Section 4.4
Curve Sketching

V63.0121.006/016, Calculus I

       New York University


        April 1, 2010




                             .   .   .   .   .   .
Second-chance Midterm: Tomorrow in Recitation




     12 free-response questions, no multiple choice
     Covers all sections so far, through today
     Your score on this exam will replace your midterm score




                                                             .   .   .    .       .      .

  V63.0121, Calculus I (NYU)   Section 4.4 Curve Sketching               April 1, 2010       2 / 47
.   .   .    .       .      .

V63.0121, Calculus I (NYU)   Section 4.4 Curve Sketching               April 1, 2010       3 / 47
Quiz 3 tomorrow in recitation



     Section 2.6: implicit differentiation
     Section 2.8: linear approximation and differentials
     Section 3.1: exponential functions
     Section 3.2: logarithms
     Section 3.3: derivatives of logarithmic and exponential functions
     Section 3.4: exponential growth and decay
     Section 3.5: inverse trigonometric functions




                                                             .   .   .    .       .      .

  V63.0121, Calculus I (NYU)   Section 4.4 Curve Sketching               April 1, 2010       4 / 47
Outline


The Procedure

Simple examples
   A cubic function
   A quartic function

More Examples
  Points of nondifferentiability
  Horizontal asymptotes
  Vertical asymptotes
  Trigonometric and polynomial together
  Logarithmic


                                                             .   .   .    .       .      .

  V63.0121, Calculus I (NYU)   Section 4.4 Curve Sketching               April 1, 2010       5 / 47
Objective




Given a function, graph it
completely, indicating
      zeroes
      asymptotes if applicable
      critical points
      local/global max/min
      inflection points




                                                             .   .   .    .       .      .

  V63.0121, Calculus I (NYU)   Section 4.4 Curve Sketching               April 1, 2010       6 / 47
Objective




Given a function, graph it
completely, indicating
      zeroes
      asymptotes if applicable
      critical points
      local/global max/min
      inflection points




                                                             .   .   .    .       .      .

  V63.0121, Calculus I (NYU)   Section 4.4 Curve Sketching               April 1, 2010       6 / 47
The Increasing/Decreasing Test

Theorem (The Increasing/Decreasing Test)
If f′ > 0 on (a, b), then f is increasing on (a, b). If f′ < 0 on (a, b), then f
is decreasing on (a, b).

Example
Here f(x) = x3 + x2 , and f′ (x) = 3x2 + 2x.

                                                             f
                                                             .(x)
                                                  .′ (x)
                                                  f



                                       .


                                                              .     .   .    .       .      .

  V63.0121, Calculus I (NYU)   Section 4.4 Curve Sketching                  April 1, 2010       7 / 47
Testing for Concavity
Theorem (Concavity Test)
If f′′ (x) > 0 for all x in (a, b), then the graph of f is concave upward on
(a, b) If f′′ (x) < 0 for all x in (a, b), then the graph of f is concave
downward on (a, b).

Example
Here f(x) = x3 + x2 , f′ (x) = 3x2 + 2x, and f′′ (x) = 6x + 2.
                                   .′′ (x)
                                   f                    f
                                                        .(x)
                                             .′ (x)
                                             f




                                       .


                                                               .   .   .    .       .      .

  V63.0121, Calculus I (NYU)   Section 4.4 Curve Sketching                 April 1, 2010       8 / 47
Graphing Checklist


To graph a function f, follow this plan:
 0. Find when f is positive, negative, zero,
    not defined.
 1. Find f′ and form its sign chart. Conclude
    information about increasing/decreasing
    and local max/min.
 2. Find f′′ and form its sign chart. Conclude
    concave up/concave down and inflection.
 3. Put together a big chart to assemble
    monotonicity and concavity data
 4. Graph!



                                                              .   .   .    .       .      .

   V63.0121, Calculus I (NYU)   Section 4.4 Curve Sketching               April 1, 2010       9 / 47
Outline


The Procedure

Simple examples
   A cubic function
   A quartic function

More Examples
  Points of nondifferentiability
  Horizontal asymptotes
  Vertical asymptotes
  Trigonometric and polynomial together
  Logarithmic


                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.4 Curve Sketching               April 1, 2010   10 / 47
Graphing a cubic


Example
Graph f(x) = 2x3 − 3x2 − 12x.




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.4 Curve Sketching               April 1, 2010   11 / 47
Graphing a cubic


Example
Graph f(x) = 2x3 − 3x2 − 12x.

(Step 0) First, let’s find the zeros. We can at least factor out one power
of x:
                            f(x) = x(2x2 − 3x − 12)
so f(0) = 0. The other factor is a quadratic, so we the other two roots
are                        √
                                                    √
                      3 ± 32 − 4(2)(−12)        3 ± 105
                 x=                          =
                                 4                  4
It’s OK to skip this step for now since the roots are so complicated.


                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.4 Curve Sketching               April 1, 2010   11 / 47
Step 1: Monotonicity



                               f(x) = 2x3 − 3x2 − 12x
                    =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)

We can form a sign chart from this:

                                     .




                                                                       .   .   .     .       .     .

  V63.0121, Calculus I (NYU)             Section 4.4 Curve Sketching               April 1, 2010   12 / 47
Step 1: Monotonicity



                               f(x) = 2x3 − 3x2 − 12x
                    =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)

We can form a sign chart from this:

                                     .                     .               . −2
                                                                           x
                                                         2
                                                         .
                                 .                                         x
                                                                           . +1
                               −
                               . 1
                                                                           .′ (x)
                                                                           f
                                 .                         .
                               −
                               . 1                       2
                                                         .                 f
                                                                           .(x)


                                                                       .   .        .     .       .     .

  V63.0121, Calculus I (NYU)             Section 4.4 Curve Sketching                    April 1, 2010   12 / 47
Step 1: Monotonicity



                               f(x) = 2x3 − 3x2 − 12x
                    =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)

We can form a sign chart from this:

                         −
                         .             −
                                     . .                .       .
                                                                +
                                                                        . −2
                                                                        x
                                                      2
                                                      .
                                 .                                      x
                                                                        . +1
                               −
                               . 1
                                                                        .′ (x)
                                                                        f
                                 .                      .
                               −
                               . 1                    2
                                                      .                 f
                                                                        .(x)


                                                                    .   .        .     .       .     .

  V63.0121, Calculus I (NYU)          Section 4.4 Curve Sketching                    April 1, 2010   12 / 47
Step 1: Monotonicity



                               f(x) = 2x3 − 3x2 − 12x
                    =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)

We can form a sign chart from this:

                         −
                         .             −
                                     . .                .       .
                                                                +
                                                                        . −2
                                                                        x
                                                      2
                                                      .
                         −
                         . .           .
                                       +                        .
                                                                +
                                                                        x
                                                                        . +1
                           −
                           . 1
                                                                        .′ (x)
                                                                        f
                                 .                      .
                               −
                               . 1                    2
                                                      .                 f
                                                                        .(x)


                                                                    .   .        .     .       .     .

  V63.0121, Calculus I (NYU)          Section 4.4 Curve Sketching                    April 1, 2010   12 / 47
Step 1: Monotonicity



                               f(x) = 2x3 − 3x2 − 12x
                    =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)

We can form a sign chart from this:

                         −
                         .             −
                                     . .                .       .
                                                                +
                                                                        . −2
                                                                        x
                                                      2
                                                      .
                         −
                         . .           .
                                       +                        .
                                                                +
                                                                        x
                                                                        . +1
                           −
                           . 1
                         . .
                         +                                              .′ (x)
                                                                        f
                                                        .
                               −
                               . 1                    2
                                                      .                 f
                                                                        .(x)


                                                                    .   .        .     .       .     .

  V63.0121, Calculus I (NYU)          Section 4.4 Curve Sketching                    April 1, 2010   12 / 47
Step 1: Monotonicity



                               f(x) = 2x3 − 3x2 − 12x
                    =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)

We can form a sign chart from this:

                         −
                         .             −
                                     . .                .       .
                                                                +
                                                                        . −2
                                                                        x
                                                      2
                                                      .
                         −
                         . .           .
                                       +                        .
                                                                +
                                                                        x
                                                                        . +1
                           −
                           . 1
                         . .
                         +             −
                                       .                                .′ (x)
                                                                        f
                                                        .
                               −
                               . 1                    2
                                                      .                 f
                                                                        .(x)


                                                                    .   .        .     .       .     .

  V63.0121, Calculus I (NYU)          Section 4.4 Curve Sketching                    April 1, 2010   12 / 47
Step 1: Monotonicity



                               f(x) = 2x3 − 3x2 − 12x
                    =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)

We can form a sign chart from this:

                         −
                         .             −
                                     . .                .       .
                                                                +
                                                                        . −2
                                                                        x
                                                      2
                                                      .
                         −
                         . .           .
                                       +                        .
                                                                +
                                                                        x
                                                                        . +1
                           −
                           . 1
                         . .
                         +             −
                                       .                        .
                                                                +       .′ (x)
                                                                        f
                                                        .
                               −
                               . 1                    2
                                                      .                 f
                                                                        .(x)


                                                                    .   .        .     .       .     .

  V63.0121, Calculus I (NYU)          Section 4.4 Curve Sketching                    April 1, 2010   12 / 47
Step 1: Monotonicity



                               f(x) = 2x3 − 3x2 − 12x
                    =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)

We can form a sign chart from this:

                         −
                         .             −
                                     . .                .       .
                                                                +
                                                                        . −2
                                                                        x
                                                      2
                                                      .
                        −
                        . .            .
                                       +                        .
                                                                +
                                                                        x
                                                                        . +1
                          −
                          . 1
                        . .
                        +              −
                                       .                        .
                                                                +       .′ (x)
                                                                        f
                                                        .
                        ↗−
                        . . 1                         2
                                                      .                 f
                                                                        .(x)


                                                                    .   .        .     .       .     .

  V63.0121, Calculus I (NYU)          Section 4.4 Curve Sketching                    April 1, 2010   12 / 47
Step 1: Monotonicity



                               f(x) = 2x3 − 3x2 − 12x
                    =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)

We can form a sign chart from this:

                         −
                         .             −
                                     . .                .       .
                                                                +
                                                                        . −2
                                                                        x
                                                      2
                                                      .
                        −
                        . .            .
                                       +                        .
                                                                +
                                                                        x
                                                                        . +1
                          −
                          . 1
                        . .
                        +              −
                                       .                        .
                                                                +       .′ (x)
                                                                        f
                                                        .
                        ↗−
                        . . 1          ↘
                                       .              2
                                                      .                 f
                                                                        .(x)


                                                                    .   .        .     .       .     .

  V63.0121, Calculus I (NYU)          Section 4.4 Curve Sketching                    April 1, 2010   12 / 47
Step 1: Monotonicity



                               f(x) = 2x3 − 3x2 − 12x
                    =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)

We can form a sign chart from this:

                         −
                         .             −
                                     . .                .       .
                                                                +
                                                                        . −2
                                                                        x
                                                      2
                                                      .
                        −
                        . .            .
                                       +                        .
                                                                +
                                                                        x
                                                                        . +1
                          −
                          . 1
                        . .
                        +              −
                                       .                       .
                                                               +        .′ (x)
                                                                        f
                                                        .
                        ↗−
                        . . 1          ↘
                                       .              2
                                                      .        ↗
                                                               .        f
                                                                        .(x)


                                                                    .   .        .     .       .     .

  V63.0121, Calculus I (NYU)          Section 4.4 Curve Sketching                    April 1, 2010   12 / 47
Step 1: Monotonicity



                               f(x) = 2x3 − 3x2 − 12x
                    =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)

We can form a sign chart from this:

                         −
                         .             −
                                     . .                .       .
                                                                +
                                                                        . −2
                                                                        x
                                                      2
                                                      .
                        −
                        . .            .
                                       +                        .
                                                                +
                                                                        x
                                                                        . +1
                           −
                           . 1
                        . .
                        +              −
                                       .                       .
                                                               +        .′ (x)
                                                                        f
                                                        .
                        ↗−
                        . . 1          ↘
                                       .              2
                                                      .        ↗
                                                               .        f
                                                                        .(x)
                          m
                          . ax

                                                                    .   .        .     .       .     .

  V63.0121, Calculus I (NYU)          Section 4.4 Curve Sketching                    April 1, 2010   12 / 47
Step 1: Monotonicity



                               f(x) = 2x3 − 3x2 − 12x
                    =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)

We can form a sign chart from this:

                         −
                         .             −
                                     . .                .       .
                                                                +
                                                                        . −2
                                                                        x
                                                      2
                                                      .
                        −
                        . .            .
                                       +                        .
                                                                +
                                                                        x
                                                                        . +1
                           −
                           . 1
                        . .
                        +              −
                                       .                       .
                                                               +        .′ (x)
                                                                        f
                                                       .
                        ↗−
                        . . 1          ↘
                                       .             2
                                                     .         ↗
                                                               .        f
                                                                        .(x)
                          m
                          . ax                      m
                                                    . in

                                                                    .   .        .     .       .     .

  V63.0121, Calculus I (NYU)          Section 4.4 Curve Sketching                    April 1, 2010   12 / 47
Step 2: Concavity




                                    f′ (x) = 6x2 − 6x − 12
                               =⇒ f′′ (x) = 12x − 6 = 6(2x − 1)

Another sign chart:                  .




                                                                       .   .   .     .       .     .

  V63.0121, Calculus I (NYU)             Section 4.4 Curve Sketching               April 1, 2010   13 / 47
Step 2: Concavity




                                    f′ (x) = 6x2 − 6x − 12
                               =⇒ f′′ (x) = 12x − 6 = 6(2x − 1)

Another sign chart:                  .
                                                                           .′′ (x)
                                                                           f
                                            .
                                          ./2
                                          1                                f
                                                                           .(x)




                                                                       .   .      .     .       .     .

  V63.0121, Calculus I (NYU)             Section 4.4 Curve Sketching                  April 1, 2010   13 / 47
Step 2: Concavity




                                     f′ (x) = 6x2 − 6x − 12
                               =⇒ f′′ (x) = 12x − 6 = 6(2x − 1)

Another sign chart:                   .

                               −
                               . −                                          .′′ (x)
                                                                            f
                                             .
                                           ./2
                                           1                                f
                                                                            .(x)




                                                                        .   .      .     .       .     .

  V63.0121, Calculus I (NYU)              Section 4.4 Curve Sketching                  April 1, 2010   13 / 47
Step 2: Concavity




                                     f′ (x) = 6x2 − 6x − 12
                               =⇒ f′′ (x) = 12x − 6 = 6(2x − 1)

Another sign chart:                   .

                               −
                               . −                  . +
                                                    +                       .′′ (x)
                                                                            f
                                             .
                                           ./2
                                           1                                f
                                                                            .(x)




                                                                        .   .      .     .       .     .

  V63.0121, Calculus I (NYU)              Section 4.4 Curve Sketching                  April 1, 2010   13 / 47
Step 2: Concavity




                                     f′ (x) = 6x2 − 6x − 12
                               =⇒ f′′ (x) = 12x − 6 = 6(2x − 1)

Another sign chart:                   .

                               −
                               . −                  . +
                                                    +                       .′′ (x)
                                                                            f
                                             .
                                .
                                ⌢          ./2
                                           1                                f
                                                                            .(x)




                                                                        .   .      .     .       .     .

  V63.0121, Calculus I (NYU)              Section 4.4 Curve Sketching                  April 1, 2010   13 / 47
Step 2: Concavity




                                     f′ (x) = 6x2 − 6x − 12
                               =⇒ f′′ (x) = 12x − 6 = 6(2x − 1)

Another sign chart:                   .

                               −
                               . −                  . +
                                                    +                       .′′ (x)
                                                                            f
                                             .
                                .
                                ⌢          ./2
                                           1         .
                                                     ⌣                      f
                                                                            .(x)




                                                                        .   .      .     .       .     .

  V63.0121, Calculus I (NYU)              Section 4.4 Curve Sketching                  April 1, 2010   13 / 47
Step 2: Concavity




                                     f′ (x) = 6x2 − 6x − 12
                               =⇒ f′′ (x) = 12x − 6 = 6(2x − 1)

Another sign chart:                   .

                               −
                               . −                  . +
                                                    +                       .′′ (x)
                                                                            f
                                             .
                                .
                                ⌢          ./2
                                           1         .
                                                     ⌣                      f
                                                                            .(x)
                                           I
                                           .P




                                                                        .   .      .     .       .     .

  V63.0121, Calculus I (NYU)              Section 4.4 Curve Sketching                  April 1, 2010   13 / 47
Step 3: One sign chart to rule them all



Remember, f(x) = 2x3 − 3x2 − 12x.

                               .




                                                                 .   .   .     .       .     .

  V63.0121, Calculus I (NYU)       Section 4.4 Curve Sketching               April 1, 2010   14 / 47
Step 3: One sign chart to rule them all



Remember, f(x) = 2x3 − 3x2 − 12x.

                        −
                  . . . .
                  +              −
                                 .                .
                                                  +              .′ (x)
                                                                 f
                                           .
                  ↗− ↘
                  . . 1 .        ↘
                                 .       2
                                         .        ↗
                                                  .              m
                                                                 . onotonicity




                                                             .            .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.4 Curve Sketching                        April 1, 2010   14 / 47
Step 3: One sign chart to rule them all



Remember, f(x) = 2x3 − 3x2 − 12x.

                  . .
                  +             −
                                . .       −
                                          .                .
                                                           +              .′ (x)
                                                                          f
                                              .
                  ↗−
                  . . 1         ↘
                                .         ↘ .
                                          .  2             ↗
                                                           .              m
                                                                          .′′ onotonicity
                 −
                 . −           −
                               . − .     . +
                                         +                . +
                                                          +               f
                                                                          . (x)
                  .
                  ⌢             .
                                ⌢ 1/2
                                    .     .
                                          ⌣                .
                                                           ⌣              c
                                                                          . oncavity




                                                                      .            .   .     .       .     .

  V63.0121, Calculus I (NYU)            Section 4.4 Curve Sketching                        April 1, 2010   14 / 47
Step 3: One sign chart to rule them all



Remember, f(x) = 2x3 − 3x2 − 12x.

                  . .
                  +        −
                           . .       −
                                     .        .
                                              +                    .′ (x)
                                                                   f
                                           .
                  ↗−
                  . . 1    ↘
                           .         ↘ .
                                     .   2    ↗
                                              .                    m
                                                                   .′′ onotonicity
                 −
                 . −      −
                          . − . . + +        . +
                                             +                     f
                                                                   . (x)
                  .
                  ⌢        ⌢ ./2 .
                           .   1     ⌣        .
                                              ⌣                    c
                                                                   . oncavity
                       7
                       ..    −
                             . 6 1/2   −.
                                       . 20                        f
                                                                   .(x)
                                 .
                      −
                      . 1      .
                               1/2       2
                                         .                         s
                                                                   . hape of f
                     m
                     . ax      I
                               .P       m
                                        . in




                                                               .            .   .     .       .     .

  V63.0121, Calculus I (NYU)     Section 4.4 Curve Sketching                        April 1, 2010   14 / 47
Combinations of monotonicity and concavity




                               I
                               .I                              I
                                                               .


                                              .



                               I
                               .II                        I
                                                          .V




                                                                   .   .   .     .       .     .

  V63.0121, Calculus I (NYU)     Section 4.4 Curve Sketching                   April 1, 2010   15 / 47
Combinations of monotonicity and concavity
                                                                       .
                                                                       decreasing,
                                                                       concave
                                                                       down

                               I
                               .I                              I
                                                               .


                                              .



                               I
                               .II                        I
                                                          .V




                                                                   .      .   .      .      .     .

  V63.0121, Calculus I (NYU)     Section 4.4 Curve Sketching                      April 1, 2010   15 / 47
Combinations of monotonicity and concavity
                 .                                                     .
                 increasing,                                           decreasing,
                 concave                                               concave
                 down                                                  down

                               I
                               .I                              I
                                                               .


                                              .



                               I
                               .II                        I
                                                          .V




                                                                   .      .   .      .      .     .

  V63.0121, Calculus I (NYU)     Section 4.4 Curve Sketching                      April 1, 2010   15 / 47
Combinations of monotonicity and concavity
                 .                                                     .
                 increasing,                                           decreasing,
                 concave                                               concave
                 down                                                  down

                               I
                               .I                              I
                                                               .


                                              .



                               I
                               .II                        I
                                                          .V

                 .
                 decreasing,
                 concave up
                                                                   .      .   .      .      .     .

  V63.0121, Calculus I (NYU)     Section 4.4 Curve Sketching                      April 1, 2010   15 / 47
Combinations of monotonicity and concavity
                 .                                                     .
                 increasing,                                           decreasing,
                 concave                                               concave
                 down                                                  down

                               I
                               .I                              I
                                                               .


                                              .



                               I
                               .II                        I
                                                          .V

                 .                                                     .
                 decreasing,                                           increasing,
                 concave up                                            concave up
                                                                   .      .   .      .      .     .

  V63.0121, Calculus I (NYU)     Section 4.4 Curve Sketching                      April 1, 2010   15 / 47
Step 3: One sign chart to rule them all



Remember, f(x) = 2x3 − 3x2 − 12x.

                  . .
                  +        −
                           . .       −
                                     .        .
                                              +                    .′ (x)
                                                                   f
                                           .
                  ↗−
                  . . 1    ↘
                           .         ↘ .
                                     .   2    ↗
                                              .                    m
                                                                   .′′ onotonicity
                 −
                 . −      −
                          . − . . + +        . +
                                             +                     f
                                                                   . (x)
                  .
                  ⌢        ⌢ ./2 .
                           .   1     ⌣        .
                                              ⌣                    c
                                                                   . oncavity
                       7
                       ..    −
                             . 6 1/2   −.
                                       . 20                        f
                                                                   .(x)
                                 .
                   . . 1
                      −        .
                               1/2       2
                                         .                         s
                                                                   . hape of f
                     m
                     . ax      I
                               .P       m
                                        . in




                                                               .            .   .     .       .     .

  V63.0121, Calculus I (NYU)     Section 4.4 Curve Sketching                        April 1, 2010   16 / 47
Step 3: One sign chart to rule them all



Remember, f(x) = 2x3 − 3x2 − 12x.

                  . .
                  +        −
                           . .       −
                                     .        .
                                              +                    .′ (x)
                                                                   f
                                           .
                  ↗−
                  . . 1    ↘
                           .         ↘ .
                                     .   2    ↗
                                              .                    m
                                                                   .′′ onotonicity
                 −
                 . −      −
                          . − . . + +        . +
                                             +                     f
                                                                   . (x)
                  .
                  ⌢        ⌢ ./2 .
                           .   1     ⌣        .
                                              ⌣                    c
                                                                   . oncavity
                       7
                       ..    −
                             . 6 1/2   −.
                                       . 20                        f
                                                                   .(x)
                                 .
                   . . 1 . ./2
                      −        1         2
                                         .                         s
                                                                   . hape of f
                     m
                     . ax      I
                               .P       m
                                        . in




                                                               .            .   .     .       .     .

  V63.0121, Calculus I (NYU)     Section 4.4 Curve Sketching                        April 1, 2010   16 / 47
Step 3: One sign chart to rule them all



Remember, f(x) = 2x3 − 3x2 − 12x.

                  . .
                  +        −
                           . .       −
                                     .        .
                                              +                    .′ (x)
                                                                   f
                                           .
                  ↗−
                  . . 1    ↘
                           .         ↘ .
                                     .   2    ↗
                                              .                    m
                                                                   .′′ onotonicity
                 −
                 . −      −
                          . − . . + +        . +
                                             +                     f
                                                                   . (x)
                  .
                  ⌢        ⌢ ./2 .
                           .   1     ⌣        .
                                              ⌣                    c
                                                                   . oncavity
                       7
                       ..    −
                             . 6 1/2   −.
                                       . 20                        f
                                                                   .(x)
                                 .
                   . . 1 . ./2 .
                      −        1         2
                                         .                         s
                                                                   . hape of f
                     m
                     . ax      I
                               .P       m
                                        . in




                                                               .            .   .     .       .     .

  V63.0121, Calculus I (NYU)     Section 4.4 Curve Sketching                        April 1, 2010   16 / 47
Step 3: One sign chart to rule them all



Remember, f(x) = 2x3 − 3x2 − 12x.

                  . .
                  +        −
                           . .       −
                                     .        .
                                              +                    .′ (x)
                                                                   f
                                           .
                  ↗−
                  . . 1    ↘
                           .         ↘ .
                                     .   2    ↗
                                              .                    m
                                                                   .′′ onotonicity
                 −
                 . −      −
                          . − . . + +        . +
                                             +                     f
                                                                   . (x)
                  .
                  ⌢        ⌢ ./2 .
                           .   1     ⌣        .
                                              ⌣                    c
                                                                   . oncavity
                       7
                       ..    −
                             . 6 1/2   −.
                                       . 20                        f
                                                                   .(x)
                                 .
                   . . 1 . ./2 .
                      −        1         2
                                         .     .                   s
                                                                   . hape of f
                     m
                     . ax      I
                               .P       m
                                        . in




                                                               .            .   .     .       .     .

  V63.0121, Calculus I (NYU)     Section 4.4 Curve Sketching                        April 1, 2010   16 / 47
Step 4: Graph
                                             f
                                             .(x)




                  .(x) = 2x3 − 3x2 − 12x
                  f

                 ( √          )       . −1, 7)
                                      (
                                          .
                 . 3− 4105 , 0                          . 0, 0)
                                                        (
                                  .                 .                                 .
                                                              . 1/2, −61/2)
                                                              (                           ( . x
                                                                                              √        )
                                                          .                               . 3+ 4105 , 0

                                                                  . 2, −20)
                                                                  (
                                                                        .

                                          7
                                          ..  −
                                              . 61/2 −.
                                                     . 20                                         f
                                                                                                  .(x)
                                                  .
                                      . . 1 . ./2 .
                                         −      1      2
                                                       .                          .               s
                                                                                                  . hape of f
                                        m
                                        . ax    I
                                                .P    m
                                                      . in            .       .       .       .          .   .

  V63.0121, Calculus I (NYU)           Section 4.4 Curve Sketching                          April 1, 2010    17 / 47
Step 4: Graph
                                             f
                                             .(x)




                  .(x) = 2x3 − 3x2 − 12x
                  f

                 ( √          )       . −1, 7)
                                      (
                                          .
                 . 3− 4105 , 0                          . 0, 0)
                                                        (
                                  .                 .                                 .
                                                              . 1/2, −61/2)
                                                              (                           ( . x
                                                                                              √        )
                                                          .                               . 3+ 4105 , 0

                                                                  . 2, −20)
                                                                  (
                                                                        .

                                          7
                                          ..  −
                                              . 61/2 −.
                                                     . 20                                         f
                                                                                                  .(x)
                                                  .
                                      . . 1 . ./2 .
                                         −      1      2
                                                       .                          .               s
                                                                                                  . hape of f
                                        m
                                        . ax    I
                                                .P    m
                                                      . in            .       .       .       .          .   .

  V63.0121, Calculus I (NYU)           Section 4.4 Curve Sketching                          April 1, 2010    17 / 47
Step 4: Graph
                                             f
                                             .(x)




                  .(x) = 2x3 − 3x2 − 12x
                  f

                 ( √          )       . −1, 7)
                                      (
                                          .
                 . 3− 4105 , 0                          . 0, 0)
                                                        (
                                  .                 .                                 .
                                                              . 1/2, −61/2)
                                                              (                           ( . x
                                                                                              √        )
                                                          .                               . 3+ 4105 , 0

                                                                  . 2, −20)
                                                                  (
                                                                        .

                                          7
                                          ..  −
                                              . 61/2 −.
                                                     . 20                                         f
                                                                                                  .(x)
                                                  .
                                      . . 1 . ./2 .
                                         −      1      2
                                                       .                          .               s
                                                                                                  . hape of f
                                        m
                                        . ax    I
                                                .P    m
                                                      . in            .       .       .       .          .   .

  V63.0121, Calculus I (NYU)           Section 4.4 Curve Sketching                          April 1, 2010    17 / 47
Step 4: Graph
                                             f
                                             .(x)




                  .(x) = 2x3 − 3x2 − 12x
                  f

                 ( √          )       . −1, 7)
                                      (
                                          .
                 . 3− 4105 , 0                          . 0, 0)
                                                        (
                                  .                 .                                 .
                                                              . 1/2, −61/2)
                                                              (                           ( . x
                                                                                              √        )
                                                          .                               . 3+ 4105 , 0

                                                                  . 2, −20)
                                                                  (
                                                                        .

                                          7
                                          ..  −
                                              . 61/2 −.
                                                     . 20                                         f
                                                                                                  .(x)
                                                  .
                                      . . 1 . ./2 .
                                         −      1      2
                                                       .                          .               s
                                                                                                  . hape of f
                                        m
                                        . ax    I
                                                .P    m
                                                      . in            .       .       .       .          .   .

  V63.0121, Calculus I (NYU)           Section 4.4 Curve Sketching                          April 1, 2010    17 / 47
Step 4: Graph
                                             f
                                             .(x)




                  .(x) = 2x3 − 3x2 − 12x
                  f

                 ( √          )       . −1, 7)
                                      (
                                          .
                 . 3− 4105 , 0                          . 0, 0)
                                                        (
                                  .                 .                                 .
                                                              . 1/2, −61/2)
                                                              (                           ( . x
                                                                                              √        )
                                                          .                               . 3+ 4105 , 0

                                                                  . 2, −20)
                                                                  (
                                                                        .

                                          7
                                          ..  −
                                              . 61/2 −.
                                                     . 20                                         f
                                                                                                  .(x)
                                                  .
                                      . . 1 . ./2 .
                                         −      1      2
                                                       .                          .               s
                                                                                                  . hape of f
                                        m
                                        . ax    I
                                                .P    m
                                                      . in            .       .       .       .          .   .

  V63.0121, Calculus I (NYU)           Section 4.4 Curve Sketching                          April 1, 2010    17 / 47
Graphing a quartic




Example
Graph f(x) = x4 − 4x3 + 10




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.4 Curve Sketching               April 1, 2010   18 / 47
Graphing a quartic




Example
Graph f(x) = x4 − 4x3 + 10

(Step 0) We know f(0) = 10 and lim f(x) = +∞. Not too many other
                                        x→±∞
points on the graph are evident.




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.4 Curve Sketching               April 1, 2010   18 / 47
Step 1: Monotonicity



                                f(x) = x4 − 4x3 + 10
                           =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)




                                                                  .   .   .     .       .     .

  V63.0121, Calculus I (NYU)        Section 4.4 Curve Sketching               April 1, 2010   19 / 47
Step 1: Monotonicity



                                   f(x) = x4 − 4x3 + 10
                           =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)

We make its sign chart.

                               .




                                                                     .   .   .     .       .     .

  V63.0121, Calculus I (NYU)           Section 4.4 Curve Sketching               April 1, 2010   19 / 47
Step 1: Monotonicity



                                    f(x) = x4 − 4x3 + 10
                           =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)

We make its sign chart.

                               0
                               ..
                                                                      . x2
                                                                      4
                               0
                               .




                                                                      .      .   .     .       .     .

  V63.0121, Calculus I (NYU)            Section 4.4 Curve Sketching                  April 1, 2010   19 / 47
Step 1: Monotonicity



                                      f(x) = x4 − 4x3 + 10
                           =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)

We make its sign chart.

                               . ..
                               + 0
                                                                        . x2
                                                                        4
                                 0
                                 .




                                                                        .      .   .     .       .     .

  V63.0121, Calculus I (NYU)              Section 4.4 Curve Sketching                  April 1, 2010   19 / 47
Step 1: Monotonicity



                                      f(x) = x4 − 4x3 + 10
                           =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)

We make its sign chart.

                               . ..
                               + 0            .
                                              +
                                                                        . x2
                                                                        4
                                 0
                                 .




                                                                        .      .   .     .       .     .

  V63.0121, Calculus I (NYU)              Section 4.4 Curve Sketching                  April 1, 2010   19 / 47
Step 1: Monotonicity



                                      f(x) = x4 − 4x3 + 10
                           =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)

We make its sign chart.

                               . ..
                               + 0            .
                                              +                   .
                                                                  +
                                                                        . x2
                                                                        4
                                 0
                                 .




                                                                        .      .   .     .       .     .

  V63.0121, Calculus I (NYU)              Section 4.4 Curve Sketching                  April 1, 2010   19 / 47
Step 1: Monotonicity



                                      f(x) = x4 − 4x3 + 10
                           =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)

We make its sign chart.

                               . ..
                               + 0            .
                                              +                    .
                                                                   +
                                                                        . x2
                                                                        4
                                 0
                                 .
                                                              0
                                                              ..
                                                                        . x − 3)
                                                                        (
                                                              3
                                                              .




                                                                        .      .   .     .       .     .

  V63.0121, Calculus I (NYU)              Section 4.4 Curve Sketching                  April 1, 2010   19 / 47
Step 1: Monotonicity



                                      f(x) = x4 − 4x3 + 10
                           =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)

We make its sign chart.

                               . ..
                               + 0            .
                                              +                    .
                                                                   +
                                                                        . x2
                                                                        4
                                 0
                                 .
                               −
                               .                              0
                                                              ..
                                                                        . x − 3)
                                                                        (
                                                              3
                                                              .




                                                                        .      .   .     .       .     .

  V63.0121, Calculus I (NYU)              Section 4.4 Curve Sketching                  April 1, 2010   19 / 47
Step 1: Monotonicity



                                      f(x) = x4 − 4x3 + 10
                           =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)

We make its sign chart.

                               . ..
                               + 0            .
                                              +                    .
                                                                   +
                                                                        . x2
                                                                        4
                                 0
                                 .
                               −
                               .              −
                                              .               0
                                                              ..
                                                                        . x − 3)
                                                                        (
                                                              3
                                                              .




                                                                        .      .   .     .       .     .

  V63.0121, Calculus I (NYU)              Section 4.4 Curve Sketching                  April 1, 2010   19 / 47
Step 1: Monotonicity



                                      f(x) = x4 − 4x3 + 10
                           =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)

We make its sign chart.

                               . ..
                               + 0            .
                                              +                   .
                                                                  +
                                                                        . x2
                                                                        4
                                 0
                                 .
                               −
                               .              −
                                              .               .. .
                                                              0 +
                                                                        . x − 3)
                                                                        (
                                                              3
                                                              .




                                                                        .      .   .     .       .     .

  V63.0121, Calculus I (NYU)              Section 4.4 Curve Sketching                  April 1, 2010   19 / 47
Step 1: Monotonicity



                                      f(x) = x4 − 4x3 + 10
                           =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)

We make its sign chart.

                               . ..
                               + 0            .
                                              +                   .
                                                                  +
                                                                        . x2
                                                                        4
                                 0
                                 .
                               −
                               .              −
                                              .               .. .
                                                              0 +
                                                                        . x − 3)
                                                                        (
                                                              3
                                                              .
                                 0
                                 ..                           0
                                                              ..        .′ (x)
                                                                        f
                                 0
                                 .                            3
                                                              .         f
                                                                        .(x)


                                                                        .        .   .     .       .     .

  V63.0121, Calculus I (NYU)              Section 4.4 Curve Sketching                    April 1, 2010   19 / 47
Step 1: Monotonicity



                                      f(x) = x4 − 4x3 + 10
                           =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)

We make its sign chart.

                               . ..
                               + 0            .
                                              +                   .
                                                                  +
                                                                        . x2
                                                                        4
                                 0
                                 .
                               −
                               .              −
                                              .               .. .
                                                              0 +
                                                                        . x − 3)
                                                                        (
                                                              3
                                                              .
                               − 0
                               . ..                           0
                                                              ..        .′ (x)
                                                                        f
                                 0
                                 .                            3
                                                              .         f
                                                                        .(x)


                                                                        .        .   .     .       .     .

  V63.0121, Calculus I (NYU)              Section 4.4 Curve Sketching                    April 1, 2010   19 / 47
Step 1: Monotonicity



                                      f(x) = x4 − 4x3 + 10
                           =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)

We make its sign chart.

                               . ..
                               + 0            .
                                              +                   .
                                                                  +
                                                                        . x2
                                                                        4
                                 0
                                 .
                               −
                               .              −
                                              .               .. .
                                                              0 +
                                                                        . x − 3)
                                                                        (
                                                              3
                                                              .
                               − 0
                               . ..           −
                                              .               0
                                                              ..        .′ (x)
                                                                        f
                                 0
                                 .                            3
                                                              .         f
                                                                        .(x)


                                                                        .        .   .     .       .     .

  V63.0121, Calculus I (NYU)              Section 4.4 Curve Sketching                    April 1, 2010   19 / 47
Step 1: Monotonicity



                                      f(x) = x4 − 4x3 + 10
                           =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)

We make its sign chart.

                               . ..
                               + 0            .
                                              +                   .
                                                                  +
                                                                        . x2
                                                                        4
                                 0
                                 .
                               −
                               .              −
                                              .               .. .
                                                              0 +
                                                                        . x − 3)
                                                                        (
                                                              3
                                                              .
                               − 0
                               . ..           −
                                              .               .. .
                                                              0 +       .′ (x)
                                                                        f
                                 0
                                 .                            3
                                                              .         f
                                                                        .(x)


                                                                        .        .   .     .       .     .

  V63.0121, Calculus I (NYU)              Section 4.4 Curve Sketching                    April 1, 2010   19 / 47
Step 1: Monotonicity



                                      f(x) = x4 − 4x3 + 10
                           =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)

We make its sign chart.

                               . ..
                               + 0            .
                                              +                   .
                                                                  +
                                                                        . x2
                                                                        4
                                 0
                                 .
                               −
                               .              −
                                              .               .. .
                                                              0 +
                                                                        . x − 3)
                                                                        (
                                                              3
                                                              .
                               − 0
                               . ..           −
                                              .               .. .
                                                              0 +       .′ (x)
                                                                        f
                               ↘ 0
                               . .                            3
                                                              .         f
                                                                        .(x)


                                                                        .        .   .     .       .     .

  V63.0121, Calculus I (NYU)              Section 4.4 Curve Sketching                    April 1, 2010   19 / 47
Step 1: Monotonicity



                                      f(x) = x4 − 4x3 + 10
                           =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)

We make its sign chart.

                               . ..
                               + 0            .
                                              +                   .
                                                                  +
                                                                        . x2
                                                                        4
                                 0
                                 .
                               −
                               .              −
                                              .               .. .
                                                              0 +
                                                                        . x − 3)
                                                                        (
                                                              3
                                                              .
                               − 0
                               . ..           −
                                              .               .. .
                                                              0 +       .′ (x)
                                                                        f
                               ↘ 0
                               . .            ↘
                                              .               3
                                                              .         f
                                                                        .(x)


                                                                        .        .   .     .       .     .

  V63.0121, Calculus I (NYU)              Section 4.4 Curve Sketching                    April 1, 2010   19 / 47
Step 1: Monotonicity



                                      f(x) = x4 − 4x3 + 10
                           =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)

We make its sign chart.

                               . ..
                               + 0            .
                                              +                   .
                                                                  +
                                                                        . x2
                                                                        4
                                 0
                                 .
                               −
                               .              −
                                              .               .. .
                                                              0 +
                                                                        . x − 3)
                                                                        (
                                                              3
                                                              .
                               − 0
                               . ..           −
                                              .               .. .
                                                              0 +       .′ (x)
                                                                        f
                               ↘ 0
                               . .            ↘
                                              .               3 ↗
                                                              . .       f
                                                                        .(x)


                                                                        .        .   .     .       .     .

  V63.0121, Calculus I (NYU)              Section 4.4 Curve Sketching                    April 1, 2010   19 / 47
Step 1: Monotonicity



                                      f(x) = x4 − 4x3 + 10
                           =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)

We make its sign chart.

                               . ..
                               + 0            .
                                              +                   .
                                                                  +
                                                                        . x2
                                                                        4
                                 0
                                 .
                               −
                               .              −
                                              .              .. .
                                                             0 +
                                                                        . x − 3)
                                                                        (
                                                             3
                                                             .
                               − 0
                               . ..           −
                                              .              .. .
                                                             0 +        .′ (x)
                                                                        f
                               ↘ 0
                               . .            ↘
                                              .              3 ↗
                                                             . .        f
                                                                        .(x)
                                                            m
                                                            . in

                                                                        .        .   .     .       .     .

  V63.0121, Calculus I (NYU)              Section 4.4 Curve Sketching                    April 1, 2010   19 / 47
Step 2: Concavity



                 f′ (x) = 4x3 − 12x2
            =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)



                 .




                                        .   .      .   .   .   .
Step 2: Concavity



                          f′ (x) = 4x3 − 12x2
                  =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)

Here is its sign chart:

                          .




                                                .   .    .   .   .   .
Step 2: Concavity



                          f′ (x) = 4x3 − 12x2
                  =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)

Here is its sign chart:

                     − 0
                     . ..       .
                                +
                                                    1
                                                    . 2x
                       0
                       .




                                                .      .   .   .   .   .
Step 2: Concavity



                          f′ (x) = 4x3 − 12x2
                  =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)

Here is its sign chart:

                     − 0
                     . ..       .
                                +           .
                                            +
                                                    1
                                                    . 2x
                       0
                       .




                                                .      .   .   .   .   .
Step 2: Concavity



                          f′ (x) = 4x3 − 12x2
                  =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)

Here is its sign chart:

                     − 0
                     . ..       .
                                +           .
                                            +
                                                    1
                                                    . 2x
                       0
                       .




                                                .      .   .   .   .   .
Step 2: Concavity



                          f′ (x) = 4x3 − 12x2
                  =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)

Here is its sign chart:

                     − 0
                     . ..       .
                                +           .
                                            +
                                                    1
                                                    . 2x
                       0
                       .




                                                .      .   .   .   .   .
Step 2: Concavity



                          f′ (x) = 4x3 − 12x2
                  =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)

Here is its sign chart:

                     − 0
                     . ..       .
                                +           .
                                            +
                                                    1
                                                    . 2x
                       0
                       .
                     −
                     .          −
                                .     0
                                      ..
                                                    . −2
                                                    x
                                      2
                                      .




                                                .      .   .   .   .   .
Step 2: Concavity



                          f′ (x) = 4x3 − 12x2
                  =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)

Here is its sign chart:

                     − 0
                     . ..       .
                                +           .
                                            +
                                                    1
                                                    . 2x
                       0
                       .
                     −
                     .          −
                                .     0
                                      ..    .
                                            +
                                                    . −2
                                                    x
                                      2
                                      .




                                                .      .   .   .   .   .
Step 2: Concavity



                          f′ (x) = 4x3 − 12x2
                  =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)

Here is its sign chart:

                     − 0
                     . ..       .
                                +           .
                                            +
                                                    1
                                                    . 2x
                       0
                       .
                     −
                     .          −
                                .     0
                                      ..    .
                                            +
                                                    . −2
                                                    x
                                      2
                                      .




                                                .      .   .   .   .   .
Step 2: Concavity



                          f′ (x) = 4x3 − 12x2
                  =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)

Here is its sign chart:

                     − 0
                     . ..       .
                                +           .
                                            +
                                                    1
                                                    . 2x
                       0
                       .
                     −
                     .          −
                                .     0
                                      ..    .
                                            +
                                                    . −2
                                                    x
                                      2
                                      .




                                                .      .   .   .   .   .
Step 2: Concavity



                          f′ (x) = 4x3 − 12x2
                  =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)

Here is its sign chart:

                     − 0
                     . ..       .
                                +           .
                                            +
                                                    1
                                                    . 2x
                       0
                       .
                     −
                     .          −
                                .     0
                                      ..    .
                                            +
                                                    . −2
                                                    x
                                      2
                                      .
                    . + ..
                    + 0        −
                               . −    0
                                      ..            .′′ (x)
                                                    f
                          0
                          .           2
                                      .             f
                                                    .(x)


                                                .        .    .   .   .   .
Step 2: Concavity



                          f′ (x) = 4x3 − 12x2
                  =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)

Here is its sign chart:

                     − 0
                     . ..       .
                                +           .
                                            +
                                                     1
                                                     . 2x
                       0
                       .
                     −
                     .          −
                                .     0
                                      ..    .
                                            +
                                                     . −2
                                                     x
                                      2
                                      .
                    . + ..
                    + 0        −
                               . −    0
                                      ..   . +
                                           +         .′′ (x)
                                                     f
                          0
                          .           2
                                      .              f
                                                     .(x)


                                                 .        .    .   .   .   .
Step 2: Concavity



                          f′ (x) = 4x3 − 12x2
                  =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)

Here is its sign chart:

                     − 0
                     . ..       .
                                +           .
                                            +
                                                     1
                                                     . 2x
                       0
                       .
                     −
                     .          −
                                .     0
                                      ..    .
                                            +
                                                     . −2
                                                     x
                                      2
                                      .
                    . + ..
                    + 0        −
                               . −    0
                                      ..   . +
                                           +         .′′ (x)
                                                     f
                     . .
                     ⌣ 0              2
                                      .              f
                                                     .(x)


                                                 .        .    .   .   .   .
Step 2: Concavity



                          f′ (x) = 4x3 − 12x2
                  =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)

Here is its sign chart:

                     − 0
                     . ..       .
                                +           .
                                            +
                                                     1
                                                     . 2x
                       0
                       .
                     −
                     .          −
                                .     0
                                      ..    .
                                            +
                                                     . −2
                                                     x
                                      2
                                      .
                    . + ..
                    + 0        −
                               . −    0
                                      ..   . +
                                           +         .′′ (x)
                                                     f
                     . .
                     ⌣ 0        .
                                ⌢     2
                                      .              f
                                                     .(x)


                                                 .        .    .   .   .   .
Step 2: Concavity



                          f′ (x) = 4x3 − 12x2
                  =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)

Here is its sign chart:

                     − 0
                     . ..       .
                                +           .
                                            +
                                                     1
                                                     . 2x
                       0
                       .
                     −
                     .          −
                                .     0
                                      ..    .
                                            +
                                                     . −2
                                                     x
                                      2
                                      .
                    . + ..
                    + 0        −
                               . −    0
                                      ..   . +
                                           +         .′′ (x)
                                                     f
                     . .
                     ⌣ 0        .
                                ⌢     2
                                      .     .
                                            ⌣        f
                                                     .(x)


                                                 .        .    .   .   .   .
Step 2: Concavity



                          f′ (x) = 4x3 − 12x2
                  =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)

Here is its sign chart:

                     − 0
                     . ..       .
                                +           .
                                            +
                                                     1
                                                     . 2x
                       0
                       .
                     −
                     .          −
                                .     0
                                      ..    .
                                            +
                                                     . −2
                                                     x
                                      2
                                      .
                    . + ..
                    + 0        −
                               . −    0
                                      ..   . +
                                           +         .′′ (x)
                                                     f
                     . .
                     ⌣ 0        .
                                ⌢     2
                                      .     .
                                            ⌣        f
                                                     .(x)
                          I
                          .P

                                                 .        .    .   .   .   .
Step 2: Concavity



                                   f′ (x) = 4x3 − 12x2
                          =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)

Here is its sign chart:

                               − 0
                               . ..      .
                                         +                   .
                                                             +
                                                                          1
                                                                          . 2x
                                 0
                                 .
                               −
                               .         −
                                         .          0
                                                    ..       .
                                                             +
                                                                          . −2
                                                                          x
                                                    2
                                                    .
                               . + ..
                               + 0      −
                                        . −         0
                                                    ..     . +
                                                           +              .′′ (x)
                                                                          f
                                . .
                                ⌣ 0      .
                                         ⌢          2
                                                    .       .
                                                            ⌣             f
                                                                          .(x)
                                   I
                                   .P              I
                                                   .P

                                                                      .        .    .     .       .     .

  V63.0121, Calculus I (NYU)            Section 4.4 Curve Sketching                     April 1, 2010   20 / 47
Step 3: Grand Unified Sign Chart

                                .

Remember, f(x) = x4 − 4x3 + 10.

                            − 0
                            . ..     −
                                     .           − 0 +
                                                 . .. .                   .′ (x)
                                                                          f
                            ↘ 0
                            . .      ↘
                                     .           ↘ 3 ↗
                                                 . . .                    m
                                                                          .′′ onotonicity
                           . + ..
                           + 0      −
                                    . −      .. . + . +
                                             0+       +                   f
                                                                          . (x)
                            . .
                            ⌣ 0      .
                                     ⌢       2
                                             .   .
                                                 ⌣    .
                                                      ⌣                   c
                                                                          . oncavity
                               1.
                               .0           −      −.
                                            . .6 . 17                     f
                                                                          .(x)
                                0
                                .             2
                                              .        3
                                                       .                  s
                                                                          . hape
                               I
                               .P            I
                                             .P       m
                                                      . in




                                                                  .   .      .       .       .     .

  V63.0121, Calculus I (NYU)        Section 4.4 Curve Sketching                    April 1, 2010   21 / 47
Step 3: Grand Unified Sign Chart

                                 .

Remember, f(x) = x4 − 4x3 + 10.

                            − 0
                            . ..       −
                                       .           − 0 +
                                                   . .. .                   .′ (x)
                                                                            f
                            ↘ 0
                            . .        ↘
                                       .           ↘ 3 ↗
                                                   . . .                    m
                                                                            .′′ onotonicity
                           . + ..
                           + 0        −
                                      . −      .. . + . +
                                               0+       +                   f
                                                                            . (x)
                            . .
                            ⌣ 0        .
                                       ⌢       2
                                               .   .
                                                   ⌣    .
                                                        ⌣                   c
                                                                            . oncavity
                                 1.
                                 .0           −      −.
                                              . .6 . 17                     f
                                                                            .(x)
                               . .0             2
                                                .        3
                                                         .                  s
                                                                            . hape
                                 I
                                 .P            I
                                               .P       m
                                                        . in




                                                                    .   .      .       .       .     .

  V63.0121, Calculus I (NYU)          Section 4.4 Curve Sketching                    April 1, 2010   21 / 47
Step 3: Grand Unified Sign Chart

                                 .

Remember, f(x) = x4 − 4x3 + 10.

                            − 0
                            . ..       −
                                       .           − 0 +
                                                   . .. .                   .′ (x)
                                                                            f
                            ↘ 0
                            . .        ↘
                                       .           ↘ 3 ↗
                                                   . . .                    m
                                                                            .′′ onotonicity
                           . + ..
                           + 0        −
                                      . −      .. . + . +
                                               0+       +                   f
                                                                            . (x)
                            . .
                            ⌣ 0        .
                                       ⌢       2
                                               .   .
                                                   ⌣    .
                                                        ⌣                   c
                                                                            . oncavity
                                 1.
                                 .0           −      −.
                                              . .6 . 17                     f
                                                                            .(x)
                               . .0    .        2
                                                .        3
                                                         .                  s
                                                                            . hape
                                 I
                                 .P            I
                                               .P       m
                                                        . in




                                                                    .   .      .       .       .     .

  V63.0121, Calculus I (NYU)          Section 4.4 Curve Sketching                    April 1, 2010   21 / 47
Step 3: Grand Unified Sign Chart

                                 .

Remember, f(x) = x4 − 4x3 + 10.

                            − 0
                            . ..       −
                                       .           − 0 +
                                                   . .. .                   .′ (x)
                                                                            f
                            ↘ 0
                            . .        ↘
                                       .           ↘ 3 ↗
                                                   . . .                    m
                                                                            .′′ onotonicity
                           . + ..
                           + 0        −
                                      . −      .. . + . +
                                               0+       +                   f
                                                                            . (x)
                            . .
                            ⌣ 0        .
                                       ⌢       2
                                               .   .
                                                   ⌣    .
                                                        ⌣                   c
                                                                            . oncavity
                                 1.
                                 .0           −      −.
                                              . .6 . 17                     f
                                                                            .(x)
                               . .0    .       2
                                               .    . .
                                                      3                     s
                                                                            . hape
                                 I
                                 .P            I
                                               .P       m
                                                        . in




                                                                    .   .      .       .       .     .

  V63.0121, Calculus I (NYU)          Section 4.4 Curve Sketching                    April 1, 2010   21 / 47
Step 3: Grand Unified Sign Chart

                                 .

Remember, f(x) = x4 − 4x3 + 10.

                            − 0
                            . ..       −
                                       .           − 0 +
                                                   . .. .                   .′ (x)
                                                                            f
                            ↘ 0
                            . .        ↘
                                       .           ↘ 3 ↗
                                                   . . .                    m
                                                                            .′′ onotonicity
                           . + ..
                           + 0        −
                                      . −      .. . + . +
                                               0+       +                   f
                                                                            . (x)
                            . .
                            ⌣ 0        .
                                       ⌢       2
                                               .   .
                                                   ⌣    .
                                                        ⌣                   c
                                                                            . oncavity
                                 1.
                                 .0           −      −.
                                              . .6 . 17                     f
                                                                            .(x)
                               . .0    .       2
                                               .    . . .
                                                      3                     s
                                                                            . hape
                                 I
                                 .P            I
                                               .P       m
                                                        . in




                                                                    .   .      .       .       .     .

  V63.0121, Calculus I (NYU)          Section 4.4 Curve Sketching                    April 1, 2010   21 / 47
Step 4: Graph
                                          y
                                          .




          .(x) = x4 − 4x3 + 10
          f


                               . 0, 10)
                               (
                                          .
                                          .                 .                     x
                                                                                  .
                                                                      .
                                              . 2, −6)
                                              (
                                                                . 3, −17)
                                                                (

                                      1.
                                      .0                 −    −.
                                                         . .6 . 17                f
                                                                                  .(x)
                                    . .0         .         2
                                                           . . . .
                                                                3                 s
                                                                                  . hape
                                      I
                                      .P                  I
                                                          .P . in
                                                               m   .    .   .     .       .     .

  V63.0121, Calculus I (NYU)         Section 4.4 Curve Sketching                April 1, 2010   22 / 47
Step 4: Graph
                                          y
                                          .




          .(x) = x4 − 4x3 + 10
          f


                               . 0, 10)
                               (
                                          .
                                          .                 .                     x
                                                                                  .
                                                                      .
                                              . 2, −6)
                                              (
                                                                . 3, −17)
                                                                (

                                      1.
                                      .0                 −    −.
                                                         . .6 . 17                f
                                                                                  .(x)
                                    . .0         .         2
                                                           . . . .
                                                                3                 s
                                                                                  . hape
                                      I
                                      .P                  I
                                                          .P . in
                                                               m   .    .   .     .       .     .

  V63.0121, Calculus I (NYU)         Section 4.4 Curve Sketching                April 1, 2010   22 / 47
Step 4: Graph
                                          y
                                          .




          .(x) = x4 − 4x3 + 10
          f


                               . 0, 10)
                               (
                                          .
                                          .                 .                     x
                                                                                  .
                                                                      .
                                              . 2, −6)
                                              (
                                                                . 3, −17)
                                                                (

                                      1.
                                      .0                 −    −.
                                                         . .6 . 17                f
                                                                                  .(x)
                                    . .0         .         2
                                                           . . . .
                                                                3                 s
                                                                                  . hape
                                      I
                                      .P                  I
                                                          .P . in
                                                               m   .    .   .     .       .     .

  V63.0121, Calculus I (NYU)         Section 4.4 Curve Sketching                April 1, 2010   22 / 47
Step 4: Graph
                                          y
                                          .




          .(x) = x4 − 4x3 + 10
          f


                               . 0, 10)
                               (
                                          .
                                          .                 .                     x
                                                                                  .
                                                                      .
                                              . 2, −6)
                                              (
                                                                . 3, −17)
                                                                (

                                      1.
                                      .0                 −    −.
                                                         . .6 . 17                f
                                                                                  .(x)
                                    . .0         .         2
                                                           . . . .
                                                                3                 s
                                                                                  . hape
                                      I
                                      .P                  I
                                                          .P . in
                                                               m   .    .   .     .       .     .

  V63.0121, Calculus I (NYU)         Section 4.4 Curve Sketching                April 1, 2010   22 / 47
Step 4: Graph
                                          y
                                          .




          .(x) = x4 − 4x3 + 10
          f


                               . 0, 10)
                               (
                                          .
                                          .                 .                     x
                                                                                  .
                                                                      .
                                              . 2, −6)
                                              (
                                                                . 3, −17)
                                                                (

                                      1.
                                      .0                 −    −.
                                                         . .6 . 17                f
                                                                                  .(x)
                                    . .0         .         2
                                                           . . . .
                                                                3                 s
                                                                                  . hape
                                      I
                                      .P                  I
                                                          .P . in
                                                               m   .    .   .     .       .     .

  V63.0121, Calculus I (NYU)         Section 4.4 Curve Sketching                April 1, 2010   22 / 47
Outline


The Procedure

Simple examples
   A cubic function
   A quartic function

More Examples
  Points of nondifferentiability
  Horizontal asymptotes
  Vertical asymptotes
  Trigonometric and polynomial together
  Logarithmic


                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.4 Curve Sketching               April 1, 2010   23 / 47
Example
                          √
Graph f(x) = x +               |x|




                                                                   .   .   .     .       .     .

  V63.0121, Calculus I (NYU)         Section 4.4 Curve Sketching               April 1, 2010   24 / 47
Example
                          √
Graph f(x) = x +               |x|

This function looks strange because of the absolute value. But
whenever we become nervous, we can just take cases.




                                                                   .   .   .     .       .     .

  V63.0121, Calculus I (NYU)         Section 4.4 Curve Sketching               April 1, 2010   24 / 47
Step 0: Finding Zeroes

               √
f(x) = x +         |x|
     First, look at f by itself. We can tell that f(0) = 0 and that f(x) > 0 if
     x is positive.




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.4 Curve Sketching               April 1, 2010   25 / 47
Step 0: Finding Zeroes

               √
f(x) = x +         |x|
     First, look at f by itself. We can tell that f(0) = 0 and that f(x) > 0 if
     x is positive.
     Are there negative numbers which are zeroes for f?




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.4 Curve Sketching               April 1, 2010   25 / 47
Step 0: Finding Zeroes

               √
f(x) = x +         |x|
     First, look at f by itself. We can tell that f(0) = 0 and that f(x) > 0 if
     x is positive.
     Are there negative numbers which are zeroes for f?
                                 √
                             x + −x = 0
                                 √
                                  −x = −x
                                             −x = x2
                                        x2 + x = 0

     The only solutions are x = 0 and x = −1


                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.4 Curve Sketching               April 1, 2010   25 / 47
Step 0: Asymptotic behavior

               √
f(x) = x +         |x|
      lim f(x) = ∞, because both terms tend to ∞.
     x→∞




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.4 Curve Sketching               April 1, 2010   26 / 47
Step 0: Asymptotic behavior

               √
f(x) = x +         |x|
      lim f(x) = ∞, because both terms tend to ∞.
     x→∞
       lim f(x) is indeterminate of the form −∞ + ∞. It’s the same as
     x→−∞          √
       lim (−y + y)
     y→+∞




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.4 Curve Sketching               April 1, 2010   26 / 47
Step 0: Asymptotic behavior

               √
f(x) = x +         |x|
      lim f(x) = ∞, because both terms tend to ∞.
     x→∞
       lim f(x) is indeterminate of the form −∞ + ∞. It’s the same as
     x→−∞          √
       lim (−y + y)
     y→+∞
                                                        √
                                   √          √          y+y
                          lim (−y + y) = lim ( y − y) · √
                         y→+∞           y→∞              y+y
                                                 y − y2
                                           = lim √      = −∞
                                            y→∞    y+y




                                                               .   .   .     .       .     .

  V63.0121, Calculus I (NYU)     Section 4.4 Curve Sketching               April 1, 2010   26 / 47
Step 1: The derivative


                          √
Remember, f(x) = x + |x|.
To find f′ , first assume x > 0. Then
                                          d (   √ )    1
                               f′ (x) =       x+ x =1+ √
                                          dx          2 x




                                                                        .   .   .     .       .     .

  V63.0121, Calculus I (NYU)              Section 4.4 Curve Sketching               April 1, 2010   27 / 47
Step 1: The derivative


                          √
Remember, f(x) = x + |x|.
To find f′ , first assume x > 0. Then
                                          d (   √ )    1
                               f′ (x) =       x+ x =1+ √
                                          dx          2 x

Notice
     f′ (x) > 0 when x > 0 (so no critical points here)




                                                                        .   .   .     .       .     .

  V63.0121, Calculus I (NYU)              Section 4.4 Curve Sketching               April 1, 2010   27 / 47
Step 1: The derivative


                          √
Remember, f(x) = x + |x|.
To find f′ , first assume x > 0. Then
                                          d (   √ )    1
                               f′ (x) =       x+ x =1+ √
                                          dx          2 x

Notice
     f′ (x) > 0 when x > 0 (so no critical points here)
      lim f′ (x) = ∞ (so 0 is a critical point)
     x→0+




                                                                        .   .   .     .       .     .

  V63.0121, Calculus I (NYU)              Section 4.4 Curve Sketching               April 1, 2010   27 / 47
Step 1: The derivative


                          √
Remember, f(x) = x + |x|.
To find f′ , first assume x > 0. Then
                                          d (   √ )    1
                               f′ (x) =       x+ x =1+ √
                                          dx          2 x

Notice
     f′ (x) > 0 when x > 0 (so no critical points here)
      lim f′ (x) = ∞ (so 0 is a critical point)
     x→0+
      lim f′ (x) = 1 (so the graph is asymptotic to a line of slope 1)
     x→∞




                                                                        .   .   .     .       .     .

  V63.0121, Calculus I (NYU)              Section 4.4 Curve Sketching               April 1, 2010   27 / 47
Step 1: The derivative
                        √
Remember, f(x) = x + |x|.
If x is negative, we have

                                      d (    √ )        1
                           f′ (x) =       x + −x = 1 − √
                                      dx              2 −x

Notice
      lim f′ (x) = −∞ (other side of the critical point)
     x→0−




                                                                     .   .   .     .       .     .

  V63.0121, Calculus I (NYU)           Section 4.4 Curve Sketching               April 1, 2010   28 / 47
Step 1: The derivative
                        √
Remember, f(x) = x + |x|.
If x is negative, we have

                                      d (    √ )        1
                           f′ (x) =       x + −x = 1 − √
                                      dx              2 −x

Notice
      lim f′ (x) = −∞ (other side of the critical point)
     x→0−
       lim f′ (x) = 1 (asymptotic to a line of slope 1)
     x→−∞




                                                                     .   .   .     .       .     .

  V63.0121, Calculus I (NYU)           Section 4.4 Curve Sketching               April 1, 2010   28 / 47
Step 1: The derivative
                        √
Remember, f(x) = x + |x|.
If x is negative, we have

                                      d (    √ )        1
                           f′ (x) =       x + −x = 1 − √
                                      dx              2 −x

Notice
      lim f′ (x) = −∞ (other side of the critical point)
     x→0−
       lim f′ (x) = 1 (asymptotic to a line of slope 1)
     x→−∞
      ′
     f (x) = 0 when

                1        √     1         1          1
            1− √   = 0 =⇒ −x =   =⇒ −x =   =⇒ x = −
              2 −x             2         4          4

                                                                     .   .   .     .       .     .

  V63.0121, Calculus I (NYU)           Section 4.4 Curve Sketching               April 1, 2010   28 / 47
Step 1: Monotonicity


                                 1
                             1 + √
                                         if x > 0
                    f′ (x) =     2 x
                             1 − √
                                  1
                                          if x < 0
                                 2 −x
We can’t make a multi-factor sign chart because of the absolute value,
but we can test points in between critical points.

                            0
                            ..   ∓.
                                 . ∞                             .′ (x)
                                                                 f
                           −4
                           . 1    0
                                  .                              f
                                                                 .(x)




                                              .      .   .   .          .   .
Step 1: Monotonicity


                                 1
                             1 + √
                                         if x > 0
                    f′ (x) =     2 x
                             1 − √
                                  1
                                          if x < 0
                                 2 −x
We can’t make a multi-factor sign chart because of the absolute value,
but we can test points in between critical points.

                      .
                      +     0
                            ..   ∓.
                                 . ∞                             .′ (x)
                                                                 f
                           −4
                           . 1    0
                                  .                              f
                                                                 .(x)




                                              .      .   .   .          .   .
Step 1: Monotonicity


                                 1
                             1 + √
                                         if x > 0
                    f′ (x) =     2 x
                             1 − √
                                  1
                                          if x < 0
                                 2 −x
We can’t make a multi-factor sign chart because of the absolute value,
but we can test points in between critical points.

                      .
                      +     0 −∓ .
                            .. . . ∞                             .′ (x)
                                                                 f
                           −4
                           . 1     0
                                   .                             f
                                                                 .(x)




                                              .      .   .   .          .   .
Step 1: Monotonicity


                                 1
                             1 + √
                                         if x > 0
                    f′ (x) =     2 x
                             1 − √
                                  1
                                          if x < 0
                                 2 −x
We can’t make a multi-factor sign chart because of the absolute value,
but we can test points in between critical points.

                      .
                      +     0 −∓ .
                            .. . . ∞          .
                                              +                  .′ (x)
                                                                 f
                           −4
                           . 1     0
                                   .                             f
                                                                 .(x)




                                              .      .   .   .          .   .
Step 1: Monotonicity


                                 1
                             1 + √
                                         if x > 0
                    f′ (x) =     2 x
                             1 − √
                                  1
                                          if x < 0
                                 2 −x
We can’t make a multi-factor sign chart because of the absolute value,
but we can test points in between critical points.

                      .
                      +     0 −∓ .
                            .. . . ∞          .
                                              +                  .′ (x)
                                                                 f
                      ↗
                      .    −4
                           . 1     0
                                   .                             f
                                                                 .(x)




                                              .      .   .   .          .   .
Step 1: Monotonicity


                                 1
                             1 + √
                                         if x > 0
                    f′ (x) =     2 x
                             1 − √
                                  1
                                          if x < 0
                                 2 −x
We can’t make a multi-factor sign chart because of the absolute value,
but we can test points in between critical points.

                      .
                      +     0 −∓ .
                            .. . . ∞          .
                                              +                  .′ (x)
                                                                 f
                      ↗
                      .    −4 ↘ 0
                           . 1. .                                f
                                                                 .(x)




                                              .      .   .   .          .   .
Step 1: Monotonicity


                                 1
                             1 + √
                                         if x > 0
                    f′ (x) =     2 x
                             1 − √
                                  1
                                          if x < 0
                                 2 −x
We can’t make a multi-factor sign chart because of the absolute value,
but we can test points in between critical points.

                      .
                      +     0 −∓ .
                            .. . . ∞         .
                                             +                   .′ (x)
                                                                 f
                      ↗
                      .    −4 ↘ 0
                           . 1. .            ↗
                                             .                   f
                                                                 .(x)




                                              .      .   .   .          .   .
Step 1: Monotonicity


                                 1
                             1 + √
                                         if x > 0
                    f′ (x) =     2 x
                             1 − √
                                  1
                                          if x < 0
                                 2 −x
We can’t make a multi-factor sign chart because of the absolute value,
but we can test points in between critical points.

                      .
                      +      0 −∓ .
                             .. . . ∞        .
                                             +                   .′ (x)
                                                                 f
                      ↗
                      .     −4 ↘ 0
                            . 1. .           ↗
                                             .                   f
                                                                 .(x)
                        .
                            max



                                              .      .   .   .          .   .
Step 1: Monotonicity


                                 1
                             1 + √
                                         if x > 0
                    f′ (x) =     2 x
                             1 − √
                                  1
                                          if x < 0
                                 2 −x
We can’t make a multi-factor sign chart because of the absolute value,
but we can test points in between critical points.

                      .
                      +      0 −∓ .
                             .. . . ∞        .
                                             +                   .′ (x)
                                                                 f
                      ↗
                      .     −4 ↘ 0
                            . .1 . .         ↗
                                             .                   f
                                                                 .(x)
                        .
                            max min



                                              .      .   .   .          .   .
Step 1: Monotonicity


                                            1
                                        1 + √
                                                              if x > 0
                               f′ (x) =     2 x
                                        1 − √
                                             1
                                                               if x < 0
                                            2 −x
We can’t make a multi-factor sign chart because of the absolute value,
but we can test points in between critical points.

                                .
                                +      0 −∓ .
                                       .. . . ∞                     .
                                                                    +                   .′ (x)
                                                                                        f
                                ↗
                                .     −4 ↘ 0
                                      . .1 . .                      ↗
                                                                    .                   f
                                                                                        .(x)
                                  .
                                      max min



                                                                    .     .   .     .          .   .

  V63.0121, Calculus I (NYU)          Section 4.4 Curve Sketching                 April 1, 2010    29 / 47
Step 2: Concavity
     If x > 0, then
                                                (         )
                                           d        1         1
                               f′′ (x) =         1 + x−1/2 = − x−3/2
                                           dx       2         4
     This is negative whenever x > 0.




                                                                         .   .   .     .       .     .

  V63.0121, Calculus I (NYU)               Section 4.4 Curve Sketching               April 1, 2010   30 / 47
Step 2: Concavity
     If x > 0, then
                                                (         )
                                           d        1         1
                               f′′ (x) =         1 + x−1/2 = − x−3/2
                                           dx       2         4
     This is negative whenever x > 0.
     If x < 0, then
                            (              )
                  ′′     d      1     −1/2      1
                 f (x) =     1 − (−x)        = − (−x)−3/2
                         dx     2               4
     which is also always negative for negative x.




                                                                         .   .   .     .       .     .

  V63.0121, Calculus I (NYU)               Section 4.4 Curve Sketching               April 1, 2010   30 / 47
Step 2: Concavity
     If x > 0, then
                                                (         )
                                           d        1         1
                               f′′ (x) =         1 + x−1/2 = − x−3/2
                                           dx       2         4
     This is negative whenever x > 0.
     If x < 0, then
                            (              )
                  ′′     d      1     −1/2      1
                 f (x) =     1 − (−x)        = − (−x)−3/2
                         dx     2               4
     which is also always negative for negative x.
                                1
     In other words, f′′ (x) = − |x|−3/2 .
                                4




                                                                         .   .   .     .       .     .

  V63.0121, Calculus I (NYU)               Section 4.4 Curve Sketching               April 1, 2010   30 / 47
Step 2: Concavity
     If x > 0, then
                                                (         )
                                           d        1         1
                               f′′ (x) =         1 + x−1/2 = − x−3/2
                                           dx       2         4
     This is negative whenever x > 0.
     If x < 0, then
                            (              )
                  ′′     d      1     −1/2      1
                 f (x) =     1 − (−x)        = − (−x)−3/2
                         dx     2               4
    which is also always negative for negative x.
                               1
    In other words, f′′ (x) = − |x|−3/2 .
                               4
Here is the sign chart:
                                                                                             ′′
                                  −
                                  . −               −.
                                                    . ∞                  −
                                                                         . −            . . (x)
                                                                                          f
                                   .
                                   ⌢                                      .
                                                                          ⌢             .
                                                       0
                                                       .                                  f
                                                                                          .(x)
                                                                          .    .   .     .        .    .

  V63.0121, Calculus I (NYU)               Section 4.4 Curve Sketching                 April 1, 2010   30 / 47
Step 3: Synthesis


Now we can put these things together.
                                     √
                          f(x) = x + |x|

                                                          ′
  . 1
  +               .
                  +     0 −∓ .
                        .. . . ∞        .
                                        +             +. f
                                                      . 1 (x)
   ↗
   .              ↗
                  .    −1 ↘ 0
                       . 4. .           ↗
                                        .              ↗m
                                                       . . onotonicity
 −
 . ∞             −
                 . −       − . .
                           . − ∞
                              −        −
                                       . −           − . f′′
                                                     . ∞ (x)
   .
   ⌢              .
                  ⌢         . .
                            ⌢ 0         .
                                        ⌢              . . oncavity
                                                       ⌢c
 −
 . ∞      0
          ..            .1
                         4     0
                               ..                    . ∞
                                                     + .(x)
                                                         f
                         .
         −
         . 1           −1
                       . .4    0
                               .                          s
                                                          . hape
   .               .
        zero           max min



                                             .   .    .       .    .   .
Step 3: Synthesis


Now we can put these things together.
                                     √
                          f(x) = x + |x|

                                                          ′
  . 1
  +               .
                  +     0 −∓ .
                        .. . . ∞        .
                                        +             +. f
                                                      . 1 (x)
   ↗
   .              ↗
                  .    −1 ↘ 0
                       . 4. .           ↗
                                        .              ↗m
                                                       . . onotonicity
 −
 . ∞             −
                 . −       − . .
                           . − ∞
                              −        −
                                       . −           − . f′′
                                                     . ∞ (x)
   .
   ⌢              .
                  ⌢         . .
                            ⌢ 0         .
                                        ⌢              . . oncavity
                                                       ⌢c
 −
 . ∞    0
        ..              .1
                         4     0
                               ..                    . ∞
                                                     + .(x)
                                                         f
                         .
     . . 1
       −               −1
                       . .4    0
                               .                          s
                                                          . hape
   .               .
      zero             max min



                                             .   .    .       .    .   .
Step 3: Synthesis


Now we can put these things together.
                                     √
                          f(x) = x + |x|

                                                          ′
  . 1
  +               .
                  +     0 −∓ .
                        .. . . ∞        .
                                        +             +. f
                                                      . 1 (x)
   ↗
   .              ↗
                  .    −1 ↘ 0
                       . 4. .           ↗
                                        .              ↗m
                                                       . . onotonicity
 −
 . ∞             −
                 . −       − . .
                           . − ∞
                              −        −
                                       . −           − . f′′
                                                     . ∞ (x)
   .
   ⌢              .
                  ⌢         . .
                            ⌢ 0         .
                                        ⌢              . . oncavity
                                                       ⌢c
 −
 . ∞    0
        ..              .1
                         4     0
                               ..                    . ∞
                                                     + .(x)
                                                         f
                         .
     . . 1
       −          .    −1
                       . .4    0
                               .                          s
                                                          . hape
   .               .
      zero             max min



                                             .   .    .       .    .   .
Step 3: Synthesis


Now we can put these things together.
                                     √
                          f(x) = x + |x|

                                                          ′
  . 1
  +               .
                  +     0 −∓ .
                        .. . . ∞        .
                                        +             +. f
                                                      . 1 (x)
   ↗
   .              ↗
                  .    −1 ↘ 0
                       . 4. .           ↗
                                        .              ↗m
                                                       . . onotonicity
 −
 . ∞             −
                 . −       − . .
                           . − ∞
                              −        −
                                       . −           − . f′′
                                                     . ∞ (x)
   .
   ⌢              .
                  ⌢         . .
                            ⌢ 0         .
                                        ⌢              . . oncavity
                                                       ⌢c
 −
 . ∞    0
        ..              .1
                         4     0
                               ..                    . ∞
                                                     + .(x)
                                                         f
                         .
     . . 1
       −          .    −1
                       . .4  . .
                               0                          s
                                                          . hape
   .               .
      zero             max min



                                             .   .    .       .    .   .
Step 3: Synthesis


Now we can put these things together.
                                     √
                          f(x) = x + |x|

                                                            ′
  . 1
  +               .
                  +     0 −∓ .
                        .. . . ∞        .
                                        +               +. f
                                                        . 1 (x)
   ↗
   .              ↗
                  .    −1 ↘ 0
                       . 4. .           ↗
                                        .                ↗m
                                                         . . onotonicity
 −
 . ∞             −
                 . −       − . .
                           . − ∞
                              −        −
                                       . −             − . f′′
                                                       . ∞ (x)
   .
   ⌢              .
                  ⌢         . .
                            ⌢ 0         .
                                        ⌢                . . oncavity
                                                         ⌢c
 −
 . ∞    0
        ..              .1
                         4     0
                               ..                      . ∞
                                                       + .(x)
                                                           f
                         .
     . . 1
       −          .    −1
                       . .4  . .
                               0           .                s
                                                            . hape
   .               .
      zero             max min



                                               .   .    .       .    .   .
Step 3: Synthesis


Now we can put these things together.
                                     √
                          f(x) = x + |x|

                                                                                      ′
  . 1
  +                             .
                                +     0 −∓ .
                                      .. . . ∞                   .
                                                                 +                +. f
                                                                                  . 1 (x)
   ↗
   .                            ↗
                                .    −1 ↘ 0
                                     . 4. .                      ↗
                                                                 .                 ↗m
                                                                                   . . onotonicity
 −
 . ∞                           −
                               . −       − . .
                                         . − ∞
                                            −                   −
                                                                . −              − . f′′
                                                                                 . ∞ (x)
   .
   ⌢                            .
                                ⌢         . .
                                          ⌢ 0                    .
                                                                 ⌢                 . . oncavity
                                                                                   ⌢c
 −
 . ∞    0
        ..                            .1
                                       4     0
                                             ..                                  . ∞
                                                                                 + .(x)
                                                                                     f
                                       .
     . . 1
       −                        .    −1
                                     . .4  . .
                                             0                       .                s
                                                                                      . hape
   .                             .
      zero                           max min



                                                                         .   .    .         .       .     .

  V63.0121, Calculus I (NYU)           Section 4.4 Curve Sketching                        April 1, 2010   31 / 47
Graph


                                           √
                           f(x) = x +          |x|

                                   f
                                   .(x)



                         .−1, 1)
                         ( 4 4
         . −1, 0)
         (                  .
             .                       .                            x
                                                                  .
                                         . 0, 0)
                                         (


        − 0
        . ∞ ..             .1
                            4    0
                                 ..                          . ∞ .(x)
                                                             +   f
                             .
   .        −
            . 1     .     . .1 . .
                          −4     0                   .            s
                                                                  . hape
    .                .
           zero           max min
                                                     .   .    .   .     .   .
Graph


                                           √
                           f(x) = x +          |x|

                                   f
                                   .(x)



                         .−1, 1)
                         ( 4 4
         . −1, 0)
         (                  .
             .                       .                            x
                                                                  .
                                         . 0, 0)
                                         (


        − 0
        . ∞ ..             .1
                            4    0
                                 ..                          . ∞ .(x)
                                                             +   f
                             .
   .        −
            . 1     .     . .1 . .
                          −4     0                   .            s
                                                                  . hape
    .                .
           zero           max min
                                                     .   .    .   .     .   .
Graph


                                           √
                           f(x) = x +          |x|

                                   f
                                   .(x)



                         .−1, 1)
                         ( 4 4
         . −1, 0)
         (                  .
             .                       .                            x
                                                                  .
                                         . 0, 0)
                                         (


        − 0
        . ∞ ..             .1
                            4    0
                                 ..                          . ∞ .(x)
                                                             +   f
                             .
   .        −
            . 1     .     . .1 . .
                          −4     0                   .            s
                                                                  . hape
    .                .
           zero           max min
                                                     .   .    .   .     .   .
Graph


                                           √
                           f(x) = x +          |x|

                                   f
                                   .(x)



                         .−1, 1)
                         ( 4 4
         . −1, 0)
         (                  .
             .                       .                            x
                                                                  .
                                         . 0, 0)
                                         (


        − 0
        . ∞ ..             .1
                            4    0
                                 ..                          . ∞ .(x)
                                                             +   f
                             .
   .        −
            . 1     .     . .1 . .
                          −4     0                   .            s
                                                                  . hape
    .                .
           zero           max min
                                                     .   .    .   .     .   .
Graph


                                                       √
                                     f(x) = x +            |x|

                                              f
                                              .(x)



                                   .−1, 1)
                                   ( 4 4
           . −1, 0)
           (                          .
               .                                 .                               x
                                                                                 .
                                                     . 0, 0)
                                                     (


          − 0
          . ∞ ..                     .1
                                      4    0
                                           ..                             . ∞ .(x)
                                                                          +   f
                                       .
     .        −
              . 1             .     . .1 . .
                                    −4     0                      .              s
                                                                                 . hape
      .                        .
             zero                   max min
                                                                  .   .    .     .       .     .

 V63.0121, Calculus I (NYU)         Section 4.4 Curve Sketching                April 1, 2010   32 / 47
Example
Graph f(x) = xe−x
                           2




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.4 Curve Sketching               April 1, 2010   33 / 47
Example
Graph f(x) = xe−x
                           2




Before taking derivatives, we notice that f is odd, that f(0) = 0, and
lim f(x) = 0
x→∞




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.4 Curve Sketching               April 1, 2010   33 / 47
Step 1: Monotonicity
If f(x) = xe−x , then
                   2


                                                 (       )
                  f′ (x) = 1 · e−x + xe−x (−2x) = 1 − 2x2 e−x
                                  2      2                    2


                           (     √ )(      √ )
                         = 1 − 2x 1 + 2x e−x
                                                   2




The factor e−x is always positive so it doesn’t figure into the sign of
                       2


f′ (x). So our sign chart looks like this:

                 .
                 +                             ..
                                               +        0
                                                        .                    −
                                                                             .                  √
                                                      √.                                 . −
                                                                                         1       2x
                                                      . 1/2
                 −
                 .                  0
                                    ..         .
                                               +                             .
                                                                             +                  √
                                    √                                                    1
                                                                                         . +     2x
                                −
                                .        1/2
                 −
                 .                  0
                                    ..         .
                                               +        0
                                                        .                    −
                                                                             .           .′ (x)
                                                                                         f
                                    √                 √.
                 ↘
                 .               − 1/2         ↗
                                               .                             ↘
                                                                             .           f
                                                                                         .(x)
                               . .               .    . 1/2
                                   min                max
                                                                         .       .   .     .       .     .

  V63.0121, Calculus I (NYU)               Section 4.4 Curve Sketching                   April 1, 2010   34 / 47
Step 2: Concavity
If f′ (x) = (1 − 2x2 )e−x , we know
                               2


                                                 (        )
       f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x
                         2               2                     2




                = 2x(2x2 − 3)e−x
                                        2




                −
                .                  −
                                   .     0
                                         ..       .
                                                  +                  .
                                                                     +
                                                                                   2
                                                                                   .x
                                         0
                                         .
                −
                .                  −
                                   .              −
                                                  .       0
                                                          .          .
                                                                     +             √     √
                                                        √.                         . 2x − 3
                                                        . 3/2
                −
                .     0
                      ..  .
                          +                       .
                                                  +                  .
                                                                     +             √     √
                     √                                                             . 2x + 3
                   −
                   . 3/2
              −
              . −     .. . +
                      0 +                0
                                         ..     −
                                                . − .. 0             . +
                                                                     +             .′′ (x)
                                                                                   f
               .
               ⌢     √    .
                          ⌣                      ⌢ √3
                                                 .                    .
                                                                      ⌣
                   − 3/2 .               0
                                         .                                         f
                                                                                   .(x)
                 . .                               . . /2
                     IP                 IP            IP
                                                                     .     .   .        .      .     .

  V63.0121, Calculus I (NYU)           Section 4.4 Curve Sketching                   April 1, 2010   35 / 47
Step 3: Synthesis

                                          f(x) = xe−x
                                                             2




     −
     .                   − 0 +
                         . .. .             + . −                             −           .′ (x)
                                                                                          f
                             √            . . √. .
                                                0                             .
     ↘
     .                   ↘       ↗
                         . . 1/2 .
                           −                ↗      ↘
                                            . . 1/2.                          ↘
                                                                              .           m
                                                                                          . onotonicity

    −
    . −            .. . +
                   0+               + 0 −
                                    . + .. . −              − 0
                                                            . − ..            . +
                                                                              +           .′′ (x)
                                                                                          f
     .
     ⌢             √.  ⌣             ⌣ . .
                                     .                       . √3              .
                 −
                 . 3/2                  0 ⌢                  ⌢
                                                               . /2
                                                                               ⌣          c
                                                                                          . oncavity

                    √                                     √
                −
                .        3
                        2e3
                            −
                            . √1                     .√1  . 33                            f
                                                                                          .(x)
                  .     .      2e        0
                                         ..           . √2e
                                                       2e
      .          √ . √                              √ . .
               −
             . . . .  − 1/2 .
                    3/2
                          .
                                         . .
                                         0
                                            .       . 1/2 . 3/2
                                                       .
                                                                               .          s
                                                                                          . hape
                 IP min                 IP          max IP

                                                                      .   .         .     .        .    .

  V63.0121, Calculus I (NYU)           Section 4.4 Curve Sketching                      April 1, 2010   36 / 47
Step 4: Graph

                                        f
                                        .(x)

                                               (√        )(
                                               . 1/2, √1    √      √ )
                                                       2e .          3
                .(x) = xe−x
                               2                              3/2,
                f                                   .               2e3
                                                         .
                                           .                                                x
                                                                                            .
                                               . 0, 0)
                                               (
(                   .
   √       √ )            .
. − 3/2, − 2e3 ( √
             3                  )
                 . − 1/2, − √1
                             2e
                  √                                       √
               − 2e3 √1
               .      3
                        −
                        .                            .√1 . 2e33
                                                                                            f
                                                                                            .(x)
                    . √2e       0
                                .                      2e
          .        √ . . . . .                      √ . . √.
                                                                         .
               − 3 . 1/2 . .
                       − .      0                                                           s
                                                                                            . hape
            . . . /2                                . .1/2 . 3/2
                   IP min      IP                   max IP
                                                                 .   .       .     .       .       .

  V63.0121, Calculus I (NYU)       Section 4.4 Curve Sketching                   April 1, 2010     37 / 47
Example
                    1   1
Graph f(x) =          + 2
                    x x




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.4 Curve Sketching               April 1, 2010   38 / 47
Step 0
Find when f is positive, negative, zero, not defined.




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.4 Curve Sketching               April 1, 2010   39 / 47
Step 0
Find when f is positive, negative, zero, not defined. We need to factor f:
                                        1   1   x+1
                               f(x) =     +   =     .
                                        x x2     x2
This means f is 0 at −1 and has trouble at 0. In fact,
                                     x+1
                                   lim   = ∞,
                                  x→0 x2

so x = 0 is a vertical asymptote of the graph.




                                                                .   .   .     .       .     .

  V63.0121, Calculus I (NYU)      Section 4.4 Curve Sketching               April 1, 2010   39 / 47
Step 0
Find when f is positive, negative, zero, not defined. We need to factor f:
                                          1   1   x+1
                                 f(x) =     +   =     .
                                          x x2     x2
This means f is 0 at −1 and has trouble at 0. In fact,
                                        x+1
                                     lim    = ∞,
                                     x→0 x2

so x = 0 is a vertical asymptote of the graph. We can make a sign
chart as follows:
                           −
                           .    0
                                ..          .                      .
                                                                   +
                                                                           x
                                                                           . +1
                               −
                               . 1
                           .
                           +               0
                                           ..                      .
                                                                   +
                                                                           .2
                                                                           x
                                           0
                                           .
                           −
                           .    .. .
                                0 +        ∞
                                           ..                      .
                                                                   +
                                                                           f
                                                                           .(x)
                               −
                               . 1         0
                                           .
                                                                       .   .      .     .       .     .

  V63.0121, Calculus I (NYU)         Section 4.4 Curve Sketching                      April 1, 2010   39 / 47
Step 0, continued




For horizontal asymptotes, notice that

                                  x+1
                                lim   = 0,
                               x→∞ x2

so y = 0 is a horizontal asymptote of the graph. The same is true at
−∞.




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.4 Curve Sketching               April 1, 2010   40 / 47
Step 1: Monotonicity




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.4 Curve Sketching               April 1, 2010   41 / 47
Step 1: Monotonicity

We have
                                1    2     x+2
                     f′ (x) = −   −    =− 3 .
                               x2 x3        x
The critical points are x = −2 and x = 0. We have the following sign
chart:
                .
                +    0
                     ..                .   −
                                           .
                                                   −
                                                   . (x + 2)
                    −
                    . 2
                −
                .                     0
                                      ..   .
                                           +
                                                   .3
                                                   x
                                      0
                                      .




                                               .        .   .   .   .   .
Step 1: Monotonicity

We have
                                1    2     x+2
                     f′ (x) = −   −    =− 3 .
                               x2 x3        x
The critical points are x = −2 and x = 0. We have the following sign
chart:
                .
                +    0
                     ..                .   −
                                           .
                                                   −
                                                   . (x + 2)
                    −
                    . 2
                −
                .                    0
                                     ..    .
                                           +
                                                   .3
                                                   x
                                     0
                                     .
                −
                .    0
                     ..       .
                              +      ∞
                                     ..    −
                                           .       .′ (x)
                                                   f
                    −
                    . 2              0
                                     .             f
                                                   .(x)



                                               .        .   .   .   .   .
Step 1: Monotonicity

We have
                                1    2     x+2
                     f′ (x) = −   −    =− 3 .
                               x2 x3        x
The critical points are x = −2 and x = 0. We have the following sign
chart:
                .
                +    0
                     ..                .   −
                                           .
                                                   −
                                                   . (x + 2)
                    −
                    . 2
                −
                .                    0
                                     ..    .
                                           +
                                                   .3
                                                   x
                                     0
                                     .
               − ..
               .  0           .
                              +      ∞
                                     ..    −
                                           .       .′ (x)
                                                   f
               ↘ . 2
               . −                   0
                                     .             f
                                                   .(x)



                                               .        .   .   .   .   .
Step 1: Monotonicity

We have
                                1    2     x+2
                     f′ (x) = −   −    =− 3 .
                               x2 x3        x
The critical points are x = −2 and x = 0. We have the following sign
chart:
                .
                +    0
                     ..                .   −
                                           .
                                                   −
                                                   . (x + 2)
                    −
                    . 2
                −
                .                    0
                                     ..    .
                                           +
                                                   .3
                                                   x
                                     0
                                     .
               − ..
               .  0          .
                             +       ∞
                                     ..    −
                                           .       .′ (x)
                                                   f
               ↘ . 2
               . −           ↗
                             .       0
                                     .             f
                                                   .(x)



                                               .        .   .   .   .   .
Step 1: Monotonicity

We have
                                1    2     x+2
                     f′ (x) = −   −    =− 3 .
                               x2 x3        x
The critical points are x = −2 and x = 0. We have the following sign
chart:
                .
                +    0
                     ..                .   −
                                           .
                                                   −
                                                   . (x + 2)
                    −
                    . 2
                −
                .                    .. .
                                     0 +
                                                   .3
                                                   x
                                     0
                                     .
               − ..
               .  0          .
                             +       ∞ −
                                     .. .          .′ (x)
                                                   f
               ↘ . 2
               . −           ↗
                             .       0 ↘
                                     . .           f
                                                   .(x)



                                               .        .   .   .   .   .
Step 1: Monotonicity

We have
                                1    2     x+2
                     f′ (x) = −   −    =− 3 .
                               x2 x3        x
The critical points are x = −2 and x = 0. We have the following sign
chart:
                .
                +    0
                     ..                .   −
                                           .
                                                   −
                                                   . (x + 2)
                    −
                    . 2
                −
                .                    .. .
                                     0 +
                                                   .3
                                                   x
                                     0
                                     .
               − ..
               .  0          .
                             +       ∞ −
                                     .. .          .′ (x)
                                                   f
               ↘ . 2
               . −           ↗
                             .       0 ↘
                                     . .           f
                                                   .(x)
                 m
                 . in


                                               .        .   .   .   .   .
Step 1: Monotonicity

We have
                                1    2     x+2
                                f′ (x) = −
                                  −    =− 3 .
                               x2 x3        x
The critical points are x = −2 and x = 0. We have the following sign
chart:
                        .
                        +       0
                                ..                       .     −
                                                               .
                                                                        −
                                                                        . (x + 2)
                               −
                               . 2
                        −
                        .                               .. .
                                                        0 +
                                                                        .3
                                                                        x
                                                        0
                                                        .
                        − ..
                        .  0            .
                                        +              ∞ −
                                                       .. .             .′ (x)
                                                                        f
                        ↘ . 2
                        . −             ↗
                                        .               0 ↘
                                                        . .             f
                                                                        .(x)
                          m
                          . in                         V
                                                       .A


                                                                    .        .   .     .       .     .

  V63.0121, Calculus I (NYU)          Section 4.4 Curve Sketching                    April 1, 2010   41 / 47
Step 2: Concavity




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.4 Curve Sketching               April 1, 2010   42 / 47
Step 2: Concavity


We have
                                   2   6   2(x + 3)
                       f′′ (x) =     +   =          .
                                   x3 x4      x4
The critical points of f′ are −3 and 0. Sign chart:

             −
             .    0
                  ..                            .       .
                                                        +
                                                                . x + 3)
                                                                (
                 −
                 . 3
             .
             +                                 0
                                               ..       .
                                                        +
                                                                .4
                                                                x
                                               0
                                               .
                  0
                  ..                           ∞
                                               ..               .′′ (x)
                                                                f
                 −
                 . 3                           0
                                               .                f
                                                                .(x)




                                                    .       .    .        .   .   .
Step 2: Concavity


We have
                                   2   6   2(x + 3)
                       f′′ (x) =     +   =          .
                                   x3 x4      x4
The critical points of f′ are −3 and 0. Sign chart:

             −
             .    0
                  ..                            .       .
                                                        +
                                                                . x + 3)
                                                                (
                 −
                 . 3
             .
             +                                 0
                                               ..       .
                                                        +
                                                                .4
                                                                x
                                               0
                                               .
            −
            . − ..
                 0                             ∞
                                               ..               .′′ (x)
                                                                f
                −
                . 3                            0
                                               .                f
                                                                .(x)




                                                    .       .    .        .   .   .
Step 2: Concavity


We have
                                   2   6   2(x + 3)
                       f′′ (x) =     +   =          .
                                   x3 x4      x4
The critical points of f′ are −3 and 0. Sign chart:

             −
             .    0
                  ..                            .       .
                                                        +
                                                                . x + 3)
                                                                (
                 −
                 . 3
             .
             +                                 0
                                               ..       .
                                                        +
                                                                .4
                                                                x
                                               0
                                               .
            −
            . − ..
                 0                 . +
                                   +           ∞
                                               ..               .′′ (x)
                                                                f
                −
                . 3                            0
                                               .                f
                                                                .(x)




                                                    .       .    .        .   .   .
Step 2: Concavity


We have
                                   2   6   2(x + 3)
                       f′′ (x) =     +   =          .
                                   x3 x4      x4
The critical points of f′ are −3 and 0. Sign chart:

             −
             .    0
                  ..                            .       .
                                                        +
                                                                . x + 3)
                                                                (
                 −
                 . 3
             .
             +                                 .. .
                                               0 +
                                                                .4
                                                                x
                                               0
                                               .
            −
            . − ..
                 0                 . +
                                   +           ∞ +
                                               .. . +           .′′ (x)
                                                                f
                −
                . 3                            0
                                               .                f
                                                                .(x)




                                                    .       .    .        .   .   .
Step 2: Concavity


We have
                                   2   6   2(x + 3)
                       f′′ (x) =     +   =          .
                                   x3 x4      x4
The critical points of f′ are −3 and 0. Sign chart:

             −
             .    0
                  ..                            .       .
                                                        +
                                                                . x + 3)
                                                                (
                 −
                 . 3
             .
             +                                 .. .
                                               0 +
                                                                .4
                                                                x
                                               0
                                               .
            −
            . − ..
                0                  . +
                                   +           ∞ +
                                               .. . +           .′′ (x)
                                                                f
             .
             ⌢ . 3
                −                              0
                                               .                f
                                                                .(x)




                                                    .       .    .        .   .   .
Step 2: Concavity


We have
                                   2   6   2(x + 3)
                       f′′ (x) =     +   =          .
                                   x3 x4      x4
The critical points of f′ are −3 and 0. Sign chart:

             −
             .    0
                  ..                            .       .
                                                        +
                                                                . x + 3)
                                                                (
                 −
                 . 3
             .
             +                                 .. .
                                               0 +
                                                                .4
                                                                x
                                               0
                                               .
            −
            . − ..
                0                  . +
                                   +           ∞ +
                                               .. . +           .′′ (x)
                                                                f
             .
             ⌢ . 3
                −                   .
                                    ⌣          0
                                               .                f
                                                                .(x)




                                                    .       .    .        .   .   .
Step 2: Concavity


We have
                                   2   6   2(x + 3)
                       f′′ (x) =     +   =          .
                                   x3 x4      x4
The critical points of f′ are −3 and 0. Sign chart:

             −
             .    0
                  ..                            .       .
                                                        +
                                                                . x + 3)
                                                                (
                 −
                 . 3
             .
             +                                 .. .
                                               0 +
                                                                .4
                                                                x
                                               0
                                               .
            −
            . − ..
                0                  . +
                                   +           ∞ +
                                               .. . +           .′′ (x)
                                                                f
             .
             ⌢ . 3
                −                   .
                                    ⌣          . .
                                               0 ⌣              f
                                                                .(x)




                                                    .       .    .        .   .   .
Step 2: Concavity


We have
                                   2   6   2(x + 3)
                       f′′ (x) =     +   =          .
                                   x3 x4      x4
The critical points of f′ are −3 and 0. Sign chart:

             −
             .    0
                  ..                            .       .
                                                        +
                                                                . x + 3)
                                                                (
                 −
                 . 3
             .
             +                                 .. .
                                               0 +
                                                                .4
                                                                x
                                               0
                                               .
            −
            . − ..
                 0                 . +
                                   +           ∞ +
                                               .. . +           .′′ (x)
                                                                f
             .
             ⌢ . 3
                −                   .
                                    ⌣          . .
                                               0 ⌣              f
                                                                .(x)
                I
                .P



                                                    .       .    .        .   .   .
Step 2: Concavity


We have
                                           2   6   2(x + 3)
                               f′′ (x) =     +   =          .
                                           x3 x4      x4
The critical points of f′ are −3 and 0. Sign chart:

                  −
                  .       0
                          ..                                        .       .
                                                                            +
                                                                                    . x + 3)
                                                                                    (
                         −
                         . 3
                  .
                  +                                              .. .
                                                                 0 +
                                                                                    .4
                                                                                    x
                                                                 0
                                                                 .
                 −
                 . − ..
                      0                    . +
                                           +                    ∞ +
                                                                .. . +              .′′ (x)
                                                                                    f
                  .
                  ⌢ . 3
                     −                      .
                                            ⌣                    . .
                                                                 0 ⌣                f
                                                                                    .(x)
                     I
                     .P                                         V
                                                                .A



                                                                        .       .    .        .      .     .

  V63.0121, Calculus I (NYU)          Section 4.4 Curve Sketching                          April 1, 2010   42 / 47
Step 3: Synthesis

                                           .

                  − ..
                  .  0            .
                                  +       ∞ −
                                          .. .         .′
                                                       f
                  ↘ . 2
                  . −             ↗
                                  .       0 ↘
                                          . .          m
                                                       . onotonicity
       −
       . − ..
           0                . +
                            +             ∞ +
                                          .. . +       .′′
                                                       f
        .
        ⌢ . 3
           −                 .
                             ⌣            . .
                                          0 ⌣          c
                                                       . oncavity

      0
      .   −
          . 2/9     −
                    . 1/4          0
                                   ..     ∞
                                          ..        0f
                                                    ..
             .         .
    −
    . ∞ . . 3
        − −          −
                     . 2          − +
                                  . 1 .   0
                                          .    .
                                               +   ∞s
                                                   . . hape of f




                                               .   .     .    .    .   .
Step 3: Synthesis

                                            .

                   − ..
                   .  0            .
                                   +       ∞ −
                                           .. .         .′
                                                        f
                   ↘ . 2
                   . −             ↗
                                   .       0 ↘
                                           . .          m
                                                        . onotonicity
        −
        . − ..
            0                . +
                             +             ∞ +
                                           .. . +       .′′
                                                        f
         .
         ⌢ . 3
            −                 .
                              ⌣            . .
                                           0 ⌣          c
                                                        . oncavity

      0
      .    −
           . 2/9     −
                     . 1/4          0
                                    ..     ∞
                                           ..        0f
                                                     ..
              .         .
    −
    . ∞ . . 3
         − −          −
                      . 2          − +
                                   . 1 .   0
                                           .    .
                                                +   ∞s
                                                    . . hape of f
     H
     . A




                                                .   .     .    .    .   .
Step 3: Synthesis

                                            .

                   − ..
                   .  0            .
                                   +       ∞ −
                                           .. .         .′
                                                        f
                   ↘ . 2
                   . −             ↗
                                   .       0 ↘
                                           . .          m
                                                        . onotonicity
        −
        . − ..
            0                . +
                             +             ∞ +
                                           .. . +       .′′
                                                        f
         .
         ⌢ . 3
            −                 .
                              ⌣            . .
                                           0 ⌣          c
                                                        . oncavity

      0
      .    −
           . 2/9     −
                     . 1/4          0
                                    ..     ∞
                                           ..        0f
                                                     ..
              .         .
    −
    . ∞ . . 3
         − −          −
                      . 2          − +
                                   . 1 .   0
                                           .    .
                                                +   ∞s
                                                    . . hape of f
     . A .
     H




                                                .   .     .    .    .   .
Step 3: Synthesis

                                            .

                   − ..
                   .  0            .
                                   +       ∞ −
                                           .. .         .′
                                                        f
                   ↘ . 2
                   . −             ↗
                                   .       0 ↘
                                           . .          m
                                                        . onotonicity
        −
        . − ..
            0                . +
                             +             ∞ +
                                           .. . +       .′′
                                                        f
         .
         ⌢ . 3
            −                 .
                              ⌣            . .
                                           0 ⌣          c
                                                        . oncavity

      0
      .    −
           . 2/9     −
                     . 1/4          0
                                    ..     ∞
                                           ..        0f
                                                     ..
              .         .
    −
    . ∞ . . 3
         − −          −
                      . 2          − +
                                   . 1 .   0
                                           .    .
                                                +   ∞s
                                                    . . hape of f
     . A . .P
     H      I




                                                .   .     .    .    .   .
Step 3: Synthesis

                                        .

                − ..
                .  0           .
                               +       ∞ −
                                       .. .         .′
                                                    f
                ↘ . 2
                . −            ↗
                               .       0 ↘
                                       . .          m
                                                    . onotonicity
       −
       . − ..
           0             . +
                         +             ∞ +
                                       .. . +       .′′
                                                    f
        .
        ⌢ . 3
           −              .
                          ⌣            . .
                                       0 ⌣          c
                                                    . oncavity

      0
      .    −
           . 2/9 −
                 . 1/4          0
                                ..     ∞
                                       ..        0f
                                                 ..
              .     .
    −
    . ∞ . . 3
         − −      −
                  . 2          − +
                               . 1 .   0
                                       .    .
                                            +   ∞s
                                                . . hape of f
     . A . .P .
     H      I




                                            .   .     .    .    .   .
Step 3: Synthesis

                                        .

                − ..
                .  0           .
                               +       ∞ −
                                       .. .         .′
                                                    f
                ↘ . 2
                . −            ↗
                               .       0 ↘
                                       . .          m
                                                    . onotonicity
       −
       . − ..
           0             . +
                         +             ∞ +
                                       .. . +       .′′
                                                    f
        .
        ⌢ . 3
           −              .
                          ⌣            . .
                                       0 ⌣          c
                                                    . oncavity

      0
      .    −
           . 2/9 −
                 . 1/4          0
                                ..     ∞
                                       ..        0f
                                                 ..
              .     .
    −
    . ∞ . . 3
         − −      −
                  . 2          − +
                               . 1 .   0
                                       .    .
                                            +   ∞s
                                                . . hape of f
     . A . .P . . in
     H      I     m




                                            .   .     .    .    .   .
Step 3: Synthesis

                                       .

                − ..
                .  0          .
                              +       ∞ −
                                      .. .         .′
                                                   f
                ↘ . 2
                . −           ↗
                              .       0 ↘
                                      . .          m
                                                   . onotonicity
       −
       . − ..
           0            . +
                        +             ∞ +
                                      .. . +       .′′
                                                   f
        .
        ⌢ . 3
           −             .
                         ⌣            . .
                                      0 ⌣          c
                                                   . oncavity

      0
      .    −
           . 2/9 −
                 . 1/4         0
                               ..     ∞
                                      ..        0f
                                                ..
              .     .
    −
    . ∞ . . 3
         − −      −
                  . 2         − +
                              . 1 .   0
                                      .    .
                                           +   ∞s
                                               . . hape of f
     . A . .P . . in .
     H      I     m




                                           .   .     .    .    .   .
Step 3: Synthesis

                                       .

                − ..
                .  0          .
                              +       ∞ −
                                      .. .         .′
                                                   f
                ↘ . 2
                . −           ↗
                              .       0 ↘
                                      . .          m
                                                   . onotonicity
       −
       . − ..
           0            . +
                        +             ∞ +
                                      .. . +       .′′
                                                   f
        .
        ⌢ . 3
           −             .
                         ⌣            . .
                                      0 ⌣          c
                                                   . oncavity

      0
      .    −
           . 2/9 −
                 . 1/4         0
                               ..     ∞
                                      ..        0f
                                                ..
              .     .
    −
    . ∞ . . 3
         − −      −
                  . 2         − +
                              . 1 .   0
                                      .    .
                                           +   ∞s
                                               . . hape of f
     . A . .P . . in .
     H      I     m            0
                               .




                                           .   .     .    .    .   .
Step 3: Synthesis

                                       .

                − ..
                .  0          .
                              +       ∞ −
                                      .. .         .′
                                                   f
                ↘ . 2
                . −           ↗
                              .       0 ↘
                                      . .          m
                                                   . onotonicity
       −
       . − ..
           0            . +
                        +             ∞ +
                                      .. . +       .′′
                                                   f
        .
        ⌢ . 3
           −             .
                         ⌣            . .
                                      0 ⌣          c
                                                   . oncavity

      0
      .    −
           . 2/9 −
                 . 1/4         0
                               ..     ∞
                                      ..        0f
                                                ..
              .     .
    −
    . ∞ . . 3
         − −      −
                  . 2         − +
                              . 1 .   0
                                      .    .
                                           +   ∞s
                                               . . hape of f
     . A . .P . . in .
     H      I     m            0 .
                               .




                                           .   .     .    .    .   .
Step 3: Synthesis

                                    .

                − ..
                .  0          .
                              +    ∞ −
                                   .. .         .′
                                                f
                ↘ . 2
                . −           ↗
                              .    0 ↘
                                   . .          m
                                                . onotonicity
       −
       . − ..
           0            . +
                        +          ∞ +
                                   .. . +       .′′
                                                f
        .
        ⌢ . 3
           −             .
                         ⌣         . .
                                   0 ⌣          c
                                                . oncavity

      0
      .    −
           . 2/9 −
                 . 1/4         0
                               ..   ∞
                                    ..       0f
                                             ..
              .     .
    −
    . ∞ . . 3
         − −      −
                  . 2         −
                              . 1 .
                                  + .0 .
                                       +    ∞s
                                            . . hape of f
     . A . .P . . in .
     H      I     m            0 . .A
                               .    V




                                        .   .     .    .    .   .
Step 3: Synthesis

                                    .

                − ..
                .  0          .
                              +    ∞ −
                                   .. .         .′
                                                f
                ↘ . 2
                . −           ↗
                              .    0 ↘
                                   . .          m
                                                . onotonicity
       −
       . − ..
           0            . +
                        +          ∞ +
                                   .. . +       .′′
                                                f
        .
        ⌢ . 3
           −             .
                         ⌣         . .
                                   0 ⌣          c
                                                . oncavity

      0
      .    −
           . 2/9 −
                 . 1/4         0
                               ..   ∞
                                    ..       0f
                                             ..
              .     .
    −
    . ∞ . . 3
         − −      −
                  . 2         −
                              . 1 .
                                  + .0 .
                                       +    ∞s
                                            . . hape of f
     . A . .P . . in .
     H      I     m            0 . .A .
                               .    V




                                        .   .     .    .    .   .
Step 3: Synthesis

                                                                 .

                               − ..
                               .  0             .
                                                +              ∞ −
                                                               .. .          .′
                                                                             f
                               ↘ . 2
                               . −              ↗
                                                .              0 ↘
                                                               . .           m
                                                                             . onotonicity
              −
              . − ..
                  0                    . +
                                       +                       ∞ +
                                                               .. . +        .′′
                                                                             f
               .
               ⌢ . 3
                  −                     .
                                        ⌣                      . .
                                                               0 ⌣           c
                                                                             . oncavity

         0
         .    −
              . 2/9 −
                    . 1/4                       0
                                                ..   ∞
                                                     ..    0f
                                                           ..
                 .     .
       −
       . ∞ . . 3
            − −      −
                     . 2                       −
                                               . 1 .
                                                   + .0 . ∞s
                                                        + . . hape of f
        . A . .P . . in .
        H      I     m                          0 . .A . . A
                                                .    V    H




                                                                     .   .     .     .       .     .

  V63.0121, Calculus I (NYU)           Section 4.4 Curve Sketching                 April 1, 2010   43 / 47
Step 4: Graph


                                        y
                                        .




                                        .                               x
                                                                        .
                    .    .
              . −3, −2/9) . −2, −1/4)
              (            (

           .   −     −
           0 . 2/9 . 1/4 .. 0   ∞
                                ..                                      0f
                                                                        ..
                  .    .
         − −−
         . ∞. . 3 . 2 . 1 . . .
                     −      − + 0 +                                    ∞s
                                                                       . . hape of f
          . A . .P . . in . . . . A .
          H     I    m      0   V                                     H
                                                                      . A



                                                              .   .         .     .       .     .

  V63.0121, Calculus I (NYU)    Section 4.4 Curve Sketching                     April 1, 2010   44 / 47
Problem
Graph f(x) = cos x − x




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.4 Curve Sketching               April 1, 2010   45 / 47
Problem
Graph f(x) = cos x − x



                                         y
                                         .




                                             .                                                 x
                                                                                               .




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.4 Curve Sketching               April 1, 2010   45 / 47
Problem
Graph f(x) = x ln x2




                                                             .   .   .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.4 Curve Sketching               April 1, 2010   46 / 47
Problem
Graph f(x) = x ln x2

                                       y
                                       .




                                           .                         x
                                                                     .




                                                             .   .       .     .       .     .

  V63.0121, Calculus I (NYU)   Section 4.4 Curve Sketching                   April 1, 2010   46 / 47
Graphing Checklist


To graph a function f, follow this plan:
 0. Find when f is positive, negative, zero,
    not defined.
 1. Find f′ and form its sign chart. Conclude
    information about increasing/decreasing
    and local max/min.
 2. Find f′′ and form its sign chart. Conclude
    concave up/concave down and inflection.
 3. Put together a big chart to assemble
    monotonicity and concavity data
 4. Graph!



                                                              .   .   .     .       .     .

   V63.0121, Calculus I (NYU)   Section 4.4 Curve Sketching               April 1, 2010   47 / 47

Lesson 19: Curve Sketching

  • 1.
    Section 4.4 Curve Sketching V63.0121.006/016,Calculus I New York University April 1, 2010 . . . . . .
  • 2.
    Second-chance Midterm: Tomorrowin Recitation 12 free-response questions, no multiple choice Covers all sections so far, through today Your score on this exam will replace your midterm score . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 2 / 47
  • 3.
    . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 3 / 47
  • 4.
    Quiz 3 tomorrowin recitation Section 2.6: implicit differentiation Section 2.8: linear approximation and differentials Section 3.1: exponential functions Section 3.2: logarithms Section 3.3: derivatives of logarithmic and exponential functions Section 3.4: exponential growth and decay Section 3.5: inverse trigonometric functions . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 4 / 47
  • 5.
    Outline The Procedure Simple examples A cubic function A quartic function More Examples Points of nondifferentiability Horizontal asymptotes Vertical asymptotes Trigonometric and polynomial together Logarithmic . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 5 / 47
  • 6.
    Objective Given a function,graph it completely, indicating zeroes asymptotes if applicable critical points local/global max/min inflection points . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 6 / 47
  • 7.
    Objective Given a function,graph it completely, indicating zeroes asymptotes if applicable critical points local/global max/min inflection points . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 6 / 47
  • 8.
    The Increasing/Decreasing Test Theorem(The Increasing/Decreasing Test) If f′ > 0 on (a, b), then f is increasing on (a, b). If f′ < 0 on (a, b), then f is decreasing on (a, b). Example Here f(x) = x3 + x2 , and f′ (x) = 3x2 + 2x. f .(x) .′ (x) f . . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 7 / 47
  • 9.
    Testing for Concavity Theorem(Concavity Test) If f′′ (x) > 0 for all x in (a, b), then the graph of f is concave upward on (a, b) If f′′ (x) < 0 for all x in (a, b), then the graph of f is concave downward on (a, b). Example Here f(x) = x3 + x2 , f′ (x) = 3x2 + 2x, and f′′ (x) = 6x + 2. .′′ (x) f f .(x) .′ (x) f . . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 8 / 47
  • 10.
    Graphing Checklist To grapha function f, follow this plan: 0. Find when f is positive, negative, zero, not defined. 1. Find f′ and form its sign chart. Conclude information about increasing/decreasing and local max/min. 2. Find f′′ and form its sign chart. Conclude concave up/concave down and inflection. 3. Put together a big chart to assemble monotonicity and concavity data 4. Graph! . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 9 / 47
  • 11.
    Outline The Procedure Simple examples A cubic function A quartic function More Examples Points of nondifferentiability Horizontal asymptotes Vertical asymptotes Trigonometric and polynomial together Logarithmic . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 10 / 47
  • 12.
    Graphing a cubic Example Graphf(x) = 2x3 − 3x2 − 12x. . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 11 / 47
  • 13.
    Graphing a cubic Example Graphf(x) = 2x3 − 3x2 − 12x. (Step 0) First, let’s find the zeros. We can at least factor out one power of x: f(x) = x(2x2 − 3x − 12) so f(0) = 0. The other factor is a quadratic, so we the other two roots are √ √ 3 ± 32 − 4(2)(−12) 3 ± 105 x= = 4 4 It’s OK to skip this step for now since the roots are so complicated. . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 11 / 47
  • 14.
    Step 1: Monotonicity f(x) = 2x3 − 3x2 − 12x =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: . . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 12 / 47
  • 15.
    Step 1: Monotonicity f(x) = 2x3 − 3x2 − 12x =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: . . . −2 x 2 . . x . +1 − . 1 .′ (x) f . . − . 1 2 . f .(x) . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 12 / 47
  • 16.
    Step 1: Monotonicity f(x) = 2x3 − 3x2 − 12x =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − . − . . . . + . −2 x 2 . . x . +1 − . 1 .′ (x) f . . − . 1 2 . f .(x) . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 12 / 47
  • 17.
    Step 1: Monotonicity f(x) = 2x3 − 3x2 − 12x =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − . − . . . . + . −2 x 2 . − . . . + . + x . +1 − . 1 .′ (x) f . . − . 1 2 . f .(x) . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 12 / 47
  • 18.
    Step 1: Monotonicity f(x) = 2x3 − 3x2 − 12x =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − . − . . . . + . −2 x 2 . − . . . + . + x . +1 − . 1 . . + .′ (x) f . − . 1 2 . f .(x) . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 12 / 47
  • 19.
    Step 1: Monotonicity f(x) = 2x3 − 3x2 − 12x =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − . − . . . . + . −2 x 2 . − . . . + . + x . +1 − . 1 . . + − . .′ (x) f . − . 1 2 . f .(x) . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 12 / 47
  • 20.
    Step 1: Monotonicity f(x) = 2x3 − 3x2 − 12x =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − . − . . . . + . −2 x 2 . − . . . + . + x . +1 − . 1 . . + − . . + .′ (x) f . − . 1 2 . f .(x) . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 12 / 47
  • 21.
    Step 1: Monotonicity f(x) = 2x3 − 3x2 − 12x =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − . − . . . . + . −2 x 2 . − . . . + . + x . +1 − . 1 . . + − . . + .′ (x) f . ↗− . . 1 2 . f .(x) . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 12 / 47
  • 22.
    Step 1: Monotonicity f(x) = 2x3 − 3x2 − 12x =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − . − . . . . + . −2 x 2 . − . . . + . + x . +1 − . 1 . . + − . . + .′ (x) f . ↗− . . 1 ↘ . 2 . f .(x) . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 12 / 47
  • 23.
    Step 1: Monotonicity f(x) = 2x3 − 3x2 − 12x =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − . − . . . . + . −2 x 2 . − . . . + . + x . +1 − . 1 . . + − . . + .′ (x) f . ↗− . . 1 ↘ . 2 . ↗ . f .(x) . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 12 / 47
  • 24.
    Step 1: Monotonicity f(x) = 2x3 − 3x2 − 12x =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − . − . . . . + . −2 x 2 . − . . . + . + x . +1 − . 1 . . + − . . + .′ (x) f . ↗− . . 1 ↘ . 2 . ↗ . f .(x) m . ax . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 12 / 47
  • 25.
    Step 1: Monotonicity f(x) = 2x3 − 3x2 − 12x =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − . − . . . . + . −2 x 2 . − . . . + . + x . +1 − . 1 . . + − . . + .′ (x) f . ↗− . . 1 ↘ . 2 . ↗ . f .(x) m . ax m . in . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 12 / 47
  • 26.
    Step 2: Concavity f′ (x) = 6x2 − 6x − 12 =⇒ f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: . . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 13 / 47
  • 27.
    Step 2: Concavity f′ (x) = 6x2 − 6x − 12 =⇒ f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: . .′′ (x) f . ./2 1 f .(x) . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 13 / 47
  • 28.
    Step 2: Concavity f′ (x) = 6x2 − 6x − 12 =⇒ f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: . − . − .′′ (x) f . ./2 1 f .(x) . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 13 / 47
  • 29.
    Step 2: Concavity f′ (x) = 6x2 − 6x − 12 =⇒ f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: . − . − . + + .′′ (x) f . ./2 1 f .(x) . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 13 / 47
  • 30.
    Step 2: Concavity f′ (x) = 6x2 − 6x − 12 =⇒ f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: . − . − . + + .′′ (x) f . . ⌢ ./2 1 f .(x) . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 13 / 47
  • 31.
    Step 2: Concavity f′ (x) = 6x2 − 6x − 12 =⇒ f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: . − . − . + + .′′ (x) f . . ⌢ ./2 1 . ⌣ f .(x) . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 13 / 47
  • 32.
    Step 2: Concavity f′ (x) = 6x2 − 6x − 12 =⇒ f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: . − . − . + + .′′ (x) f . . ⌢ ./2 1 . ⌣ f .(x) I .P . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 13 / 47
  • 33.
    Step 3: Onesign chart to rule them all Remember, f(x) = 2x3 − 3x2 − 12x. . . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 14 / 47
  • 34.
    Step 3: Onesign chart to rule them all Remember, f(x) = 2x3 − 3x2 − 12x. − . . . . + − . . + .′ (x) f . ↗− ↘ . . 1 . ↘ . 2 . ↗ . m . onotonicity . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 14 / 47
  • 35.
    Step 3: Onesign chart to rule them all Remember, f(x) = 2x3 − 3x2 − 12x. . . + − . . − . . + .′ (x) f . ↗− . . 1 ↘ . ↘ . . 2 ↗ . m .′′ onotonicity − . − − . − . . + + . + + f . (x) . ⌢ . ⌢ 1/2 . . ⌣ . ⌣ c . oncavity . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 14 / 47
  • 36.
    Step 3: Onesign chart to rule them all Remember, f(x) = 2x3 − 3x2 − 12x. . . + − . . − . . + .′ (x) f . ↗− . . 1 ↘ . ↘ . . 2 ↗ . m .′′ onotonicity − . − − . − . . + + . + + f . (x) . ⌢ ⌢ ./2 . . 1 ⌣ . ⌣ c . oncavity 7 .. − . 6 1/2 −. . 20 f .(x) . − . 1 . 1/2 2 . s . hape of f m . ax I .P m . in . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 14 / 47
  • 37.
    Combinations of monotonicityand concavity I .I I . . I .II I .V . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 15 / 47
  • 38.
    Combinations of monotonicityand concavity . decreasing, concave down I .I I . . I .II I .V . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 15 / 47
  • 39.
    Combinations of monotonicityand concavity . . increasing, decreasing, concave concave down down I .I I . . I .II I .V . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 15 / 47
  • 40.
    Combinations of monotonicityand concavity . . increasing, decreasing, concave concave down down I .I I . . I .II I .V . decreasing, concave up . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 15 / 47
  • 41.
    Combinations of monotonicityand concavity . . increasing, decreasing, concave concave down down I .I I . . I .II I .V . . decreasing, increasing, concave up concave up . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 15 / 47
  • 42.
    Step 3: Onesign chart to rule them all Remember, f(x) = 2x3 − 3x2 − 12x. . . + − . . − . . + .′ (x) f . ↗− . . 1 ↘ . ↘ . . 2 ↗ . m .′′ onotonicity − . − − . − . . + + . + + f . (x) . ⌢ ⌢ ./2 . . 1 ⌣ . ⌣ c . oncavity 7 .. − . 6 1/2 −. . 20 f .(x) . . . 1 − . 1/2 2 . s . hape of f m . ax I .P m . in . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 16 / 47
  • 43.
    Step 3: Onesign chart to rule them all Remember, f(x) = 2x3 − 3x2 − 12x. . . + − . . − . . + .′ (x) f . ↗− . . 1 ↘ . ↘ . . 2 ↗ . m .′′ onotonicity − . − − . − . . + + . + + f . (x) . ⌢ ⌢ ./2 . . 1 ⌣ . ⌣ c . oncavity 7 .. − . 6 1/2 −. . 20 f .(x) . . . 1 . ./2 − 1 2 . s . hape of f m . ax I .P m . in . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 16 / 47
  • 44.
    Step 3: Onesign chart to rule them all Remember, f(x) = 2x3 − 3x2 − 12x. . . + − . . − . . + .′ (x) f . ↗− . . 1 ↘ . ↘ . . 2 ↗ . m .′′ onotonicity − . − − . − . . + + . + + f . (x) . ⌢ ⌢ ./2 . . 1 ⌣ . ⌣ c . oncavity 7 .. − . 6 1/2 −. . 20 f .(x) . . . 1 . ./2 . − 1 2 . s . hape of f m . ax I .P m . in . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 16 / 47
  • 45.
    Step 3: Onesign chart to rule them all Remember, f(x) = 2x3 − 3x2 − 12x. . . + − . . − . . + .′ (x) f . ↗− . . 1 ↘ . ↘ . . 2 ↗ . m .′′ onotonicity − . − − . − . . + + . + + f . (x) . ⌢ ⌢ ./2 . . 1 ⌣ . ⌣ c . oncavity 7 .. − . 6 1/2 −. . 20 f .(x) . . . 1 . ./2 . − 1 2 . . s . hape of f m . ax I .P m . in . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 16 / 47
  • 46.
    Step 4: Graph f .(x) .(x) = 2x3 − 3x2 − 12x f ( √ ) . −1, 7) ( . . 3− 4105 , 0 . 0, 0) ( . . . . 1/2, −61/2) ( ( . x √ ) . . 3+ 4105 , 0 . 2, −20) ( . 7 .. − . 61/2 −. . 20 f .(x) . . . 1 . ./2 . − 1 2 . . s . hape of f m . ax I .P m . in . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 17 / 47
  • 47.
    Step 4: Graph f .(x) .(x) = 2x3 − 3x2 − 12x f ( √ ) . −1, 7) ( . . 3− 4105 , 0 . 0, 0) ( . . . . 1/2, −61/2) ( ( . x √ ) . . 3+ 4105 , 0 . 2, −20) ( . 7 .. − . 61/2 −. . 20 f .(x) . . . 1 . ./2 . − 1 2 . . s . hape of f m . ax I .P m . in . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 17 / 47
  • 48.
    Step 4: Graph f .(x) .(x) = 2x3 − 3x2 − 12x f ( √ ) . −1, 7) ( . . 3− 4105 , 0 . 0, 0) ( . . . . 1/2, −61/2) ( ( . x √ ) . . 3+ 4105 , 0 . 2, −20) ( . 7 .. − . 61/2 −. . 20 f .(x) . . . 1 . ./2 . − 1 2 . . s . hape of f m . ax I .P m . in . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 17 / 47
  • 49.
    Step 4: Graph f .(x) .(x) = 2x3 − 3x2 − 12x f ( √ ) . −1, 7) ( . . 3− 4105 , 0 . 0, 0) ( . . . . 1/2, −61/2) ( ( . x √ ) . . 3+ 4105 , 0 . 2, −20) ( . 7 .. − . 61/2 −. . 20 f .(x) . . . 1 . ./2 . − 1 2 . . s . hape of f m . ax I .P m . in . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 17 / 47
  • 50.
    Step 4: Graph f .(x) .(x) = 2x3 − 3x2 − 12x f ( √ ) . −1, 7) ( . . 3− 4105 , 0 . 0, 0) ( . . . . 1/2, −61/2) ( ( . x √ ) . . 3+ 4105 , 0 . 2, −20) ( . 7 .. − . 61/2 −. . 20 f .(x) . . . 1 . ./2 . − 1 2 . . s . hape of f m . ax I .P m . in . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 17 / 47
  • 51.
    Graphing a quartic Example Graphf(x) = x4 − 4x3 + 10 . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 18 / 47
  • 52.
    Graphing a quartic Example Graphf(x) = x4 − 4x3 + 10 (Step 0) We know f(0) = 10 and lim f(x) = +∞. Not too many other x→±∞ points on the graph are evident. . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 18 / 47
  • 53.
    Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 19 / 47
  • 54.
    Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 19 / 47
  • 55.
    Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. 0 .. . x2 4 0 . . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 19 / 47
  • 56.
    Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . x2 4 0 . . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 19 / 47
  • 57.
    Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . x2 4 0 . . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 19 / 47
  • 58.
    Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 19 / 47
  • 59.
    Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . 0 .. . x − 3) ( 3 . . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 19 / 47
  • 60.
    Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . − . 0 .. . x − 3) ( 3 . . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 19 / 47
  • 61.
    Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . − . − . 0 .. . x − 3) ( 3 . . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 19 / 47
  • 62.
    Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . − . − . .. . 0 + . x − 3) ( 3 . . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 19 / 47
  • 63.
    Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . − . − . .. . 0 + . x − 3) ( 3 . 0 .. 0 .. .′ (x) f 0 . 3 . f .(x) . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 19 / 47
  • 64.
    Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . − . − . .. . 0 + . x − 3) ( 3 . − 0 . .. 0 .. .′ (x) f 0 . 3 . f .(x) . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 19 / 47
  • 65.
    Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . − . − . .. . 0 + . x − 3) ( 3 . − 0 . .. − . 0 .. .′ (x) f 0 . 3 . f .(x) . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 19 / 47
  • 66.
    Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . − . − . .. . 0 + . x − 3) ( 3 . − 0 . .. − . .. . 0 + .′ (x) f 0 . 3 . f .(x) . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 19 / 47
  • 67.
    Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . − . − . .. . 0 + . x − 3) ( 3 . − 0 . .. − . .. . 0 + .′ (x) f ↘ 0 . . 3 . f .(x) . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 19 / 47
  • 68.
    Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . − . − . .. . 0 + . x − 3) ( 3 . − 0 . .. − . .. . 0 + .′ (x) f ↘ 0 . . ↘ . 3 . f .(x) . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 19 / 47
  • 69.
    Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . − . − . .. . 0 + . x − 3) ( 3 . − 0 . .. − . .. . 0 + .′ (x) f ↘ 0 . . ↘ . 3 ↗ . . f .(x) . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 19 / 47
  • 70.
    Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . − . − . .. . 0 + . x − 3) ( 3 . − 0 . .. − . .. . 0 + .′ (x) f ↘ 0 . . ↘ . 3 ↗ . . f .(x) m . in . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 19 / 47
  • 71.
    Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) . . . . . . .
  • 72.
    Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: . . . . . . .
  • 73.
    Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + 1 . 2x 0 . . . . . . .
  • 74.
    Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . . . . . . .
  • 75.
    Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . . . . . . .
  • 76.
    Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . . . . . . .
  • 77.
    Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . − . − . 0 .. . −2 x 2 . . . . . . .
  • 78.
    Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . − . − . 0 .. . + . −2 x 2 . . . . . . .
  • 79.
    Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . − . − . 0 .. . + . −2 x 2 . . . . . . .
  • 80.
    Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . − . − . 0 .. . + . −2 x 2 . . . . . . .
  • 81.
    Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . − . − . 0 .. . + . −2 x 2 . . + .. + 0 − . − 0 .. .′′ (x) f 0 . 2 . f .(x) . . . . . .
  • 82.
    Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . − . − . 0 .. . + . −2 x 2 . . + .. + 0 − . − 0 .. . + + .′′ (x) f 0 . 2 . f .(x) . . . . . .
  • 83.
    Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . − . − . 0 .. . + . −2 x 2 . . + .. + 0 − . − 0 .. . + + .′′ (x) f . . ⌣ 0 2 . f .(x) . . . . . .
  • 84.
    Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . − . − . 0 .. . + . −2 x 2 . . + .. + 0 − . − 0 .. . + + .′′ (x) f . . ⌣ 0 . ⌢ 2 . f .(x) . . . . . .
  • 85.
    Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . − . − . 0 .. . + . −2 x 2 . . + .. + 0 − . − 0 .. . + + .′′ (x) f . . ⌣ 0 . ⌢ 2 . . ⌣ f .(x) . . . . . .
  • 86.
    Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . − . − . 0 .. . + . −2 x 2 . . + .. + 0 − . − 0 .. . + + .′′ (x) f . . ⌣ 0 . ⌢ 2 . . ⌣ f .(x) I .P . . . . . .
  • 87.
    Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . − . − . 0 .. . + . −2 x 2 . . + .. + 0 − . − 0 .. . + + .′′ (x) f . . ⌣ 0 . ⌢ 2 . . ⌣ f .(x) I .P I .P . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 20 / 47
  • 88.
    Step 3: GrandUnified Sign Chart . Remember, f(x) = x4 − 4x3 + 10. − 0 . .. − . − 0 + . .. . .′ (x) f ↘ 0 . . ↘ . ↘ 3 ↗ . . . m .′′ onotonicity . + .. + 0 − . − .. . + . + 0+ + f . (x) . . ⌣ 0 . ⌢ 2 . . ⌣ . ⌣ c . oncavity 1. .0 − −. . .6 . 17 f .(x) 0 . 2 . 3 . s . hape I .P I .P m . in . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 21 / 47
  • 89.
    Step 3: GrandUnified Sign Chart . Remember, f(x) = x4 − 4x3 + 10. − 0 . .. − . − 0 + . .. . .′ (x) f ↘ 0 . . ↘ . ↘ 3 ↗ . . . m .′′ onotonicity . + .. + 0 − . − .. . + . + 0+ + f . (x) . . ⌣ 0 . ⌢ 2 . . ⌣ . ⌣ c . oncavity 1. .0 − −. . .6 . 17 f .(x) . .0 2 . 3 . s . hape I .P I .P m . in . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 21 / 47
  • 90.
    Step 3: GrandUnified Sign Chart . Remember, f(x) = x4 − 4x3 + 10. − 0 . .. − . − 0 + . .. . .′ (x) f ↘ 0 . . ↘ . ↘ 3 ↗ . . . m .′′ onotonicity . + .. + 0 − . − .. . + . + 0+ + f . (x) . . ⌣ 0 . ⌢ 2 . . ⌣ . ⌣ c . oncavity 1. .0 − −. . .6 . 17 f .(x) . .0 . 2 . 3 . s . hape I .P I .P m . in . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 21 / 47
  • 91.
    Step 3: GrandUnified Sign Chart . Remember, f(x) = x4 − 4x3 + 10. − 0 . .. − . − 0 + . .. . .′ (x) f ↘ 0 . . ↘ . ↘ 3 ↗ . . . m .′′ onotonicity . + .. + 0 − . − .. . + . + 0+ + f . (x) . . ⌣ 0 . ⌢ 2 . . ⌣ . ⌣ c . oncavity 1. .0 − −. . .6 . 17 f .(x) . .0 . 2 . . . 3 s . hape I .P I .P m . in . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 21 / 47
  • 92.
    Step 3: GrandUnified Sign Chart . Remember, f(x) = x4 − 4x3 + 10. − 0 . .. − . − 0 + . .. . .′ (x) f ↘ 0 . . ↘ . ↘ 3 ↗ . . . m .′′ onotonicity . + .. + 0 − . − .. . + . + 0+ + f . (x) . . ⌣ 0 . ⌢ 2 . . ⌣ . ⌣ c . oncavity 1. .0 − −. . .6 . 17 f .(x) . .0 . 2 . . . . 3 s . hape I .P I .P m . in . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 21 / 47
  • 93.
    Step 4: Graph y . .(x) = x4 − 4x3 + 10 f . 0, 10) ( . . . x . . . 2, −6) ( . 3, −17) ( 1. .0 − −. . .6 . 17 f .(x) . .0 . 2 . . . . 3 s . hape I .P I .P . in m . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 22 / 47
  • 94.
    Step 4: Graph y . .(x) = x4 − 4x3 + 10 f . 0, 10) ( . . . x . . . 2, −6) ( . 3, −17) ( 1. .0 − −. . .6 . 17 f .(x) . .0 . 2 . . . . 3 s . hape I .P I .P . in m . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 22 / 47
  • 95.
    Step 4: Graph y . .(x) = x4 − 4x3 + 10 f . 0, 10) ( . . . x . . . 2, −6) ( . 3, −17) ( 1. .0 − −. . .6 . 17 f .(x) . .0 . 2 . . . . 3 s . hape I .P I .P . in m . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 22 / 47
  • 96.
    Step 4: Graph y . .(x) = x4 − 4x3 + 10 f . 0, 10) ( . . . x . . . 2, −6) ( . 3, −17) ( 1. .0 − −. . .6 . 17 f .(x) . .0 . 2 . . . . 3 s . hape I .P I .P . in m . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 22 / 47
  • 97.
    Step 4: Graph y . .(x) = x4 − 4x3 + 10 f . 0, 10) ( . . . x . . . 2, −6) ( . 3, −17) ( 1. .0 − −. . .6 . 17 f .(x) . .0 . 2 . . . . 3 s . hape I .P I .P . in m . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 22 / 47
  • 98.
    Outline The Procedure Simple examples A cubic function A quartic function More Examples Points of nondifferentiability Horizontal asymptotes Vertical asymptotes Trigonometric and polynomial together Logarithmic . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 23 / 47
  • 99.
    Example √ Graph f(x) = x + |x| . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 24 / 47
  • 100.
    Example √ Graph f(x) = x + |x| This function looks strange because of the absolute value. But whenever we become nervous, we can just take cases. . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 24 / 47
  • 101.
    Step 0: FindingZeroes √ f(x) = x + |x| First, look at f by itself. We can tell that f(0) = 0 and that f(x) > 0 if x is positive. . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 25 / 47
  • 102.
    Step 0: FindingZeroes √ f(x) = x + |x| First, look at f by itself. We can tell that f(0) = 0 and that f(x) > 0 if x is positive. Are there negative numbers which are zeroes for f? . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 25 / 47
  • 103.
    Step 0: FindingZeroes √ f(x) = x + |x| First, look at f by itself. We can tell that f(0) = 0 and that f(x) > 0 if x is positive. Are there negative numbers which are zeroes for f? √ x + −x = 0 √ −x = −x −x = x2 x2 + x = 0 The only solutions are x = 0 and x = −1 . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 25 / 47
  • 104.
    Step 0: Asymptoticbehavior √ f(x) = x + |x| lim f(x) = ∞, because both terms tend to ∞. x→∞ . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 26 / 47
  • 105.
    Step 0: Asymptoticbehavior √ f(x) = x + |x| lim f(x) = ∞, because both terms tend to ∞. x→∞ lim f(x) is indeterminate of the form −∞ + ∞. It’s the same as x→−∞ √ lim (−y + y) y→+∞ . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 26 / 47
  • 106.
    Step 0: Asymptoticbehavior √ f(x) = x + |x| lim f(x) = ∞, because both terms tend to ∞. x→∞ lim f(x) is indeterminate of the form −∞ + ∞. It’s the same as x→−∞ √ lim (−y + y) y→+∞ √ √ √ y+y lim (−y + y) = lim ( y − y) · √ y→+∞ y→∞ y+y y − y2 = lim √ = −∞ y→∞ y+y . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 26 / 47
  • 107.
    Step 1: Thederivative √ Remember, f(x) = x + |x|. To find f′ , first assume x > 0. Then d ( √ ) 1 f′ (x) = x+ x =1+ √ dx 2 x . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 27 / 47
  • 108.
    Step 1: Thederivative √ Remember, f(x) = x + |x|. To find f′ , first assume x > 0. Then d ( √ ) 1 f′ (x) = x+ x =1+ √ dx 2 x Notice f′ (x) > 0 when x > 0 (so no critical points here) . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 27 / 47
  • 109.
    Step 1: Thederivative √ Remember, f(x) = x + |x|. To find f′ , first assume x > 0. Then d ( √ ) 1 f′ (x) = x+ x =1+ √ dx 2 x Notice f′ (x) > 0 when x > 0 (so no critical points here) lim f′ (x) = ∞ (so 0 is a critical point) x→0+ . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 27 / 47
  • 110.
    Step 1: Thederivative √ Remember, f(x) = x + |x|. To find f′ , first assume x > 0. Then d ( √ ) 1 f′ (x) = x+ x =1+ √ dx 2 x Notice f′ (x) > 0 when x > 0 (so no critical points here) lim f′ (x) = ∞ (so 0 is a critical point) x→0+ lim f′ (x) = 1 (so the graph is asymptotic to a line of slope 1) x→∞ . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 27 / 47
  • 111.
    Step 1: Thederivative √ Remember, f(x) = x + |x|. If x is negative, we have d ( √ ) 1 f′ (x) = x + −x = 1 − √ dx 2 −x Notice lim f′ (x) = −∞ (other side of the critical point) x→0− . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 28 / 47
  • 112.
    Step 1: Thederivative √ Remember, f(x) = x + |x|. If x is negative, we have d ( √ ) 1 f′ (x) = x + −x = 1 − √ dx 2 −x Notice lim f′ (x) = −∞ (other side of the critical point) x→0− lim f′ (x) = 1 (asymptotic to a line of slope 1) x→−∞ . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 28 / 47
  • 113.
    Step 1: Thederivative √ Remember, f(x) = x + |x|. If x is negative, we have d ( √ ) 1 f′ (x) = x + −x = 1 − √ dx 2 −x Notice lim f′ (x) = −∞ (other side of the critical point) x→0− lim f′ (x) = 1 (asymptotic to a line of slope 1) x→−∞ ′ f (x) = 0 when 1 √ 1 1 1 1− √ = 0 =⇒ −x = =⇒ −x = =⇒ x = − 2 −x 2 4 4 . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 28 / 47
  • 114.
    Step 1: Monotonicity  1 1 + √  if x > 0 f′ (x) = 2 x 1 − √  1 if x < 0 2 −x We can’t make a multi-factor sign chart because of the absolute value, but we can test points in between critical points. 0 .. ∓. . ∞ .′ (x) f −4 . 1 0 . f .(x) . . . . . .
  • 115.
    Step 1: Monotonicity  1 1 + √  if x > 0 f′ (x) = 2 x 1 − √  1 if x < 0 2 −x We can’t make a multi-factor sign chart because of the absolute value, but we can test points in between critical points. . + 0 .. ∓. . ∞ .′ (x) f −4 . 1 0 . f .(x) . . . . . .
  • 116.
    Step 1: Monotonicity  1 1 + √  if x > 0 f′ (x) = 2 x 1 − √  1 if x < 0 2 −x We can’t make a multi-factor sign chart because of the absolute value, but we can test points in between critical points. . + 0 −∓ . .. . . ∞ .′ (x) f −4 . 1 0 . f .(x) . . . . . .
  • 117.
    Step 1: Monotonicity  1 1 + √  if x > 0 f′ (x) = 2 x 1 − √  1 if x < 0 2 −x We can’t make a multi-factor sign chart because of the absolute value, but we can test points in between critical points. . + 0 −∓ . .. . . ∞ . + .′ (x) f −4 . 1 0 . f .(x) . . . . . .
  • 118.
    Step 1: Monotonicity  1 1 + √  if x > 0 f′ (x) = 2 x 1 − √  1 if x < 0 2 −x We can’t make a multi-factor sign chart because of the absolute value, but we can test points in between critical points. . + 0 −∓ . .. . . ∞ . + .′ (x) f ↗ . −4 . 1 0 . f .(x) . . . . . .
  • 119.
    Step 1: Monotonicity  1 1 + √  if x > 0 f′ (x) = 2 x 1 − √  1 if x < 0 2 −x We can’t make a multi-factor sign chart because of the absolute value, but we can test points in between critical points. . + 0 −∓ . .. . . ∞ . + .′ (x) f ↗ . −4 ↘ 0 . 1. . f .(x) . . . . . .
  • 120.
    Step 1: Monotonicity  1 1 + √  if x > 0 f′ (x) = 2 x 1 − √  1 if x < 0 2 −x We can’t make a multi-factor sign chart because of the absolute value, but we can test points in between critical points. . + 0 −∓ . .. . . ∞ . + .′ (x) f ↗ . −4 ↘ 0 . 1. . ↗ . f .(x) . . . . . .
  • 121.
    Step 1: Monotonicity  1 1 + √  if x > 0 f′ (x) = 2 x 1 − √  1 if x < 0 2 −x We can’t make a multi-factor sign chart because of the absolute value, but we can test points in between critical points. . + 0 −∓ . .. . . ∞ . + .′ (x) f ↗ . −4 ↘ 0 . 1. . ↗ . f .(x) . max . . . . . .
  • 122.
    Step 1: Monotonicity  1 1 + √  if x > 0 f′ (x) = 2 x 1 − √  1 if x < 0 2 −x We can’t make a multi-factor sign chart because of the absolute value, but we can test points in between critical points. . + 0 −∓ . .. . . ∞ . + .′ (x) f ↗ . −4 ↘ 0 . .1 . . ↗ . f .(x) . max min . . . . . .
  • 123.
    Step 1: Monotonicity  1 1 + √  if x > 0 f′ (x) = 2 x 1 − √  1 if x < 0 2 −x We can’t make a multi-factor sign chart because of the absolute value, but we can test points in between critical points. . + 0 −∓ . .. . . ∞ . + .′ (x) f ↗ . −4 ↘ 0 . .1 . . ↗ . f .(x) . max min . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 29 / 47
  • 124.
    Step 2: Concavity If x > 0, then ( ) d 1 1 f′′ (x) = 1 + x−1/2 = − x−3/2 dx 2 4 This is negative whenever x > 0. . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 30 / 47
  • 125.
    Step 2: Concavity If x > 0, then ( ) d 1 1 f′′ (x) = 1 + x−1/2 = − x−3/2 dx 2 4 This is negative whenever x > 0. If x < 0, then ( ) ′′ d 1 −1/2 1 f (x) = 1 − (−x) = − (−x)−3/2 dx 2 4 which is also always negative for negative x. . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 30 / 47
  • 126.
    Step 2: Concavity If x > 0, then ( ) d 1 1 f′′ (x) = 1 + x−1/2 = − x−3/2 dx 2 4 This is negative whenever x > 0. If x < 0, then ( ) ′′ d 1 −1/2 1 f (x) = 1 − (−x) = − (−x)−3/2 dx 2 4 which is also always negative for negative x. 1 In other words, f′′ (x) = − |x|−3/2 . 4 . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 30 / 47
  • 127.
    Step 2: Concavity If x > 0, then ( ) d 1 1 f′′ (x) = 1 + x−1/2 = − x−3/2 dx 2 4 This is negative whenever x > 0. If x < 0, then ( ) ′′ d 1 −1/2 1 f (x) = 1 − (−x) = − (−x)−3/2 dx 2 4 which is also always negative for negative x. 1 In other words, f′′ (x) = − |x|−3/2 . 4 Here is the sign chart: ′′ − . − −. . ∞ − . − . . (x) f . ⌢ . ⌢ . 0 . f .(x) . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 30 / 47
  • 128.
    Step 3: Synthesis Nowwe can put these things together. √ f(x) = x + |x| ′ . 1 + . + 0 −∓ . .. . . ∞ . + +. f . 1 (x) ↗ . ↗ . −1 ↘ 0 . 4. . ↗ . ↗m . . onotonicity − . ∞ − . − − . . . − ∞ − − . − − . f′′ . ∞ (x) . ⌢ . ⌢ . . ⌢ 0 . ⌢ . . oncavity ⌢c − . ∞ 0 .. .1 4 0 .. . ∞ + .(x) f . − . 1 −1 . .4 0 . s . hape . . zero max min . . . . . .
  • 129.
    Step 3: Synthesis Nowwe can put these things together. √ f(x) = x + |x| ′ . 1 + . + 0 −∓ . .. . . ∞ . + +. f . 1 (x) ↗ . ↗ . −1 ↘ 0 . 4. . ↗ . ↗m . . onotonicity − . ∞ − . − − . . . − ∞ − − . − − . f′′ . ∞ (x) . ⌢ . ⌢ . . ⌢ 0 . ⌢ . . oncavity ⌢c − . ∞ 0 .. .1 4 0 .. . ∞ + .(x) f . . . 1 − −1 . .4 0 . s . hape . . zero max min . . . . . .
  • 130.
    Step 3: Synthesis Nowwe can put these things together. √ f(x) = x + |x| ′ . 1 + . + 0 −∓ . .. . . ∞ . + +. f . 1 (x) ↗ . ↗ . −1 ↘ 0 . 4. . ↗ . ↗m . . onotonicity − . ∞ − . − − . . . − ∞ − − . − − . f′′ . ∞ (x) . ⌢ . ⌢ . . ⌢ 0 . ⌢ . . oncavity ⌢c − . ∞ 0 .. .1 4 0 .. . ∞ + .(x) f . . . 1 − . −1 . .4 0 . s . hape . . zero max min . . . . . .
  • 131.
    Step 3: Synthesis Nowwe can put these things together. √ f(x) = x + |x| ′ . 1 + . + 0 −∓ . .. . . ∞ . + +. f . 1 (x) ↗ . ↗ . −1 ↘ 0 . 4. . ↗ . ↗m . . onotonicity − . ∞ − . − − . . . − ∞ − − . − − . f′′ . ∞ (x) . ⌢ . ⌢ . . ⌢ 0 . ⌢ . . oncavity ⌢c − . ∞ 0 .. .1 4 0 .. . ∞ + .(x) f . . . 1 − . −1 . .4 . . 0 s . hape . . zero max min . . . . . .
  • 132.
    Step 3: Synthesis Nowwe can put these things together. √ f(x) = x + |x| ′ . 1 + . + 0 −∓ . .. . . ∞ . + +. f . 1 (x) ↗ . ↗ . −1 ↘ 0 . 4. . ↗ . ↗m . . onotonicity − . ∞ − . − − . . . − ∞ − − . − − . f′′ . ∞ (x) . ⌢ . ⌢ . . ⌢ 0 . ⌢ . . oncavity ⌢c − . ∞ 0 .. .1 4 0 .. . ∞ + .(x) f . . . 1 − . −1 . .4 . . 0 . s . hape . . zero max min . . . . . .
  • 133.
    Step 3: Synthesis Nowwe can put these things together. √ f(x) = x + |x| ′ . 1 + . + 0 −∓ . .. . . ∞ . + +. f . 1 (x) ↗ . ↗ . −1 ↘ 0 . 4. . ↗ . ↗m . . onotonicity − . ∞ − . − − . . . − ∞ − − . − − . f′′ . ∞ (x) . ⌢ . ⌢ . . ⌢ 0 . ⌢ . . oncavity ⌢c − . ∞ 0 .. .1 4 0 .. . ∞ + .(x) f . . . 1 − . −1 . .4 . . 0 . s . hape . . zero max min . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 31 / 47
  • 134.
    Graph √ f(x) = x + |x| f .(x) .−1, 1) ( 4 4 . −1, 0) ( . . . x . . 0, 0) ( − 0 . ∞ .. .1 4 0 .. . ∞ .(x) + f . . − . 1 . . .1 . . −4 0 . s . hape . . zero max min . . . . . .
  • 135.
    Graph √ f(x) = x + |x| f .(x) .−1, 1) ( 4 4 . −1, 0) ( . . . x . . 0, 0) ( − 0 . ∞ .. .1 4 0 .. . ∞ .(x) + f . . − . 1 . . .1 . . −4 0 . s . hape . . zero max min . . . . . .
  • 136.
    Graph √ f(x) = x + |x| f .(x) .−1, 1) ( 4 4 . −1, 0) ( . . . x . . 0, 0) ( − 0 . ∞ .. .1 4 0 .. . ∞ .(x) + f . . − . 1 . . .1 . . −4 0 . s . hape . . zero max min . . . . . .
  • 137.
    Graph √ f(x) = x + |x| f .(x) .−1, 1) ( 4 4 . −1, 0) ( . . . x . . 0, 0) ( − 0 . ∞ .. .1 4 0 .. . ∞ .(x) + f . . − . 1 . . .1 . . −4 0 . s . hape . . zero max min . . . . . .
  • 138.
    Graph √ f(x) = x + |x| f .(x) .−1, 1) ( 4 4 . −1, 0) ( . . . x . . 0, 0) ( − 0 . ∞ .. .1 4 0 .. . ∞ .(x) + f . . − . 1 . . .1 . . −4 0 . s . hape . . zero max min . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 32 / 47
  • 139.
    Example Graph f(x) =xe−x 2 . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 33 / 47
  • 140.
    Example Graph f(x) =xe−x 2 Before taking derivatives, we notice that f is odd, that f(0) = 0, and lim f(x) = 0 x→∞ . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 33 / 47
  • 141.
    Step 1: Monotonicity Iff(x) = xe−x , then 2 ( ) f′ (x) = 1 · e−x + xe−x (−2x) = 1 − 2x2 e−x 2 2 2 ( √ )( √ ) = 1 − 2x 1 + 2x e−x 2 The factor e−x is always positive so it doesn’t figure into the sign of 2 f′ (x). So our sign chart looks like this: . + .. + 0 . − . √ √. . − 1 2x . 1/2 − . 0 .. . + . + √ √ 1 . + 2x − . 1/2 − . 0 .. . + 0 . − . .′ (x) f √ √. ↘ . − 1/2 ↗ . ↘ . f .(x) . . . . 1/2 min max . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 34 / 47
  • 142.
    Step 2: Concavity Iff′ (x) = (1 − 2x2 )e−x , we know 2 ( ) f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x 2 2 2 = 2x(2x2 − 3)e−x 2 − . − . 0 .. . + . + 2 .x 0 . − . − . − . 0 . . + √ √ √. . 2x − 3 . 3/2 − . 0 .. . + . + . + √ √ √ . 2x + 3 − . 3/2 − . − .. . + 0 + 0 .. − . − .. 0 . + + .′′ (x) f . ⌢ √ . ⌣ ⌢ √3 . . ⌣ − 3/2 . 0 . f .(x) . . . . /2 IP IP IP . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 35 / 47
  • 143.
    Step 3: Synthesis f(x) = xe−x 2 − . − 0 + . .. . + . − − .′ (x) f √ . . √. . 0 . ↘ . ↘ ↗ . . 1/2 . − ↗ ↘ . . 1/2. ↘ . m . onotonicity − . − .. . + 0+ + 0 − . + .. . − − 0 . − .. . + + .′′ (x) f . ⌢ √. ⌣ ⌣ . . . . √3 . − . 3/2 0 ⌢ ⌢ . /2 ⌣ c . oncavity √ √ − . 3 2e3 − . √1 .√1 . 33 f .(x) . . 2e 0 .. . √2e 2e . √ . √ √ . . − . . . . − 1/2 . 3/2 . . . 0 . . 1/2 . 3/2 . . s . hape IP min IP max IP . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 36 / 47
  • 144.
    Step 4: Graph f .(x) (√ )( . 1/2, √1 √ √ ) 2e . 3 .(x) = xe−x 2 3/2, f . 2e3 . . x . . 0, 0) ( ( . √ √ ) . . − 3/2, − 2e3 ( √ 3 ) . − 1/2, − √1 2e √ √ − 2e3 √1 . 3 − . .√1 . 2e33 f .(x) . √2e 0 . 2e . √ . . . . . √ . . √. . − 3 . 1/2 . . − . 0 s . hape . . . /2 . .1/2 . 3/2 IP min IP max IP . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 37 / 47
  • 145.
    Example 1 1 Graph f(x) = + 2 x x . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 38 / 47
  • 146.
    Step 0 Find whenf is positive, negative, zero, not defined. . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 39 / 47
  • 147.
    Step 0 Find whenf is positive, negative, zero, not defined. We need to factor f: 1 1 x+1 f(x) = + = . x x2 x2 This means f is 0 at −1 and has trouble at 0. In fact, x+1 lim = ∞, x→0 x2 so x = 0 is a vertical asymptote of the graph. . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 39 / 47
  • 148.
    Step 0 Find whenf is positive, negative, zero, not defined. We need to factor f: 1 1 x+1 f(x) = + = . x x2 x2 This means f is 0 at −1 and has trouble at 0. In fact, x+1 lim = ∞, x→0 x2 so x = 0 is a vertical asymptote of the graph. We can make a sign chart as follows: − . 0 .. . . + x . +1 − . 1 . + 0 .. . + .2 x 0 . − . .. . 0 + ∞ .. . + f .(x) − . 1 0 . . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 39 / 47
  • 149.
    Step 0, continued Forhorizontal asymptotes, notice that x+1 lim = 0, x→∞ x2 so y = 0 is a horizontal asymptote of the graph. The same is true at −∞. . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 40 / 47
  • 150.
    Step 1: Monotonicity . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 41 / 47
  • 151.
    Step 1: Monotonicity Wehave 1 2 x+2 f′ (x) = − − =− 3 . x2 x3 x The critical points are x = −2 and x = 0. We have the following sign chart: . + 0 .. . − . − . (x + 2) − . 2 − . 0 .. . + .3 x 0 . . . . . . .
  • 152.
    Step 1: Monotonicity Wehave 1 2 x+2 f′ (x) = − − =− 3 . x2 x3 x The critical points are x = −2 and x = 0. We have the following sign chart: . + 0 .. . − . − . (x + 2) − . 2 − . 0 .. . + .3 x 0 . − . 0 .. . + ∞ .. − . .′ (x) f − . 2 0 . f .(x) . . . . . .
  • 153.
    Step 1: Monotonicity Wehave 1 2 x+2 f′ (x) = − − =− 3 . x2 x3 x The critical points are x = −2 and x = 0. We have the following sign chart: . + 0 .. . − . − . (x + 2) − . 2 − . 0 .. . + .3 x 0 . − .. . 0 . + ∞ .. − . .′ (x) f ↘ . 2 . − 0 . f .(x) . . . . . .
  • 154.
    Step 1: Monotonicity Wehave 1 2 x+2 f′ (x) = − − =− 3 . x2 x3 x The critical points are x = −2 and x = 0. We have the following sign chart: . + 0 .. . − . − . (x + 2) − . 2 − . 0 .. . + .3 x 0 . − .. . 0 . + ∞ .. − . .′ (x) f ↘ . 2 . − ↗ . 0 . f .(x) . . . . . .
  • 155.
    Step 1: Monotonicity Wehave 1 2 x+2 f′ (x) = − − =− 3 . x2 x3 x The critical points are x = −2 and x = 0. We have the following sign chart: . + 0 .. . − . − . (x + 2) − . 2 − . .. . 0 + .3 x 0 . − .. . 0 . + ∞ − .. . .′ (x) f ↘ . 2 . − ↗ . 0 ↘ . . f .(x) . . . . . .
  • 156.
    Step 1: Monotonicity Wehave 1 2 x+2 f′ (x) = − − =− 3 . x2 x3 x The critical points are x = −2 and x = 0. We have the following sign chart: . + 0 .. . − . − . (x + 2) − . 2 − . .. . 0 + .3 x 0 . − .. . 0 . + ∞ − .. . .′ (x) f ↘ . 2 . − ↗ . 0 ↘ . . f .(x) m . in . . . . . .
  • 157.
    Step 1: Monotonicity Wehave 1 2 x+2 f′ (x) = − − =− 3 . x2 x3 x The critical points are x = −2 and x = 0. We have the following sign chart: . + 0 .. . − . − . (x + 2) − . 2 − . .. . 0 + .3 x 0 . − .. . 0 . + ∞ − .. . .′ (x) f ↘ . 2 . − ↗ . 0 ↘ . . f .(x) m . in V .A . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 41 / 47
  • 158.
    Step 2: Concavity . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 42 / 47
  • 159.
    Step 2: Concavity Wehave 2 6 2(x + 3) f′′ (x) = + = . x3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . 0 .. . . + . x + 3) ( − . 3 . + 0 .. . + .4 x 0 . 0 .. ∞ .. .′′ (x) f − . 3 0 . f .(x) . . . . . .
  • 160.
    Step 2: Concavity Wehave 2 6 2(x + 3) f′′ (x) = + = . x3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . 0 .. . . + . x + 3) ( − . 3 . + 0 .. . + .4 x 0 . − . − .. 0 ∞ .. .′′ (x) f − . 3 0 . f .(x) . . . . . .
  • 161.
    Step 2: Concavity Wehave 2 6 2(x + 3) f′′ (x) = + = . x3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . 0 .. . . + . x + 3) ( − . 3 . + 0 .. . + .4 x 0 . − . − .. 0 . + + ∞ .. .′′ (x) f − . 3 0 . f .(x) . . . . . .
  • 162.
    Step 2: Concavity Wehave 2 6 2(x + 3) f′′ (x) = + = . x3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . 0 .. . . + . x + 3) ( − . 3 . + .. . 0 + .4 x 0 . − . − .. 0 . + + ∞ + .. . + .′′ (x) f − . 3 0 . f .(x) . . . . . .
  • 163.
    Step 2: Concavity Wehave 2 6 2(x + 3) f′′ (x) = + = . x3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . 0 .. . . + . x + 3) ( − . 3 . + .. . 0 + .4 x 0 . − . − .. 0 . + + ∞ + .. . + .′′ (x) f . ⌢ . 3 − 0 . f .(x) . . . . . .
  • 164.
    Step 2: Concavity Wehave 2 6 2(x + 3) f′′ (x) = + = . x3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . 0 .. . . + . x + 3) ( − . 3 . + .. . 0 + .4 x 0 . − . − .. 0 . + + ∞ + .. . + .′′ (x) f . ⌢ . 3 − . ⌣ 0 . f .(x) . . . . . .
  • 165.
    Step 2: Concavity Wehave 2 6 2(x + 3) f′′ (x) = + = . x3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . 0 .. . . + . x + 3) ( − . 3 . + .. . 0 + .4 x 0 . − . − .. 0 . + + ∞ + .. . + .′′ (x) f . ⌢ . 3 − . ⌣ . . 0 ⌣ f .(x) . . . . . .
  • 166.
    Step 2: Concavity Wehave 2 6 2(x + 3) f′′ (x) = + = . x3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . 0 .. . . + . x + 3) ( − . 3 . + .. . 0 + .4 x 0 . − . − .. 0 . + + ∞ + .. . + .′′ (x) f . ⌢ . 3 − . ⌣ . . 0 ⌣ f .(x) I .P . . . . . .
  • 167.
    Step 2: Concavity Wehave 2 6 2(x + 3) f′′ (x) = + = . x3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . 0 .. . . + . x + 3) ( − . 3 . + .. . 0 + .4 x 0 . − . − .. 0 . + + ∞ + .. . + .′′ (x) f . ⌢ . 3 − . ⌣ . . 0 ⌣ f .(x) I .P V .A . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 42 / 47
  • 168.
    Step 3: Synthesis . − .. . 0 . + ∞ − .. . .′ f ↘ . 2 . − ↗ . 0 ↘ . . m . onotonicity − . − .. 0 . + + ∞ + .. . + .′′ f . ⌢ . 3 − . ⌣ . . 0 ⌣ c . oncavity 0 . − . 2/9 − . 1/4 0 .. ∞ .. 0f .. . . − . ∞ . . 3 − − − . 2 − + . 1 . 0 . . + ∞s . . hape of f . . . . . .
  • 169.
    Step 3: Synthesis . − .. . 0 . + ∞ − .. . .′ f ↘ . 2 . − ↗ . 0 ↘ . . m . onotonicity − . − .. 0 . + + ∞ + .. . + .′′ f . ⌢ . 3 − . ⌣ . . 0 ⌣ c . oncavity 0 . − . 2/9 − . 1/4 0 .. ∞ .. 0f .. . . − . ∞ . . 3 − − − . 2 − + . 1 . 0 . . + ∞s . . hape of f H . A . . . . . .
  • 170.
    Step 3: Synthesis . − .. . 0 . + ∞ − .. . .′ f ↘ . 2 . − ↗ . 0 ↘ . . m . onotonicity − . − .. 0 . + + ∞ + .. . + .′′ f . ⌢ . 3 − . ⌣ . . 0 ⌣ c . oncavity 0 . − . 2/9 − . 1/4 0 .. ∞ .. 0f .. . . − . ∞ . . 3 − − − . 2 − + . 1 . 0 . . + ∞s . . hape of f . A . H . . . . . .
  • 171.
    Step 3: Synthesis . − .. . 0 . + ∞ − .. . .′ f ↘ . 2 . − ↗ . 0 ↘ . . m . onotonicity − . − .. 0 . + + ∞ + .. . + .′′ f . ⌢ . 3 − . ⌣ . . 0 ⌣ c . oncavity 0 . − . 2/9 − . 1/4 0 .. ∞ .. 0f .. . . − . ∞ . . 3 − − − . 2 − + . 1 . 0 . . + ∞s . . hape of f . A . .P H I . . . . . .
  • 172.
    Step 3: Synthesis . − .. . 0 . + ∞ − .. . .′ f ↘ . 2 . − ↗ . 0 ↘ . . m . onotonicity − . − .. 0 . + + ∞ + .. . + .′′ f . ⌢ . 3 − . ⌣ . . 0 ⌣ c . oncavity 0 . − . 2/9 − . 1/4 0 .. ∞ .. 0f .. . . − . ∞ . . 3 − − − . 2 − + . 1 . 0 . . + ∞s . . hape of f . A . .P . H I . . . . . .
  • 173.
    Step 3: Synthesis . − .. . 0 . + ∞ − .. . .′ f ↘ . 2 . − ↗ . 0 ↘ . . m . onotonicity − . − .. 0 . + + ∞ + .. . + .′′ f . ⌢ . 3 − . ⌣ . . 0 ⌣ c . oncavity 0 . − . 2/9 − . 1/4 0 .. ∞ .. 0f .. . . − . ∞ . . 3 − − − . 2 − + . 1 . 0 . . + ∞s . . hape of f . A . .P . . in H I m . . . . . .
  • 174.
    Step 3: Synthesis . − .. . 0 . + ∞ − .. . .′ f ↘ . 2 . − ↗ . 0 ↘ . . m . onotonicity − . − .. 0 . + + ∞ + .. . + .′′ f . ⌢ . 3 − . ⌣ . . 0 ⌣ c . oncavity 0 . − . 2/9 − . 1/4 0 .. ∞ .. 0f .. . . − . ∞ . . 3 − − − . 2 − + . 1 . 0 . . + ∞s . . hape of f . A . .P . . in . H I m . . . . . .
  • 175.
    Step 3: Synthesis . − .. . 0 . + ∞ − .. . .′ f ↘ . 2 . − ↗ . 0 ↘ . . m . onotonicity − . − .. 0 . + + ∞ + .. . + .′′ f . ⌢ . 3 − . ⌣ . . 0 ⌣ c . oncavity 0 . − . 2/9 − . 1/4 0 .. ∞ .. 0f .. . . − . ∞ . . 3 − − − . 2 − + . 1 . 0 . . + ∞s . . hape of f . A . .P . . in . H I m 0 . . . . . . .
  • 176.
    Step 3: Synthesis . − .. . 0 . + ∞ − .. . .′ f ↘ . 2 . − ↗ . 0 ↘ . . m . onotonicity − . − .. 0 . + + ∞ + .. . + .′′ f . ⌢ . 3 − . ⌣ . . 0 ⌣ c . oncavity 0 . − . 2/9 − . 1/4 0 .. ∞ .. 0f .. . . − . ∞ . . 3 − − − . 2 − + . 1 . 0 . . + ∞s . . hape of f . A . .P . . in . H I m 0 . . . . . . . .
  • 177.
    Step 3: Synthesis . − .. . 0 . + ∞ − .. . .′ f ↘ . 2 . − ↗ . 0 ↘ . . m . onotonicity − . − .. 0 . + + ∞ + .. . + .′′ f . ⌢ . 3 − . ⌣ . . 0 ⌣ c . oncavity 0 . − . 2/9 − . 1/4 0 .. ∞ .. 0f .. . . − . ∞ . . 3 − − − . 2 − . 1 . + .0 . + ∞s . . hape of f . A . .P . . in . H I m 0 . .A . V . . . . . .
  • 178.
    Step 3: Synthesis . − .. . 0 . + ∞ − .. . .′ f ↘ . 2 . − ↗ . 0 ↘ . . m . onotonicity − . − .. 0 . + + ∞ + .. . + .′′ f . ⌢ . 3 − . ⌣ . . 0 ⌣ c . oncavity 0 . − . 2/9 − . 1/4 0 .. ∞ .. 0f .. . . − . ∞ . . 3 − − − . 2 − . 1 . + .0 . + ∞s . . hape of f . A . .P . . in . H I m 0 . .A . . V . . . . . .
  • 179.
    Step 3: Synthesis . − .. . 0 . + ∞ − .. . .′ f ↘ . 2 . − ↗ . 0 ↘ . . m . onotonicity − . − .. 0 . + + ∞ + .. . + .′′ f . ⌢ . 3 − . ⌣ . . 0 ⌣ c . oncavity 0 . − . 2/9 − . 1/4 0 .. ∞ .. 0f .. . . − . ∞ . . 3 − − − . 2 − . 1 . + .0 . ∞s + . . hape of f . A . .P . . in . H I m 0 . .A . . A . V H . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 43 / 47
  • 180.
    Step 4: Graph y . . x . . . . −3, −2/9) . −2, −1/4) ( ( . − − 0 . 2/9 . 1/4 .. 0 ∞ .. 0f .. . . − −− . ∞. . 3 . 2 . 1 . . . − − + 0 + ∞s . . hape of f . A . .P . . in . . . . A . H I m 0 V H . A . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 44 / 47
  • 181.
    Problem Graph f(x) =cos x − x . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 45 / 47
  • 182.
    Problem Graph f(x) =cos x − x y . . x . . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 45 / 47
  • 183.
    Problem Graph f(x) =x ln x2 . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 46 / 47
  • 184.
    Problem Graph f(x) =x ln x2 y . . x . . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 46 / 47
  • 185.
    Graphing Checklist To grapha function f, follow this plan: 0. Find when f is positive, negative, zero, not defined. 1. Find f′ and form its sign chart. Conclude information about increasing/decreasing and local max/min. 2. Find f′′ and form its sign chart. Conclude concave up/concave down and inflection. 3. Put together a big chart to assemble monotonicity and concavity data 4. Graph! . . . . . . V63.0121, Calculus I (NYU) Section 4.4 Curve Sketching April 1, 2010 47 / 47