2 , ..., nk players, respectively  Questions:  Skill si for each player such that  Global ranking among all players  Fair matches between teams of players TrueSkill Rating Problem
  • 10.
    Xbox 360 Live Launched in September 2005  Every game uses TrueSkill™ to match players  > 6 million players  > 1 million matches per day  > 2 billion hours of gameplay
  • 11.
    Xbox Live Activityviewer  Code size: 1400 LOC + 1400 LOC  Project size: 2 project / 21 files  Development time: 2 month  Features  Parser: High performance (> 2GB logs in 1 hour)  Parser: Recreation of matchmaking server status  Viewer: SQL database integration (deep schema)
  • 12.
    Xbox 360 &Halo 3  Xbox 360 Live  Launched in September 2005  Every game uses TrueSkill™ to match players  > 6 million players  > 1 million matches per day  > 2 billion hours of gameplay  Halo 3  Launched on 25th September 2007  Largest entertainment launch in history  > 500,000 player concurrently playing
  • 13.
    F# Tools forHalo 3  Questions  Controllable player skill progression (slow-down!)  Controllable skill distributions (re-ordering)  Simulations  Large scale simulation of > 8,000,000,000 matches  Distributed application written in C# using .Net remoting  Tools  Result viewer (Logged results: 52 GB of data)  Real-time simulator of partial update
  • 14.
    Halo 3 SimulationResult Viewer  Code size: 1800 LOC  Project size: 11 files  Development time: 2 month  Features  Multithreaded histogram viewer (due to file size)  Real-time spline editor (monotonically increasing)  Based on WinForms (compatability)
  • 15.
    Halo 3 PartialUpdate Analyser  Code size: 2600 LOC  Project size: 10 files  Development time: 1 month  Features  SQL database integration (analysis of beta test data)  Full integration of C# TrueSkill code (.Net library)  Real time changes
  • 16.
    Overview  Learning ProbabilisticModels  Factor Graphs  Inference in Factor Graphs  Projects  TrueSkill Analysis  Internal adCenter competition  Benefits of F#
  • 17.
    The adCenter Problem Cash-cow of Search  Selling “web space” at www.live.com and www.msn.com.  “Paid Search” (prices by auctions)  The internal competition focuses on Paid Search.
  • 18.
    The Internal adCenter Competition Start of competition: February 2007  Start of training phase: May 2007  End of training phase: June 2007  Task:  Predict the probability of click of a few days of real data from several weeks of training data (logged page views)  Resources:  4 (2 x 2) 64-bit CPU machine  16 GB of RAM  200 GB HD
  • 19.
    The Scale ofThings  Weeks of data in training: 7,000,000,000 impressions  2 weeks of CPU time during training: 2 wks × 7 days × 86,400 sec/day = 1,209,600 seconds  Learning algorithmspeed requirement:  5,787 impression updates / sec  172.8 μs per impression update
  • 20.
    Tool Chain: ExistingTools  Excel 2007  Scientific Visualisation  Small Scale Simulations  SQL Server2005  1.6 TB of “active” data (for 2 weeks of data + indices)  Ad-Hoc Queries and Stored Procedures  Visual Studio 2005 & F#  54 projects solution (many small tools)  FSI for rapid development and code testing  Strong typing as a surrogate for correctness
  • 21.
    SQL Schema Generator Code size: 500 LOC  Project size: 1 file  Development time: 2 weeks  Features  Code defines the schema (unlike LINQ)!  High-performance insertion via computed bulk- insertion with automated key propagation  Code sample is now part of the F# distribution
  • 22.
    Strong Typing andSQL Datastores /// A single page-view type PageView = { ClientDateTime : DateTime GmtSeconds : int TargetDomainId : int16 Medium : MediumType option StartPosition : int PageNum : byte [<SqlStringLengthAttribute(256)>] Query : string Gender : Gender option AgeBucket : AgeGroup option ReturnedAdCnt : byte AbTestingType : byte option AlgorithmId : int option ANID : int128 option GUID : int128 option [<SqlStringLengthAttribute(15)>] PassportZipCode : string option [<SqlStringLengthAttribute(2)>] PassportCountry : string option PassportRegion : int [<SqlStringLengthAttribute(2)>] PassportOccupation : char LocationCountry : int LocationState : int LocationMetroArea : int CategoryId : int16 SubCategoryId : int16 FormCode : int16 ReturnedAds : Advertisement array } /// A single page-view type PageView = { ClientDateTime : DateTime GmtSeconds : int TargetDomainId : int16 Medium : MediumType option StartPosition : int PageNum : byte [<SqlStringLengthAttribute(256)>] Query : string Gender : Gender option AgeBucket : AgeGroup option ReturnedAdCnt : byte AbTestingType : byte option AlgorithmId : int option ANID : int128 option GUID : int128 option [<SqlStringLengthAttribute(15)>] PassportZipCode : string option [<SqlStringLengthAttribute(2)>] PassportCountry : string option PassportRegion : int [<SqlStringLengthAttribute(2)>] PassportOccupation : char LocationCountry : int LocationState : int LocationMetroArea : int CategoryId : int16 SubCategoryId : int16 FormCode : int16 ReturnedAds : Advertisement array } /// Different types of media type MediumType = | PaidSearch | ContextualSearch /// A single displayed advertisement type Advertisement = { AdId : int OrderItemId : int CampDayId : int16 CampHourNum : byte ProductId : ProductType MatchType : MatchType AdLayoutId : AdLayout RelativePosition : byte DeliveryEngineRank : int16 ActualBid : int ProbabilityOfClick : int16 MatchScore : int ImpressionCnt : int ClickCnt : int ConversionCnt : int TotalCost : int } /// Different types of media type MediumType = | PaidSearch | ContextualSearch /// A single displayed advertisement type Advertisement = { AdId : int OrderItemId : int CampDayId : int16 CampHourNum : byte ProductId : ProductType MatchType : MatchType AdLayoutId : AdLayout RelativePosition : byte DeliveryEngineRank : int16 ActualBid : int ProbabilityOfClick : int16 MatchScore : int ImpressionCnt : int ClickCnt : int ConversionCnt : int TotalCost : int } /// Create the SQL schema let schema = bulkBuild ("cpidssdm18", “Cambridge", “June10") /// Try to open the CSV file and read it pageview by pageview File.OpenTextReader “HourlyRelevanceFeed.csv" |> Seq.map (fun s -> s.Split [|','|]) |> Seq.chunkBy (fun xs -> xs.[0]) |> Seq.iteri (fun i (rguid,xss) -> /// Write the current in-memory bulk to the Sql database if i % 10000 = 0 then schema.Flush () /// Get the strongly typed object from the list of CSV file lines let pageView = PageView.Parse xss /// Insert it pageView |> schema.Insert ) /// One final flush schema.Flush () /// Create the SQL schema let schema = bulkBuild ("cpidssdm18", “Cambridge", “June10") /// Try to open the CSV file and read it pageview by pageview File.OpenTextReader “HourlyRelevanceFeed.csv" |> Seq.map (fun s -> s.Split [|','|]) |> Seq.chunkBy (fun xs -> xs.[0]) |> Seq.iteri (fun i (rguid,xss) -> /// Write the current in-memory bulk to the Sql database if i % 10000 = 0 then schema.Flush () /// Get the strongly typed object from the list of CSV file lines let pageView = PageView.Parse xss /// Insert it pageView |> schema.Insert ) /// One final flush schema.Flush ()
  • 23.
    Overview  Learning ProbabilisticModels  Factor Graphs  Inference in Factor Graphs  Projects  TrueSkill Analysis  Internal adCenter competition  Benefits of F#
  • 24.
    Overview  Learning ProbabilisticModels  Factor Graphs  Inference in Factor Graphs  Projects  TrueSkill Analysis  Internal adCenter competition  Benefits of F#
  • 25.
    Benefits of F# Four main reasons: 1. A language that both developers and researchers speak! 2. It leads to 1. “Correct” programs 2. Succinct programs 3. Highly performant code 3. Interoperability with .NET 4. It’s fun to program!