Section	4.4
                  Curve	Sketching

                  V63.0121.027, Calculus	I



                    November	17, 2009


Announcements
   Next	written	assignment	will	be	due	Wednesday, Nov	25
   next	and	last	quiz	will	be	the	week	after	Thanksgiving
   Final	Exam: Friday, December	18, 2:00–3:50pm
                                          .    .   .    .   .   .
Outline


  The	Procedure

  Simple	examples
     A cubic	function
     A quartic	function

  More	Examples
    Points	of	nondifferentiability
    Horizontal	asymptotes
    Vertical	asymptotes
    Trigonometric	and	polynomial	together
    Logarithmic



                                            .   .   .   .   .   .
Objective




     Given	a	function, graph	it
     completely, indicating
             zeroes
             asymptotes	if	applicable
             critical	points
             local/global	max/min
             inflection	points



        .

.
Image	credit: Image	Of	Surgery
                                        .   .   .   .   .   .
The	Increasing/Decreasing	Test

   Theorem	(The	Increasing/Decreasing	Test)
   If f′ > 0 on (a, b), then f is	increasing	on (a, b). If f′ < 0 on (a, b),
   then f is	decreasing	on (a, b).

   Proof.
   Pick	two	points x and y in (a, b) with x < y. We	must	show
   f(x) < f(y). By	MVT there	exists	a	point c in (x, y) such	that

                           f(y) − f(x)
                                       = f′ (c) > 0.
                              y−x

   So
                       f(y) − f(x) = f′ (c)(y − x) > 0.



                                                    .     .   .    .    .      .
Theorem	(Concavity	Test)
     If f′′ (x) > 0 for	all x in I, then	the	graph	of f is	concave
     upward	on I
     If f′′ (x) < 0 for	all x in I, then	the	graph	of f is	concave
     downward	on I

Proof.
Suppose f′′ (x) > 0 on I. This	means f′ is	increasing	on I. Let a and
x be	in I. The	tangent	line	through (a, f(a)) is	the	graph	of

                        L(x) = f(a) + f′ (a)(x − a)

                                                      f(x) − f(a)
By	MVT,	there	exists	a b between a and x with                     = f′ (b).
                                                         x−a
So

         f(x) = f(a) + f′ (b)(x − a) ≥ f(a) + f′ (a)(x − a) = L(x)

                                                  .    .    .     .    .      .
Graphing	Checklist

To	graph	a	function f, follow	this	plan:
 0. Find	when f is	positive, negative,
    zero, not	defined.
 1. Find f′ and	form	its	sign	chart.
    Conclude	information	about
    increasing/decreasing	and	local
    max/min.
 2. Find f′′ and	form	its	sign	chart.
    Conclude	concave	up/concave	down
    and	inflection.
 3. Put	together	a	big	chart	to	assemble
    monotonicity	and	concavity	data
 4. Graph!


                                           .   .   .   .   .   .
Outline


  The	Procedure

  Simple	examples
     A cubic	function
     A quartic	function

  More	Examples
    Points	of	nondifferentiability
    Horizontal	asymptotes
    Vertical	asymptotes
    Trigonometric	and	polynomial	together
    Logarithmic



                                            .   .   .   .   .   .
Graphing	a	cubic

  Example
  Graph f(x) = 2x3 − 3x2 − 12x.




                                  .   .   .   .   .   .
Graphing	a	cubic

  Example
  Graph f(x) = 2x3 − 3x2 − 12x.
  (Step	0)	First, let’s	find	the	zeros. We	can	at	least	factor	out	one
  power	of x:
                          f(x) = x(2x2 − 3x − 12)
  so f(0) = 0. The	other	factor	is	a	quadratic, so	we	the	other	two
  roots	are
                       √
                                                   √
                   3 ± 32 − 4(2)(−12)         3 ± 105
               x=                          =
                              4                    4
  It’s	OK to	skip	this	step	for	now	since	the	roots	are	so
  complicated.


                                                .    .       .   .   .   .
Step	1: Monotonicity



               f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
   We	can	form	a	sign	chart	from	this:

                          .




                                              .    .      .   .   .   .
Step	1: Monotonicity



               f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
   We	can	form	a	sign	chart	from	this:

                          .            .          . −2
                                                  x
                                     2
                                     .
                    .                             x
                                                  . +1
                  −
                  . 1
                                                  .′ (x)
                                                  f
                    .                  .
                  −
                  . 1                2
                                     .            f
                                                  .(x)




                                              .    .       .   .   .   .
Step	1: Monotonicity



               f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
   We	can	form	a	sign	chart	from	this:

                −
                .           −
                          . .          .   .
                                           +
                                                   . −2
                                                   x
                                     2
                                     .
                      .                            x
                                                   . +1
                    −
                    . 1
                                                   .′ (x)
                                                   f
                      .                .
                    −
                    . 1              2
                                     .             f
                                                   .(x)




                                               .   .        .   .   .   .
Step	1: Monotonicity



               f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
   We	can	form	a	sign	chart	from	this:

                −
                .           −
                          . .          .   .
                                           +
                                                   . −2
                                                   x
                                     2
                                     .
                −
                . .         .
                            +              .
                                           +
                                                   x
                                                   . +1
                  −
                  . 1
                                                   .′ (x)
                                                   f
                      .                .
                    −
                    . 1              2
                                     .             f
                                                   .(x)




                                               .   .        .   .   .   .
Step	1: Monotonicity



               f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
   We	can	form	a	sign	chart	from	this:

                −
                .           −
                          . .          .   .
                                           +
                                                   . −2
                                                   x
                                     2
                                     .
                −
                . .         .
                            +              .
                                           +
                                                   x
                                                   . +1
                  −
                  . 1
                . .
                +                                  .′ (x)
                                                   f
                                       .
                  −
                  . 1                2
                                     .             f
                                                   .(x)




                                               .   .        .   .   .   .
Step	1: Monotonicity



               f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
   We	can	form	a	sign	chart	from	this:

                −
                .           −
                          . .          .   .
                                           +
                                                   . −2
                                                   x
                                     2
                                     .
                −
                . .         .
                            +              .
                                           +
                                                   x
                                                   . +1
                  −
                  . 1
                . .
                +           −
                            .                      .′ (x)
                                                   f
                                       .
                  −
                  . 1                2
                                     .             f
                                                   .(x)




                                               .   .        .   .   .   .
Step	1: Monotonicity



               f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
   We	can	form	a	sign	chart	from	this:

                −
                .           −
                          . .          .   .
                                           +
                                                   . −2
                                                   x
                                     2
                                     .
                −
                . .         .
                            +              .
                                           +
                                                   x
                                                   . +1
                  −
                  . 1
                . .
                +           −
                            .              .
                                           +       .′ (x)
                                                   f
                                       .
                  −
                  . 1                2
                                     .             f
                                                   .(x)




                                               .   .        .   .   .   .
Step	1: Monotonicity



               f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
   We	can	form	a	sign	chart	from	this:

                −
                .           −
                          . .          .   .
                                           +
                                                   . −2
                                                   x
                                     2
                                     .
               −
               . .          .
                            +              .
                                           +
                                                   x
                                                   . +1
                 −
                 . 1
               . .
               +            −
                            .              .
                                           +       .′ (x)
                                                   f
                                       .
               ↗−
               . . 1                 2
                                     .             f
                                                   .(x)




                                               .   .        .   .   .   .
Step	1: Monotonicity



               f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
   We	can	form	a	sign	chart	from	this:

                −
                .           −
                          . .          .   .
                                           +
                                                   . −2
                                                   x
                                     2
                                     .
               −
               . .          .
                            +              .
                                           +
                                                   x
                                                   . +1
                 −
                 . 1
               . .
               +           −
                           .               .
                                           +       .′ (x)
                                                   f
                                       .
               ↗−
               . . 1       ↘
                           .         2
                                     .             f
                                                   .(x)




                                               .   .        .   .   .   .
Step	1: Monotonicity



               f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
   We	can	form	a	sign	chart	from	this:

                −
                .           −
                          . .          .   .
                                           +
                                                   . −2
                                                   x
                                     2
                                     .
               −
               . .          .
                            +              .
                                           +
                                                   x
                                                   . +1
                 −
                 . 1
               . .
               +           −
                           .               .
                                           +       .′ (x)
                                                   f
                                       .
               ↗−
               . . 1       ↘
                           .         2
                                     .     ↗
                                           .       f
                                                   .(x)




                                               .   .        .   .   .   .
Step	1: Monotonicity



               f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
   We	can	form	a	sign	chart	from	this:

                −
                .           −
                          . .          .   .
                                           +
                                                   . −2
                                                   x
                                     2
                                     .
               −
               . .          .
                            +              .
                                           +
                                                   x
                                                   . +1
                  −
                  . 1
               . .
               +           −
                           .               .
                                           +       .′ (x)
                                                   f
                                       .
               ↗−
               . . 1       ↘
                           .         2
                                     .     ↗
                                           .       f
                                                   .(x)
                 m
                 . ax




                                               .   .        .   .   .   .
Step	1: Monotonicity



               f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
   We	can	form	a	sign	chart	from	this:

                −
                .           −
                          . .          .    .
                                            +
                                                    . −2
                                                    x
                                     2
                                     .
               −
               . .          .
                            +               .
                                            +
                                                    x
                                                    . +1
                  −
                  . 1
               . .
               +           −
                           .                .
                                            +       .′ (x)
                                                    f
                                        .
               ↗−
               . . 1       ↘
                           .          2
                                      .     ↗
                                            .       f
                                                    .(x)
                 m
                 . ax               m
                                    . in




                                                .   .        .   .   .   .
Step	2: Concavity




                     f′′ (x) = 12x − 6 = 6(2x − 1)
   Another	sign	chart:    .




                                               .     .   .   .   .   .
Step	2: Concavity




                     f′′ (x) = 12x − 6 = 6(2x − 1)
   Another	sign	chart:    .

                                                     .′′ (x)
                                                     f
                                .
                              .
                              1/2                    f
                                                     .(x)




                                               .     .      .   .   .   .
Step	2: Concavity




                     f′′ (x) = 12x − 6 = 6(2x − 1)
   Another	sign	chart:    .

                  −
                  . −                                .′′ (x)
                                                     f
                                .
                              .
                              1/2                    f
                                                     .(x)




                                               .     .      .   .   .   .
Step	2: Concavity




                     f′′ (x) = 12x − 6 = 6(2x − 1)
   Another	sign	chart:    .

                  −
                  . −               . +
                                    +                .′′ (x)
                                                     f
                                .
                              .
                              1/2                    f
                                                     .(x)




                                               .     .      .   .   .   .
Step	2: Concavity




                     f′′ (x) = 12x − 6 = 6(2x − 1)
   Another	sign	chart:    .

                  −
                  . −               . +
                                    +                .′′ (x)
                                                     f
                                .
                   .
                   ⌢          .
                              1/2                    f
                                                     .(x)




                                               .     .      .   .   .   .
Step	2: Concavity




                     f′′ (x) = 12x − 6 = 6(2x − 1)
   Another	sign	chart:    .

                  −
                  . −               . +
                                    +                .′′ (x)
                                                     f
                                .
                   .
                   ⌢          .
                              1/2    .
                                     ⌣               f
                                                     .(x)




                                               .     .      .   .   .   .
Step	2: Concavity




                     f′′ (x) = 12x − 6 = 6(2x − 1)
   Another	sign	chart:    .

                  −
                  . −                . +
                                     +               .′′ (x)
                                                     f
                                 .
                   .
                   ⌢          .
                              1/2     .
                                      ⌣              f
                                                     .(x)
                               I
                               .P




                                               .     .      .   .   .   .
Step	3: One	sign	chart	to	rule	them	all


   Remember, f(x) = 2x3 − 3x2 − 12x.

                    .




                                       .   .   .   .   .   .
Step	3: One	sign	chart	to	rule	them	all


   Remember, f(x) = 2x3 − 3x2 − 12x.

                 −
           . . . .
           +              −
                          .            .
                                       +   .′ (x)
                                           f
                                 .
           ↗− ↘
           . . 1 .        ↘
                          .    2
                               .       ↗
                                       .   m
                                           . onotonicity




                                           .        .   .   .   .   .
Step	3: One	sign	chart	to	rule	them	all


   Remember, f(x) = 2x3 − 3x2 − 12x.

           . .
           +        −
                    . .      −
                             .          .
                                        +    .′ (x)
                                             f
                                 .
           ↗−
           . . 1    ↘
                    .        ↘ .
                             .  2       ↗
                                        .    m
                                             .′′ onotonicity
          −
          . −      −
                   . − .    . +
                            +          . +
                                       +     f
                                             . (x)
           .
           ⌢        .
                    ⌢ 1/2
                        .    .
                             ⌣          .
                                        ⌣    c
                                             . oncavity




                                             .        .   .    .   .   .
Step	3: One	sign	chart	to	rule	them	all


   Remember, f(x) = 2x3 − 3x2 − 12x.

           . .
           +       −
                   . .        −
                              .        .
                                       +    .′ (x)
                                            f
                                    .
           ↗−
           . . 1   ↘
                   .          ↘ .
                              .   2    ↗
                                       .    m
                                            .′′ onotonicity
          −
          . −     −
                  . − . . +  +        . +
                                      +     f
                                            . (x)
           .
           ⌢       ⌢ ./2 .
                   .   1      ⌣        .
                                       ⌣    c
                                            . oncavity
               7
               ..    −
                     . 6  1/2   −.
                                . 20        f
                                            .(x)
                          .
              −
              . 1      .
                       1/2        2
                                  .         . hape	of f
                                            s
             m
             . ax       I
                        .P      m
                                . in




                                            .        .   .    .   .   .
Combinations	of	monotonicity	and	concavity
        .                                .
        increasing,                      decreasing,
        concave                          concave
        down                             down

                      I
                      .I        I
                                .


                            .



                      I
                      .II       I
                                .V

        .                                .
        decreasing,                      increasing,
        concave up                       concave up

                                     .      .    .     .   .   .
Step	3: One	sign	chart	to	rule	them	all


   Remember, f(x) = 2x3 − 3x2 − 12x.

           . .
           +       −
                   . .        −
                              .        .
                                       +    .′ (x)
                                            f
                                    .
           ↗−
           . . 1   ↘
                   .          ↘ .
                              .   2    ↗
                                       .    m
                                            .′′ onotonicity
          −
          . −     −
                  . − . . +  +        . +
                                      +     f
                                            . (x)
           .
           ⌢       ⌢ ./2 .
                   .   1      ⌣        .
                                       ⌣    c
                                            . oncavity
               7
               ..    −
                     . 6  1/2   −.
                                . 20        f
                                            .(x)
                          .
           . . 1
              −        .
                       1/2        2
                                  .         . hape	of f
                                            s
             m
             . ax       I
                        .P      m
                                . in




                                            .        .   .    .   .   .
Step	3: One	sign	chart	to	rule	them	all


   Remember, f(x) = 2x3 − 3x2 − 12x.

           . .
           +       −
                   . .       −
                             .        .
                                      +    .′ (x)
                                           f
                                   .
           ↗−
           . . 1   ↘
                   .         ↘ .
                             .   2    ↗
                                      .    m
                                           .′′ onotonicity
          −
          . −     −
                  . − . . + +        . +
                                     +     f
                                           . (x)
           .
           ⌢       ⌢ ./2 .
                   .   1     ⌣        .
                                      ⌣    c
                                           . oncavity
               7
               ..    −
                     . 6 1/2   −.
                               . 20        f
                                           .(x)
                         .
           . . 1 . ./2
              −        1         2
                                 .         . hape	of f
                                           s
             m
             . ax      I
                       .P      m
                               . in




                                           .        .   .    .   .   .
Step	3: One	sign	chart	to	rule	them	all


   Remember, f(x) = 2x3 − 3x2 − 12x.

           . .
           +       −
                   . .       −
                             .        .
                                      +    .′ (x)
                                           f
                                   .
           ↗−
           . . 1   ↘
                   .         ↘ .
                             .   2    ↗
                                      .    m
                                           .′′ onotonicity
          −
          . −     −
                  . − . . + +        . +
                                     +     f
                                           . (x)
           .
           ⌢       ⌢ ./2 .
                   .   1     ⌣        .
                                      ⌣    c
                                           . oncavity
               7
               ..    −
                     . 6 1/2   −.
                               . 20        f
                                           .(x)
                         .
           . . 1 . ./2 .
              −        1         2
                                 .         . hape	of f
                                           s
             m
             . ax      I
                       .P      m
                               . in




                                           .        .   .    .   .   .
Step	3: One	sign	chart	to	rule	them	all


   Remember, f(x) = 2x3 − 3x2 − 12x.

           . .
           +       −
                   . .       −
                             .        .
                                      +    .′ (x)
                                           f
                                   .
           ↗−
           . . 1   ↘
                   .         ↘ .
                             .   2    ↗
                                      .    m
                                           .′′ onotonicity
          −
          . −     −
                  . − . . + +        . +
                                     +     f
                                           . (x)
           .
           ⌢       ⌢ ./2 .
                   .   1     ⌣        .
                                      ⌣    c
                                           . oncavity
               7
               ..    −
                     . 6 1/2   −.
                               . 20        f
                                           .(x)
                         .
           . . 1 . ./2 .
              −        1         2
                                 .     .   . hape	of f
                                           s
             m
             . ax      I
                       .P      m
                               . in




                                           .        .   .    .   .   .
Step	4: Graph
                                   f
                                   .(x)




         .(x) = 2x3 − 3x2 − 12x
         f

        ( √           )       . −1, 7)
                              (
                                  .
        . 3− 4105 , 0                         . 0, 0 )
                                              (
                          .               .                                 .       x
                                                    . 1/2, −61/2)
                                                    (                           ( . √         )
                                                .                               . 3+ 4105 , 0

                                                         . 2, −20)
                                                         (
                                                               .

                                  7
                                  ..  −
                                      . 61/2 −.
                                             . 20                                   f
                                                                                    .(x)
                                          .
                              . . 1 . ./2 .
                                 −      1      2
                                               .                        .           . hape	of f
                                                                                    s
                                m
                                . ax    I
                                        .P   m
                                             . in
                                                            .       .       .       .      .      .
Step	4: Graph
                                   f
                                   .(x)




         .(x) = 2x3 − 3x2 − 12x
         f

        ( √           )       . −1, 7)
                              (
                                  .
        . 3− 4105 , 0                         . 0, 0 )
                                              (
                          .               .                                 .       x
                                                    . 1/2, −61/2)
                                                    (                           ( . √         )
                                                .                               . 3+ 4105 , 0

                                                         . 2, −20)
                                                         (
                                                               .

                                  7
                                  ..  −
                                      . 61/2 −.
                                             . 20                                   f
                                                                                    .(x)
                                          .
                              . . 1 . ./2 .
                                 −      1      2
                                               .                        .           . hape	of f
                                                                                    s
                                m
                                . ax    I
                                        .P   m
                                             . in
                                                            .       .       .       .      .      .
Step	4: Graph
                                   f
                                   .(x)




         .(x) = 2x3 − 3x2 − 12x
         f

        ( √           )       . −1, 7)
                              (
                                  .
        . 3− 4105 , 0                         . 0, 0 )
                                              (
                          .               .                                 .       x
                                                    . 1/2, −61/2)
                                                    (                           ( . √         )
                                                .                               . 3+ 4105 , 0

                                                         . 2, −20)
                                                         (
                                                               .

                                  7
                                  ..  −
                                      . 61/2 −.
                                             . 20                                   f
                                                                                    .(x)
                                          .
                              . . 1 . ./2 .
                                 −      1      2
                                               .                        .           . hape	of f
                                                                                    s
                                m
                                . ax    I
                                        .P   m
                                             . in
                                                            .       .       .       .      .      .
Step	4: Graph
                                   f
                                   .(x)




         .(x) = 2x3 − 3x2 − 12x
         f

        ( √           )       . −1, 7)
                              (
                                  .
        . 3− 4105 , 0                         . 0, 0 )
                                              (
                          .               .                                 .       x
                                                    . 1/2, −61/2)
                                                    (                           ( . √         )
                                                .                               . 3+ 4105 , 0

                                                         . 2, −20)
                                                         (
                                                               .

                                  7
                                  ..  −
                                      . 61/2 −.
                                             . 20                                   f
                                                                                    .(x)
                                          .
                              . . 1 . ./2 .
                                 −      1      2
                                               .                        .           . hape	of f
                                                                                    s
                                m
                                . ax    I
                                        .P   m
                                             . in
                                                            .       .       .       .      .      .
Step	4: Graph
                                   f
                                   .(x)




         .(x) = 2x3 − 3x2 − 12x
         f

        ( √           )       . −1, 7)
                              (
                                  .
        . 3− 4105 , 0                         . 0, 0 )
                                              (
                          .               .                                 .       x
                                                    . 1/2, −61/2)
                                                    (                           ( . √         )
                                                .                               . 3+ 4105 , 0

                                                         . 2, −20)
                                                         (
                                                               .

                                  7
                                  ..  −
                                      . 61/2 −.
                                             . 20                                   f
                                                                                    .(x)
                                          .
                              . . 1 . ./2 .
                                 −      1      2
                                               .                        .           . hape	of f
                                                                                    s
                                m
                                . ax    I
                                        .P   m
                                             . in
                                                            .       .       .       .      .      .
Graphing	a	quartic




   Example
   Graph f(x) = x4 − 4x3 + 10




                                .   .   .   .   .   .
Graphing	a	quartic




   Example
   Graph f(x) = x4 − 4x3 + 10
   (Step	0)	We	know f(0) = 10 and lim f(x) = +∞. Not	too	many
                                    x→±∞
   other	points	on	the	graph	are	evident.




                                            .   .   .   .   .   .
Step	1: Monotonicity



               f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)




                                           .       .   .   .   .   .
Step	1: Monotonicity



                   f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
   We	make	its	sign	chart.

                      .




                                               .       .   .   .   .   .
Step	1: Monotonicity



                   f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
   We	make	its	sign	chart.

                     0
                     ..
                                                   . x2
                                                   4
                     0
                     .




                                               .          .   .   .   .   .
Step	1: Monotonicity



                   f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
   We	make	its	sign	chart.

                  . ..
                  + 0
                                                   . x2
                                                   4
                    0
                    .




                                               .          .   .   .   .   .
Step	1: Monotonicity



                   f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
   We	make	its	sign	chart.

                  . ..
                  + 0         .
                              +
                                                   . x2
                                                   4
                    0
                    .




                                               .          .   .   .   .   .
Step	1: Monotonicity



                   f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
   We	make	its	sign	chart.

                  . ..
                  + 0         .
                              +           .
                                          +
                                                   . x2
                                                   4
                    0
                    .




                                               .          .   .   .   .   .
Step	1: Monotonicity



                   f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
   We	make	its	sign	chart.

                  . ..
                  + 0         .
                              +             .
                                            +
                                                    . x2
                                                    4
                    0
                    .
                                       0
                                       ..
                                                    . x − 3)
                                                    (
                                       3
                                       .




                                                .          .   .   .   .   .
Step	1: Monotonicity



                   f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
   We	make	its	sign	chart.

                  . ..
                  + 0         .
                              +             .
                                            +
                                                    . x2
                                                    4
                    0
                    .
                  −
                  .                    0
                                       ..
                                                    . x − 3)
                                                    (
                                       3
                                       .




                                                .          .   .   .   .   .
Step	1: Monotonicity



                   f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
   We	make	its	sign	chart.

                  . ..
                  + 0         .
                              +             .
                                            +
                                                    . x2
                                                    4
                    0
                    .
                  −
                  .           −
                              .        0
                                       ..
                                                    . x − 3)
                                                    (
                                       3
                                       .




                                                .          .   .   .   .   .
Step	1: Monotonicity



                   f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
   We	make	its	sign	chart.

                  . ..
                  + 0         .
                              +           .
                                          +
                                                   . x2
                                                   4
                    0
                    .
                  −
                  .           −
                              .        .. .
                                       0 +
                                                   . x − 3)
                                                   (
                                       3
                                       .




                                               .          .   .   .   .   .
Step	1: Monotonicity



                   f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
   We	make	its	sign	chart.

                  . ..
                  + 0         .
                              +           .
                                          +
                                                   . x2
                                                   4
                    0
                    .
                  −
                  .           −
                              .        .. .
                                       0 +
                                                   . x − 3)
                                                   (
                                       3
                                       .
                     0
                     ..                0
                                       ..          .′ (x)
                                                   f
                     0
                     .                 3
                                       .           f
                                                   .(x)




                                               .            .   .   .   .   .
Step	1: Monotonicity



                   f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
   We	make	its	sign	chart.

                  . ..
                  + 0         .
                              +           .
                                          +
                                                   . x2
                                                   4
                    0
                    .
                  −
                  .           −
                              .        .. .
                                       0 +
                                                   . x − 3)
                                                   (
                                       3
                                       .
                  − 0
                  . ..                 0
                                       ..          .′ (x)
                                                   f
                    0
                    .                  3
                                       .           f
                                                   .(x)




                                               .            .   .   .   .   .
Step	1: Monotonicity



                   f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
   We	make	its	sign	chart.

                  . ..
                  + 0         .
                              +           .
                                          +
                                                   . x2
                                                   4
                    0
                    .
                  −
                  .           −
                              .        .. .
                                       0 +
                                                   . x − 3)
                                                   (
                                       3
                                       .
                  − 0
                  . ..        −
                              .        0
                                       ..          .′ (x)
                                                   f
                    0
                    .                  3
                                       .           f
                                                   .(x)




                                               .            .   .   .   .   .
Step	1: Monotonicity



                   f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
   We	make	its	sign	chart.

                  . ..
                  + 0         .
                              +           .
                                          +
                                                   . x2
                                                   4
                    0
                    .
                  −
                  .           −
                              .        .. .
                                       0 +
                                                   . x − 3)
                                                   (
                                       3
                                       .
                  − 0
                  . ..        −
                              .        .. .
                                       0 +         .′ (x)
                                                   f
                    0
                    .                  3
                                       .           f
                                                   .(x)




                                               .            .   .   .   .   .
Step	1: Monotonicity



                   f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
   We	make	its	sign	chart.

                  . ..
                  + 0         .
                              +           .
                                          +
                                                   . x2
                                                   4
                    0
                    .
                  −
                  .           −
                              .        .. .
                                       0 +
                                                   . x − 3)
                                                   (
                                       3
                                       .
                 − 0
                 . ..         −
                              .        .. .
                                       0 +         .′ (x)
                                                   f
                 ↘ 0
                 . .                   3
                                       .           f
                                                   .(x)




                                               .            .   .   .   .   .
Step	1: Monotonicity



                   f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
   We	make	its	sign	chart.

                  . ..
                  + 0         .
                              +           .
                                          +
                                                   . x2
                                                   4
                    0
                    .
                  −
                  .           −
                              .        .. .
                                       0 +
                                                   . x − 3)
                                                   (
                                       3
                                       .
                 − 0
                 . ..        −
                             .         .. .
                                       0 +         .′ (x)
                                                   f
                 ↘ 0
                 . .         ↘
                             .         3
                                       .           f
                                                   .(x)




                                               .            .   .   .   .   .
Step	1: Monotonicity



                   f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
   We	make	its	sign	chart.

                  . ..
                  + 0         .
                              +           .
                                          +
                                                   . x2
                                                   4
                    0
                    .
                  −
                  .           −
                              .        .. .
                                       0 +
                                                   . x − 3)
                                                   (
                                       3
                                       .
                 − 0
                 . ..        −
                             .         .. .
                                       0 +         .′ (x)
                                                   f
                 ↘ 0
                 . .         ↘
                             .         3 ↗
                                       . .         f
                                                   .(x)




                                               .            .   .   .   .   .
Step	1: Monotonicity



                   f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
   We	make	its	sign	chart.

                  . ..
                  + 0         .
                              +           .
                                          +
                                                   . x2
                                                   4
                    0
                    .
                  −
                  .           −
                              .         .. .
                                        0 +
                                                   . x − 3)
                                                   (
                                        3
                                        .
                 − 0
                 . ..        −
                             .          .. .
                                        0 +        .′ (x)
                                                   f
                 ↘ 0
                 . .         ↘
                             .          3 ↗
                                        . .        f
                                                   .(x)
                                      m
                                      . in




                                               .            .   .   .   .   .
Step	2: Concavity



               f′′ (x) = 12x2 − 24x = 12x(x − 2)




                                           .   .   .   .   .   .
Step	2: Concavity



                     f′′ (x) = 12x2 − 24x = 12x(x − 2)
   Here	is	its	sign	chart:

                         .




                                                 .   .   .   .   .   .
Step	2: Concavity



                     f′′ (x) = 12x2 − 24x = 12x(x − 2)
   Here	is	its	sign	chart:

                        0
                        ..
                                                     1
                                                     . 2x
                        0
                        .




                                                 .      .   .   .   .   .
Step	2: Concavity



                     f′′ (x) = 12x2 − 24x = 12x(x − 2)
   Here	is	its	sign	chart:

                    − 0
                    . ..
                                                     1
                                                     . 2x
                      0
                      .




                                                 .      .   .   .   .   .
Step	2: Concavity



                     f′′ (x) = 12x2 − 24x = 12x(x − 2)
   Here	is	its	sign	chart:

                    − 0
                    . ..      .
                              +
                                                     1
                                                     . 2x
                      0
                      .




                                                 .      .   .   .   .   .
Step	2: Concavity



                     f′′ (x) = 12x2 − 24x = 12x(x − 2)
   Here	is	its	sign	chart:

                    − 0
                    . ..      .
                              +           .
                                          +
                                                     1
                                                     . 2x
                      0
                      .




                                                 .      .   .   .   .   .
Step	2: Concavity



                     f′′ (x) = 12x2 − 24x = 12x(x − 2)
   Here	is	its	sign	chart:

                    − 0
                    . ..      .
                              +           .
                                          +
                                                     1
                                                     . 2x
                      0
                      .
                                    0
                                    ..
                                                     . −2
                                                     x
                                    2
                                    .




                                                 .      .   .   .   .   .
Step	2: Concavity



                     f′′ (x) = 12x2 − 24x = 12x(x − 2)
   Here	is	its	sign	chart:

                    − 0
                    . ..      .
                              +           .
                                          +
                                                     1
                                                     . 2x
                      0
                      .
                    −
                    .               0
                                    ..
                                                     . −2
                                                     x
                                    2
                                    .




                                                 .      .   .   .   .   .
Step	2: Concavity



                     f′′ (x) = 12x2 − 24x = 12x(x − 2)
   Here	is	its	sign	chart:

                    − 0
                    . ..      .
                              +           .
                                          +
                                                     1
                                                     . 2x
                      0
                      .
                    −
                    .         −
                              .     0
                                    ..
                                                     . −2
                                                     x
                                    2
                                    .




                                                 .      .   .   .   .   .
Step	2: Concavity



                     f′′ (x) = 12x2 − 24x = 12x(x − 2)
   Here	is	its	sign	chart:

                    − 0
                    . ..      .
                              +           .
                                          +
                                                     1
                                                     . 2x
                      0
                      .
                    −
                    .         −
                              .     0
                                    ..    .
                                          +
                                                     . −2
                                                     x
                                    2
                                    .




                                                 .      .   .   .   .   .
Step	2: Concavity



                     f′′ (x) = 12x2 − 24x = 12x(x − 2)
   Here	is	its	sign	chart:

                    − 0
                    . ..      .
                              +           .
                                          +
                                                     1
                                                     . 2x
                      0
                      .
                    −
                    .         −
                              .     0
                                    ..    .
                                          +
                                                     . −2
                                                     x
                                    2
                                    .
                        0
                        ..          0
                                    ..               .′′ (x)
                                                     f
                        0
                        .           2
                                    .                f
                                                     . (x )




                                                 .        .    .   .   .   .
Step	2: Concavity



                     f′′ (x) = 12x2 − 24x = 12x(x − 2)
   Here	is	its	sign	chart:

                    − 0
                    . ..      .
                              +           .
                                          +
                                                     1
                                                     . 2x
                      0
                      .
                    −
                    .         −
                              .     0
                                    ..    .
                                          +
                                                     . −2
                                                     x
                                    2
                                    .
                   . + ..
                   + 0              0
                                    ..               .′′ (x)
                                                     f
                       0
                       .            2
                                    .                f
                                                     . (x )




                                                 .        .    .   .   .   .
Step	2: Concavity



                     f′′ (x) = 12x2 − 24x = 12x(x − 2)
   Here	is	its	sign	chart:

                    − 0
                    . ..      .
                              +           .
                                          +
                                                     1
                                                     . 2x
                      0
                      .
                    −
                    .         −
                              .     0
                                    ..    .
                                          +
                                                     . −2
                                                     x
                                    2
                                    .
                   . + ..
                   + 0       −
                             . −    0
                                    ..               .′′ (x)
                                                     f
                       0
                       .            2
                                    .                f
                                                     . (x )




                                                 .        .    .   .   .   .
Step	2: Concavity



                     f′′ (x) = 12x2 − 24x = 12x(x − 2)
   Here	is	its	sign	chart:

                    − 0
                    . ..      .
                              +           .
                                          +
                                                     1
                                                     . 2x
                      0
                      .
                    −
                    .         −
                              .     0
                                    ..    .
                                          +
                                                     . −2
                                                     x
                                    2
                                    .
                   . + ..
                   + 0       −
                             . −    0
                                    ..   . +
                                         +           .′′ (x)
                                                     f
                       0
                       .            2
                                    .                f
                                                     . (x )




                                                 .        .    .   .   .   .
Step	2: Concavity



                     f′′ (x) = 12x2 − 24x = 12x(x − 2)
   Here	is	its	sign	chart:

                    − 0
                    . ..      .
                              +           .
                                          +
                                                     1
                                                     . 2x
                      0
                      .
                    −
                    .         −
                              .     0
                                    ..    .
                                          +
                                                     . −2
                                                     x
                                    2
                                    .
                   . + ..
                   + 0       −
                             . −    0
                                    ..   . +
                                         +           .′′ (x)
                                                     f
                    . .
                    ⌣ 0             2
                                    .                f
                                                     . (x )




                                                 .        .    .   .   .   .
Step	2: Concavity



                     f′′ (x) = 12x2 − 24x = 12x(x − 2)
   Here	is	its	sign	chart:

                    − 0
                    . ..      .
                              +           .
                                          +
                                                     1
                                                     . 2x
                      0
                      .
                    −
                    .         −
                              .     0
                                    ..    .
                                          +
                                                     . −2
                                                     x
                                    2
                                    .
                   . + ..
                   + 0       −
                             . −    0
                                    ..   . +
                                         +           .′′ (x)
                                                     f
                    . .
                    ⌣ 0       .
                              ⌢     2
                                    .                f
                                                     . (x )




                                                 .        .    .   .   .   .
Step	2: Concavity



                     f′′ (x) = 12x2 − 24x = 12x(x − 2)
   Here	is	its	sign	chart:

                    − 0
                    . ..      .
                              +           .
                                          +
                                                     1
                                                     . 2x
                      0
                      .
                    −
                    .         −
                              .     0
                                    ..    .
                                          +
                                                     . −2
                                                     x
                                    2
                                    .
                   . + ..
                   + 0       −
                             . −    0
                                    ..   . +
                                         +           .′′ (x)
                                                     f
                    . .
                    ⌣ 0       .
                              ⌢     2
                                    .     .
                                          ⌣          f
                                                     . (x )




                                                 .        .    .   .   .   .
Step	2: Concavity



                     f′′ (x) = 12x2 − 24x = 12x(x − 2)
   Here	is	its	sign	chart:

                    − 0
                    . ..      .
                              +           .
                                          +
                                                     1
                                                     . 2x
                      0
                      .
                    −
                    .         −
                              .     0
                                    ..    .
                                          +
                                                     . −2
                                                     x
                                    2
                                    .
                   . + ..
                   + 0       −
                             . −    0
                                    ..   . +
                                         +           .′′ (x)
                                                     f
                    . .
                    ⌣ 0       .
                              ⌢     2
                                    .     .
                                          ⌣          f
                                                     . (x )
                        I
                        .P




                                                 .        .    .   .   .   .
Step	2: Concavity



                     f′′ (x) = 12x2 − 24x = 12x(x − 2)
   Here	is	its	sign	chart:

                    − 0
                    . ..      .
                              +           .
                                          +
                                                     1
                                                     . 2x
                      0
                      .
                    −
                    .         −
                              .      0
                                     ..   .
                                          +
                                                     . −2
                                                     x
                                     2
                                     .
                   . + ..
                   + 0       −
                             . −     0
                                     ..   . +
                                          +          .′′ (x)
                                                     f
                    . .
                    ⌣ 0       .
                              ⌢      2
                                     .     .
                                           ⌣         f
                                                     . (x )
                        I
                        .P          I
                                    .P




                                                 .        .    .   .   .   .
Step	3: Grand	Unified	Sign	Chart

                     .

   Remember, f(x) = x4 − 4x3 + 10.

                 − 0
                 . ..     −
                          .          − 0 +
                                     . .. .           .′ (x)
                                                      f
                 ↘ 0
                 . .      ↘
                          .          ↘ 3 ↗
                                     . . .            m
                                                      .′′ onotonicity
                . + ..
                + 0      −
                         . −     .. . + . +
                                 0+       +           f
                                                      . (x)
                 . .
                 ⌣ 0      .
                          ⌢      2
                                 .   .
                                     ⌣    .
                                          ⌣           c
                                                      . oncavity
                   1.
                   .0          −       −.
                               . .6 . 17              f
                                                      .(x)
                    0
                    .            2
                                 .      3
                                        .             s
                                                      . hape
                   I
                   .P           I
                                .P . inm




                                              .   .       .    .   .    .
Step	3: Grand	Unified	Sign	Chart

                     .

   Remember, f(x) = x4 − 4x3 + 10.

                 − 0
                 . ..     −
                          .          − 0 +
                                     . .. .           .′ (x)
                                                      f
                 ↘ 0
                 . .      ↘
                          .          ↘ 3 ↗
                                     . . .            m
                                                      .′′ onotonicity
                . + ..
                + 0      −
                         . −     .. . + . +
                                 0+       +           f
                                                      . (x)
                 . .
                 ⌣ 0      .
                          ⌢      2
                                 .   .
                                     ⌣    .
                                          ⌣           c
                                                      . oncavity
                    1.
                    .0         −       −.
                               . .6 . 17              f
                                                      .(x)
                  . .0           2
                                 .      3
                                        .             s
                                                      . hape
                    I
                    .P          I
                                .P . inm




                                              .   .       .    .   .    .
Step	3: Grand	Unified	Sign	Chart

                     .

   Remember, f(x) = x4 − 4x3 + 10.

                 − 0
                 . ..     −
                          .          − 0 +
                                     . .. .           .′ (x)
                                                      f
                 ↘ 0
                 . .      ↘
                          .          ↘ 3 ↗
                                     . . .            m
                                                      .′′ onotonicity
                . + ..
                + 0      −
                         . −     .. . + . +
                                 0+       +           f
                                                      . (x)
                 . .
                 ⌣ 0      .
                          ⌢      2
                                 .   .
                                     ⌣    .
                                          ⌣           c
                                                      . oncavity
                    1.
                    .0         −       −.
                               . .6 . 17              f
                                                      .(x)
                  . .0    .      2
                                 .      3
                                        .             s
                                                      . hape
                    I
                    .P          I
                                .P . inm




                                              .   .       .    .   .    .
Step	3: Grand	Unified	Sign	Chart

                     .

   Remember, f(x) = x4 − 4x3 + 10.

                 − 0
                 . ..     −
                          .          − 0 +
                                     . .. .           .′ (x)
                                                      f
                 ↘ 0
                 . .      ↘
                          .          ↘ 3 ↗
                                     . . .            m
                                                      .′′ onotonicity
                . + ..
                + 0      −
                         . −     .. . + . +
                                 0+       +           f
                                                      . (x)
                 . .
                 ⌣ 0      .
                          ⌢      2
                                 .   .
                                     ⌣    .
                                          ⌣           c
                                                      . oncavity
                    1.
                    .0         −       −.
                               . .6 . 17              f
                                                      .(x)
                  . .0    .      2
                                 .    . .
                                        3             s
                                                      . hape
                    I
                    .P          I
                                .P . inm




                                              .   .       .    .   .    .
Step	3: Grand	Unified	Sign	Chart

                     .

   Remember, f(x) = x4 − 4x3 + 10.

                 − 0
                 . ..     −
                          .          − 0 +
                                     . .. .           .′ (x)
                                                      f
                 ↘ 0
                 . .      ↘
                          .          ↘ 3 ↗
                                     . . .            m
                                                      .′′ onotonicity
                . + ..
                + 0      −
                         . −     .. . + . +
                                 0+       +           f
                                                      . (x)
                 . .
                 ⌣ 0      .
                          ⌢      2
                                 .   .
                                     ⌣    .
                                          ⌣           c
                                                      . oncavity
                    1.
                    .0         −       −.
                               . .6 . 17              f
                                                      .(x)
                  . .0    .      2
                                 .    . . .
                                        3             s
                                                      . hape
                    I
                    .P          I
                                .P . inm




                                              .   .       .    .   .    .
Step	4: Graph                  y
                               .




      .(x) = x4 − 4x3 + 10
      f


                    . 0, 10)
                    (
                               .
                               .              .                   x
                                                                  .
                                                        .
                                   . 2, −6)
                                   (
                                                  . 3, −17)
                                                  (

                           1.
                           .0             −    −.
                                          . .6 . 17               f
                                                                  . (x )
                         . .0       .       2
                                            . . . .
                                                 3                s
                                                                  . hape
                           I
                           .P              I
                                           .P . in
                                               m
                                                     .    .   .   .        .   .
Step	4: Graph                  y
                               .




      .(x) = x4 − 4x3 + 10
      f


                    . 0, 10)
                    (
                               .
                               .              .                   x
                                                                  .
                                                        .
                                   . 2, −6)
                                   (
                                                  . 3, −17)
                                                  (

                           1.
                           .0             −    −.
                                          . .6 . 17               f
                                                                  . (x )
                         . .0       .       2
                                            . . . .
                                                 3                s
                                                                  . hape
                           I
                           .P              I
                                           .P . in
                                               m
                                                     .    .   .   .        .   .
Step	4: Graph                  y
                               .




      .(x) = x4 − 4x3 + 10
      f


                    . 0, 10)
                    (
                               .
                               .              .                   x
                                                                  .
                                                        .
                                   . 2, −6)
                                   (
                                                  . 3, −17)
                                                  (

                           1.
                           .0             −    −.
                                          . .6 . 17               f
                                                                  . (x )
                         . .0       .       2
                                            . . . .
                                                 3                s
                                                                  . hape
                           I
                           .P              I
                                           .P . in
                                               m
                                                     .    .   .   .        .   .
Step	4: Graph                  y
                               .




      .(x) = x4 − 4x3 + 10
      f


                    . 0, 10)
                    (
                               .
                               .              .                   x
                                                                  .
                                                        .
                                   . 2, −6)
                                   (
                                                  . 3, −17)
                                                  (

                           1.
                           .0             −    −.
                                          . .6 . 17               f
                                                                  . (x )
                         . .0       .       2
                                            . . . .
                                                 3                s
                                                                  . hape
                           I
                           .P              I
                                           .P . in
                                               m
                                                     .    .   .   .        .   .
Step	4: Graph                  y
                               .




      .(x) = x4 − 4x3 + 10
      f


                    . 0, 10)
                    (
                               .
                               .              .                   x
                                                                  .
                                                        .
                                   . 2, −6)
                                   (
                                                  . 3, −17)
                                                  (

                           1.
                           .0             −    −.
                                          . .6 . 17               f
                                                                  . (x )
                         . .0       .       2
                                            . . . .
                                                 3                s
                                                                  . hape
                           I
                           .P              I
                                           .P . in
                                               m
                                                     .    .   .   .        .   .
Outline


  The	Procedure

  Simple	examples
     A cubic	function
     A quartic	function

  More	Examples
    Points	of	nondifferentiability
    Horizontal	asymptotes
    Vertical	asymptotes
    Trigonometric	and	polynomial	together
    Logarithmic



                                            .   .   .   .   .   .
Example
                   √
Graph f(x) = x +       |x|




                             .   .   .   .   .   .
Example
                   √
Graph f(x) = x +       |x|
This	function	looks	strange	because	of	the	absolute	value. But
whenever	we	become	nervous, we	can	just	take	cases.




                                            .   .    .   .       .   .
Step	0: Finding	Zeroes

                √
   f(x) = x +       |x|
       First, look	at f by	itself. We	can	tell	that f(0) = 0 and	that
       f(x) > 0 if x is	positive.




                                                 .    .    .    .       .   .
Step	0: Finding	Zeroes

                √
   f(x) = x +       |x|
       First, look	at f by	itself. We	can	tell	that f(0) = 0 and	that
       f(x) > 0 if x is	positive.
       Are	there	negative	numbers	which	are	zeroes	for f?




                                                 .    .    .    .       .   .
Step	0: Finding	Zeroes

                √
   f(x) = x +       |x|
       First, look	at f by	itself. We	can	tell	that f(0) = 0 and	that
       f(x) > 0 if x is	positive.
       Are	there	negative	numbers	which	are	zeroes	for f?
                                √
                             x + −x = 0
                                √
                                  −x = −x
                                      −x = x2
                                   x2 + x = 0

       The	only	solutions	are x = 0 and x = −1



                                                 .    .    .    .       .   .
Step	0: Asymptotic	behavior

                √
   f(x) = x +       |x|
        lim f(x) = ∞, because	both	terms	tend	to ∞.
       x→∞




                                             .   .    .   .   .   .
Step	0: Asymptotic	behavior

                √
   f(x) = x +       |x|
        lim f(x) = ∞, because	both	terms	tend	to ∞.
       x→∞
        lim f(x) is	indeterminate	of	the	form −∞ + ∞. It’s	the
       x→−∞                 √
       same	as lim (−y + y)
                    y→+∞




                                             .    .   .    .     .   .
Step	0: Asymptotic	behavior

                √
   f(x) = x +       |x|
        lim f(x) = ∞, because	both	terms	tend	to ∞.
       x→∞
        lim f(x) is	indeterminate	of	the	form −∞ + ∞. It’s	the
       x→−∞                 √
       same	as lim (−y + y)
                    y→+∞

                                                          √
                                  √            √            y+y
                      lim (−y +       y) = lim ( y − y) · √
                    y→+∞                   y→∞              y+y
                                              y − y2
                                        = lim √      = −∞
                                          y→∞   y+y




                                                    .   .   .     .   .   .
Step	1: The	derivative

                           √
   Remember, f(x) = x + |x|.
   To	find f′ , first	assume x > 0. Then

                                 d (   √ )    1
                    f ′ (x ) =       x+ x =1+ √
                                 dx          2 x




                                             .     .   .   .   .   .
Step	1: The	derivative

                           √
   Remember, f(x) = x + |x|.
   To	find f′ , first	assume x > 0. Then

                                 d (   √ )    1
                    f ′ (x ) =       x+ x =1+ √
                                 dx          2 x

   Notice
       f′ (x) > 0 when x > 0




                                             .     .   .   .   .   .
Step	1: The	derivative

                           √
   Remember, f(x) = x + |x|.
   To	find f′ , first	assume x > 0. Then

                                 d (   √ )    1
                    f ′ (x ) =       x+ x =1+ √
                                 dx          2 x

   Notice
       f′ (x) > 0 when x > 0
        lim f′ (x) = ∞
       x→0+




                                             .     .   .   .   .   .
Step	1: The	derivative

                           √
   Remember, f(x) = x + |x|.
   To	find f′ , first	assume x > 0. Then

                                 d (   √ )    1
                    f ′ (x ) =       x+ x =1+ √
                                 dx          2 x

   Notice
       f′ (x) > 0 when x > 0
        lim f′ (x) = ∞
       x→0+
        lim f′ (x) = 1
       x→∞




                                             .     .   .   .   .   .
Step	1: The	derivative

                           √
   Remember, f(x) = x + |x|.
   If x is	negative, we	have

                          d (    √ )          1
                 f′ (x) =     x + −x = 1 − √
                          dx               2 −x
                                  √
   Again, this	looks	weird	because −x appears	to	be	a	negative
   number. But	since x < 0, −x > 0.




                                            .    .   .   .       .   .
Step	1: The	derivative

                           √
   Remember, f(x) = x + |x|.
   If x is	negative, we	have

                          d (    √ )          1
                 f′ (x) =     x + −x = 1 − √
                          dx               2 −x
                                  √
   Again, this	looks	weird	because −x appears	to	be	a	negative
   number. But	since x < 0, −x > 0. Notice
        lim f′ (x) = −∞
       x→0−




                                            .    .   .   .       .   .
Step	1: The	derivative

                           √
   Remember, f(x) = x + |x|.
   If x is	negative, we	have

                          d (    √ )          1
                 f′ (x) =     x + −x = 1 − √
                          dx               2 −x
                                  √
   Again, this	looks	weird	because −x appears	to	be	a	negative
   number. But	since x < 0, −x > 0. Notice
        lim f′ (x) = −∞
       x→0−
        lim f′ (x) = 1
       x→−∞




                                            .    .   .   .       .   .
Step	1: Monotonicity

      Where	are	the	critical	points? We	see	that f′ (x) = 0 when

          1        √     1         1          1
      1− √   = 0 =⇒ −x =   =⇒ −x =   =⇒ x = −
        2 −x             2         4          4




                                             .    .    .   .       .   .
Step	1: Monotonicity

      Where	are	the	critical	points? We	see	that f′ (x) = 0 when

          1        √     1         1          1
      1− √   = 0 =⇒ −x =   =⇒ −x =   =⇒ x = −
        2 −x             2         4          4


      We	know f is	not	differentiable	at 0 as	well.




                                              .       .   .   .    .   .
Step	1: Monotonicity

      Where	are	the	critical	points? We	see	that f′ (x) = 0 when

          1        √     1         1          1
      1− √   = 0 =⇒ −x =   =⇒ −x =   =⇒ x = −
        2 −x             2         4          4


      We	know f is	not	differentiable	at 0 as	well.
      We	can’t	make	a	multi-factor	sign	chart	because	of	the
      absolute	value, but	we	can	test	points	in	between	critical
      points.


                            0
                            ..   ∓.
                                 . ∞                              . ′ (x )
                                                                  f
                           . 1
                           −4      0
                                   .                              f
                                                                  .(x)



                                              .       .   .   .              .   .
Step	1: Monotonicity

      Where	are	the	critical	points? We	see	that f′ (x) = 0 when

          1        √     1         1          1
      1− √   = 0 =⇒ −x =   =⇒ −x =   =⇒ x = −
        2 −x             2         4          4


      We	know f is	not	differentiable	at 0 as	well.
      We	can’t	make	a	multi-factor	sign	chart	because	of	the
      absolute	value, but	we	can	test	points	in	between	critical
      points.


                     .
                     +      0
                            ..   ∓.
                                 . ∞                              . ′ (x )
                                                                  f
                           . 1
                           −4      0
                                   .                              f
                                                                  .(x)



                                              .       .   .   .              .   .
Step	1: Monotonicity

      Where	are	the	critical	points? We	see	that f′ (x) = 0 when

          1        √     1         1          1
      1− √   = 0 =⇒ −x =   =⇒ −x =   =⇒ x = −
        2 −x             2         4          4


      We	know f is	not	differentiable	at 0 as	well.
      We	can’t	make	a	multi-factor	sign	chart	because	of	the
      absolute	value, but	we	can	test	points	in	between	critical
      points.


                     .
                     +      0 −∓ .
                            .. . . ∞                              . ′ (x )
                                                                  f
                           . 1
                           −4      0
                                   .                              f
                                                                  .(x)



                                              .       .   .   .              .   .
Step	1: Monotonicity

      Where	are	the	critical	points? We	see	that f′ (x) = 0 when

          1        √     1         1          1
      1− √   = 0 =⇒ −x =   =⇒ −x =   =⇒ x = −
        2 −x             2         4          4


      We	know f is	not	differentiable	at 0 as	well.
      We	can’t	make	a	multi-factor	sign	chart	because	of	the
      absolute	value, but	we	can	test	points	in	between	critical
      points.


                     .
                     +      0 −∓ .
                            .. . . ∞          .
                                              +                   . ′ (x )
                                                                  f
                           . 1
                           −4      0
                                   .                              f
                                                                  .(x)



                                              .       .   .   .              .   .
Step	1: Monotonicity

      Where	are	the	critical	points? We	see	that f′ (x) = 0 when

          1        √     1         1          1
      1− √   = 0 =⇒ −x =   =⇒ −x =   =⇒ x = −
        2 −x             2         4          4


      We	know f is	not	differentiable	at 0 as	well.
      We	can’t	make	a	multi-factor	sign	chart	because	of	the
      absolute	value, but	we	can	test	points	in	between	critical
      points.


                     .
                     +      0 −∓ .
                            .. . . ∞          .
                                              +                   . ′ (x )
                                                                  f
                     ↗
                     .     . 1
                           −4      0
                                   .                              f
                                                                  .(x)



                                              .       .   .   .              .   .
Step	1: Monotonicity

      Where	are	the	critical	points? We	see	that f′ (x) = 0 when

          1        √     1         1          1
      1− √   = 0 =⇒ −x =   =⇒ −x =   =⇒ x = −
        2 −x             2         4          4


      We	know f is	not	differentiable	at 0 as	well.
      We	can’t	make	a	multi-factor	sign	chart	because	of	the
      absolute	value, but	we	can	test	points	in	between	critical
      points.


                     .
                     +      0 −∓ .
                            .. . . ∞          .
                                              +                   . ′ (x )
                                                                  f
                     ↗
                     .     −4 ↘ 0
                           . 1. .                                 f
                                                                  .(x)



                                              .       .   .   .              .   .
Step	1: Monotonicity

      Where	are	the	critical	points? We	see	that f′ (x) = 0 when

          1        √     1         1          1
      1− √   = 0 =⇒ −x =   =⇒ −x =   =⇒ x = −
        2 −x             2         4          4


      We	know f is	not	differentiable	at 0 as	well.
      We	can’t	make	a	multi-factor	sign	chart	because	of	the
      absolute	value, but	we	can	test	points	in	between	critical
      points.


                     .
                     +      0 −∓ .
                            .. . . ∞          .
                                              +                   . ′ (x )
                                                                  f
                     ↗
                     .     −4 ↘ 0
                           . 1. .             ↗
                                              .                   f
                                                                  .(x)



                                              .       .   .   .              .   .
Step	1: Monotonicity

      Where	are	the	critical	points? We	see	that f′ (x) = 0 when

          1        √     1         1          1
      1− √   = 0 =⇒ −x =   =⇒ −x =   =⇒ x = −
        2 −x             2         4          4


      We	know f is	not	differentiable	at 0 as	well.
      We	can’t	make	a	multi-factor	sign	chart	because	of	the
      absolute	value, but	we	can	test	points	in	between	critical
      points.


                     .
                     +      0 −∓ .
                            .. . . ∞          .
                                              +                   . ′ (x )
                                                                  f
                     ↗
                     .     −4 ↘ 0
                           . 1. .             ↗
                                              .                   f
                                                                  .(x)
                       .   max


                                              .       .   .   .              .   .
Step	1: Monotonicity

      Where	are	the	critical	points? We	see	that f′ (x) = 0 when

          1        √     1         1          1
      1− √   = 0 =⇒ −x =   =⇒ −x =   =⇒ x = −
        2 −x             2         4          4


      We	know f is	not	differentiable	at 0 as	well.
      We	can’t	make	a	multi-factor	sign	chart	because	of	the
      absolute	value, but	we	can	test	points	in	between	critical
      points.


                     .
                     +      0 −∓ .
                            .. . . ∞          .
                                              +                   . ′ (x )
                                                                  f
                     ↗
                     .     −4 ↘ 0
                           . .1 . .           ↗
                                              .                   f
                                                                  .(x)
                       .   max min


                                              .       .   .   .              .   .
Step	1: Monotonicity

      Where	are	the	critical	points? We	see	that f′ (x) = 0 when

          1        √     1         1          1
      1− √   = 0 =⇒ −x =   =⇒ −x =   =⇒ x = −
        2 −x             2         4          4


      We	know f is	not	differentiable	at 0 as	well.
      We	can’t	make	a	multi-factor	sign	chart	because	of	the
      absolute	value, but	we	can	test	points	in	between	critical
      points.


                     .
                     +      0 −∓ .
                            .. . . ∞          .
                                              +                   . ′ (x )
                                                                  f
                     ↗
                     .     −4 ↘ 0
                           . .1 . .           ↗
                                              .                   f
                                                                  .(x)
                       .   max min


                                              .       .   .   .              .   .
Step	2: Concavity
      If x > 0, then
                               (               )
                  ′′      d           1               1
                  f (x) =          1 + x−1/2       = − x−3/2
                          dx          2               4
      This	is	negative	whenever x > 0.




                                                    .   .   .   .   .   .
Step	2: Concavity
      If x > 0, then
                               (               )
                  ′′      d           1               1
                  f (x) =          1 + x−1/2       = − x−3/2
                          dx          2               4
      This	is	negative	whenever x > 0.
      If x < 0, then
                          (               )
                ′′     d       1     −1/2      1
               f (x) =      1 − (−x)        = − (−x)−3/2
                       dx      2               4
      which	is	also	always	negative	for	negative x.




                                                    .   .   .   .   .   .
Step	2: Concavity
      If x > 0, then
                               (               )
                  ′′      d           1               1
                  f (x) =          1 + x−1/2       = − x−3/2
                          dx          2               4
      This	is	negative	whenever x > 0.
      If x < 0, then
                          (               )
                ′′     d       1     −1/2      1
               f (x) =      1 − (−x)        = − (−x)−3/2
                       dx      2               4
      which	is	also	always	negative	for	negative x.
                                 1
      In	other	words, f′′ (x) = − |x|−3/2 .
                                 4




                                                    .   .   .   .   .   .
Step	2: Concavity
       If x > 0, then
                                (               )
                   ′′      d           1               1
                   f (x) =          1 + x−1/2       = − x−3/2
                           dx          2               4
       This	is	negative	whenever x > 0.
       If x < 0, then
                           (               )
                 ′′     d       1     −1/2      1
                f (x) =      1 − (−x)        = − (−x)−3/2
                        dx      2               4
       which	is	also	always	negative	for	negative x.
                                  1
       In	other	words, f′′ (x) = − |x|−3/2 .
                                  4
   Here	is	the	sign	chart:

                        −
                        . −          −.
                                     . ∞            −
                                                    . −             f′′
                                                                  . . (x )
                         .
                         ⌢                           .
                                                     ⌢            .
                                       0
                                       .                            f
                                                                    .(x)
                                                     .    .   .    .     .   .
Step	3: Synthesis

   Now	we	can	put	these	things	together.
                                     √
                          f(x) = x + |x|


                                                               ′
    . 1
    +                .
                     +     0 −∓ .
                           .. . . ∞         .
                                            +             . 1 (x)
                                                          +. f
     ↗
     .               ↗
                     .    −4 ↘ 0
                          . 1. .            ↗
                                            .              ↗m
                                                           . .′′ onotonicity
   −
   . ∞              −
                    . −        − . .
                               . − ∞
                                  −        −
                                           . −           . ∞ (x)
                                                         − . f
     .
     ⌢               .
                     ⌢          . .
                                ⌢ 0         .
                                            ⌢              . . oncavity
                                                           ⌢c
   −
   . ∞      0
            ..             .1
                            4      0
                                   ..                    . ∞ x)
                                                         + .(f
                             .
           −
           . 1            −
                          . .41    0
                                   .                           s
                                                               . hape
     .    zero        .   max min




                                           .     .   .     .       .    .
Step	3: Synthesis

   Now	we	can	put	these	things	together.
                                     √
                          f(x) = x + |x|


                                                               ′
    . 1
    +                .
                     +     0 −∓ .
                           .. . . ∞         .
                                            +             . 1 (x)
                                                          +. f
     ↗
     .               ↗
                     .    −4 ↘ 0
                          . 1. .            ↗
                                            .              ↗m
                                                           . .′′ onotonicity
   −
   . ∞              −
                    . −        − . .
                               . − ∞
                                  −        −
                                           . −           . ∞ (x)
                                                         − . f
     .
     ⌢               .
                     ⌢          . .
                                ⌢ 0         .
                                            ⌢              . . oncavity
                                                           ⌢c
   −
   . ∞    0
          ..               .1
                            4      0
                                   ..                    . ∞ x)
                                                         + .(f
                             .
       . . 1
         −                −
                          . .41    0
                                   .                           s
                                                               . hape
     . zero           .   max min




                                           .     .   .     .       .    .
Step	3: Synthesis

   Now	we	can	put	these	things	together.
                                     √
                          f(x) = x + |x|


                                                               ′
    . 1
    +                .
                     +     0 −∓ .
                           .. . . ∞         .
                                            +             . 1 (x)
                                                          +. f
     ↗
     .               ↗
                     .    −4 ↘ 0
                          . 1. .            ↗
                                            .              ↗m
                                                           . .′′ onotonicity
   −
   . ∞              −
                    . −        − . .
                               . − ∞
                                  −        −
                                           . −           . ∞ (x)
                                                         − . f
     .
     ⌢               .
                     ⌢          . .
                                ⌢ 0         .
                                            ⌢              . . oncavity
                                                           ⌢c
   −
   . ∞    0
          ..               .1
                            4      0
                                   ..                    . ∞ x)
                                                         + .(f
                             .
       . . 1
         −           .    −
                          . .41    0
                                   .                           s
                                                               . hape
     . zero           .   max min




                                           .     .   .     .       .    .
Step	3: Synthesis

   Now	we	can	put	these	things	together.
                                     √
                          f(x) = x + |x|


                                                               ′
    . 1
    +                .
                     +     0 −∓ .
                           .. . . ∞         .
                                            +             . 1 (x)
                                                          +. f
     ↗
     .               ↗
                     .    −4 ↘ 0
                          . 1. .            ↗
                                            .              ↗m
                                                           . .′′ onotonicity
   −
   . ∞              −
                    . −        − . .
                               . − ∞
                                  −        −
                                           . −           . ∞ (x)
                                                         − . f
     .
     ⌢               .
                     ⌢          . .
                                ⌢ 0         .
                                            ⌢              . . oncavity
                                                           ⌢c
   −
   . ∞    0
          ..               .1
                            4      0
                                   ..                    . ∞ x)
                                                         + .(f
                             .
       . . 1
         −           .    −
                          . .41 . .0                           s
                                                               . hape
     . zero           .   max min




                                           .     .   .     .       .    .
Step	3: Synthesis

   Now	we	can	put	these	things	together.
                                     √
                          f(x) = x + |x|


                                                                 ′
    . 1
    +                .
                     +     0 −∓ .
                           .. . . ∞         .
                                            +               . 1 (x)
                                                            +. f
     ↗
     .               ↗
                     .    −4 ↘ 0
                          . 1. .            ↗
                                            .                ↗m
                                                             . .′′ onotonicity
   −
   . ∞              −
                    . −        − . .
                               . − ∞
                                  −        −
                                           . −             . ∞ (x)
                                                           − . f
     .
     ⌢               .
                     ⌢          . .
                                ⌢ 0         .
                                            ⌢                . . oncavity
                                                             ⌢c
   −
   . ∞    0
          ..               .1
                            4      0
                                   ..                      . ∞ x)
                                                           + .(f
                             .
       . . 1
         −           .    −
                          . .41 . .0           .                 s
                                                                 . hape
     . zero           .   max min




                                           .       .   .     .       .    .
Step	3: Synthesis

   Now	we	can	put	these	things	together.
                                     √
                          f(x) = x + |x|


                                                                 ′
    . 1
    +                .
                     +     0 −∓ .
                           .. . . ∞         .
                                            +               . 1 (x)
                                                            +. f
     ↗
     .               ↗
                     .    −4 ↘ 0
                          . 1. .            ↗
                                            .                ↗m
                                                             . .′′ onotonicity
   −
   . ∞              −
                    . −        − . .
                               . − ∞
                                  −        −
                                           . −             . ∞ (x)
                                                           − . f
     .
     ⌢               .
                     ⌢          . .
                                ⌢ 0         .
                                            ⌢                . . oncavity
                                                             ⌢c
   −
   . ∞    0
          ..               .1
                            4      0
                                   ..                      . ∞ x)
                                                           + .(f
                             .
       . . 1
         −           .    −
                          . .41 . .0           .                 s
                                                                 . hape
     . zero           .   max min




                                           .       .   .     .       .    .
Graph


                                         √
                          f(x) = x +         |x|

                                  f
                                  .(x)



                        .−1, 1)
                        ( 4 4
        . −1, 0)
        (                  .
            .                      .                            x
                                                                .
                                       . 0, 0 )
                                       (


     − 0
     . ∞ ..               .1
                           4     0
                                 ..                        . ∞ .(x)
                                                           +   f
                            .
   .    −
        . 1        .     −
                         . .41 . .
                                 0                 .            s
                                                                . hape
    . zero          .    max min

                                                   .   .    .   .     .   .
Graph


                                         √
                          f(x) = x +         |x|

                                  f
                                  .(x)



                        .−1, 1)
                        ( 4 4
        . −1, 0)
        (                  .
            .                      .                            x
                                                                .
                                       . 0, 0 )
                                       (


     − 0
     . ∞ ..               .1
                           4     0
                                 ..                        . ∞ .(x)
                                                           +   f
                            .
   .    −
        . 1        .     −
                         . .41 . .
                                 0                 .            s
                                                                . hape
    . zero          .    max min

                                                   .   .    .   .     .   .
Graph


                                         √
                          f(x) = x +         |x|

                                  f
                                  .(x)



                        .−1, 1)
                        ( 4 4
        . −1, 0)
        (                  .
            .                      .                            x
                                                                .
                                       . 0, 0 )
                                       (


     − 0
     . ∞ ..               .1
                           4     0
                                 ..                        . ∞ .(x)
                                                           +   f
                            .
   .    −
        . 1        .     −
                         . .41 . .
                                 0                 .            s
                                                                . hape
    . zero          .    max min

                                                   .   .    .   .     .   .
Graph


                                         √
                          f(x) = x +         |x|

                                  f
                                  .(x)



                        .−1, 1)
                        ( 4 4
        . −1, 0)
        (                  .
            .                      .                            x
                                                                .
                                       . 0, 0 )
                                       (


     − 0
     . ∞ ..               .1
                           4     0
                                 ..                        . ∞ .(x)
                                                           +   f
                            .
   .    −
        . 1        .     −
                         . .41 . .
                                 0                 .            s
                                                                . hape
    . zero          .    max min

                                                   .   .    .   .     .   .
Graph


                                         √
                          f(x) = x +         |x|

                                  f
                                  .(x)



                        .−1, 1)
                        ( 4 4
        . −1, 0)
        (                  .
            .                      .                            x
                                                                .
                                       . 0, 0 )
                                       (


     − 0
     . ∞ ..               .1
                           4     0
                                 ..                        . ∞ .(x)
                                                           +   f
                            .
   .    −
        . 1        .     −
                         . .41 . .
                                 0                 .            s
                                                                . hape
    . zero          .    max min

                                                   .   .    .   .     .   .
Example
                    2
Graph f(x) = xe−x




                        .   .   .   .   .   .
Example
                    2
Graph f(x) = xe−x
Before	taking	derivatives, we	notice	that f is	odd, that f(0) = 0,
and lim f(x) = 0
    x→∞




                                              .    .    .   .    .   .
Step	1: Monotonicity
                2
   If f(x) = xe−x , then
                             2      2       (       )    2
             f′ (x) = 1 · e−x + xe−x (−2x) = 1 − 2x2 e−x
                      (     √ )(      √ )     2
                    = 1 − 2x 1 + 2x e−x

                    2
   The	factor e−x is	always	positive	so	it	doesn’t	figure	into	the	sign
   of f′ (x). So	our	sign	chart	looks	like	this:

            .
            +                           ..
                                        +       0
                                                .         −
                                                          .                    √
                                              √.                      . −
                                                                      1            2x
                                              . 1/2
            −
            .                0
                             ..         .
                                        +                 .
                                                          +                    √
                             √                                        1
                                                                      . +          2x
                         −
                         .        1/2
                                                                       ′
            −
            .                0
                             ..         .
                                        +       0
                                                .         −
                                                          .           f
                                                                      . (x)
                             √                √.
            ↘
            .             − 1/2         ↗
                                        .                 ↘
                                                          .           f
                                                                      . (x )
                        . .               .   . 1/2
                                               max
                            min

                                                      .       .   .        .       .    .
Step	2: Concavity
                          2
   If f′ (x) = (1 − 2x2 )e−x , we	know
                        2               2       (        )    2
      f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x
                               2
            = 2x(2x2 − 3)e−x

           −
           .             −
                         .     0
                               ..   .
                                    +                .
                                                     +
                                                                 .x
                                                                 2
                               0
                               .
           −
           .             −
                         .          −
                                    .      0
                                           .         .
                                                     +           √     √
                                         √.                      . 2x − 3
                                         . 3/2
           −
           .      0
                  ..     .
                         +          .
                                    +                .
                                                     +           √     √
                  √                                              . 2x + 3
               − 3/2
               .
          −
          . −    .. . +
                 0 +           0
                               ..   −
                                    . − .. 0     . +
                                                 +               .′′ (x)
                                                                 f
           .
           ⌢     √   .
                     ⌣               ⌢ √3
                                     .            .
                                                  ⌣
               − 3/2 .         0
                               .                                 f
                                                                 .(x)
             . .                       . . /2
                 IP            IP         IP


                                                 .       .   .      .      .   .
Step	3: Synthesis

                                              2
                                f(x) = xe−x


       −
       .           − 0 +
                   . .. .            + . −                          −       .′ (x)
                                                                            f
                      √            . . √. .
                                         0                          .
       ↘
       .           ↘ 1/2 .
                   ..
                    −    ↗           ↗      ↘
                                     . . 1/2.                       ↘
                                                                    .       m
                                                                            . onotonic

      −
      . −       .. . +
                0+         + 0 −
                           . + .. . −             − 0
                                                  . − ..        . +
                                                                +           .′′ (x)
                                                                            f
       .
       ⌢        √.  ⌣       ⌣ . .
                            .                      . √3          .
              − 3/2
              .                0 ⌢                 ⌢
                                                     . /2
                                                                 ⌣          c
                                                                            . oncavity

                √                               √
              − 2e3 . √1
              .     3
                       − 2e                .√1 . 2e3
                                                   3
                                                                            f
                                                                            .(x)
                 .       .         0
                                   ..        2e
                                              . √.
       .        √ . √                     √ .
              −
            . . . .
                   3/2− 1/2 .
                           .
                                   . .
                                   0
                                      .   . 1/2 . 3/2
                                              .
                                                                    .       s
                                                                            . hape
                IP min            IP       max IP


                                                     .      .   .       .    .        .
Step	4: Graph

                                 f
                                 .(x)

                                       (√        )(
                                       . 1/2, √1    √      √ )
                           2                   2e .   3/2,   3
             .(x) = xe−x
             f                              .               2e3
                                                 .
                                   .                                      x
                                                                          .
                                       . 0, 0 )
                                       (
   (                    .
      √       √ )             .
   . − 3/2, − 2e3 ( √
                 3                  )
                     . − 1/2, − √1
                                 2e
                      √                       √
                   − 2e3 √1
                   .      3
                            −
                            . 2e        .√1 . 2e33
                                                                          f
                                                                          .(x)
                        .     .      0
                                     ..   2e
             .         √ √              √. √.
               .   − ..
                   . . 3/2 1/2 . . . . . .1/2.. 3/2
                           − .       0                        .           s
                                                                          . hape
                       IP min       IP  max IP
                                                  .   .   .       .   .   .
Example
               1   1
Graph f(x) =     + 2
               x  x




                       .   .   .   .   .   .
Step	0
   Find	when f is	positive, negative, zero, not	defined.




                                                .   .     .   .   .   .
Step	0
   Find	when f is	positive, negative, zero, not	defined. We	need	to
   factor f:
                                1     1    x+1
                         f(x) = + 2 =            .
                                x    x       x2
   This	means f is 0 at −1 and	has	trouble	at 0. In	fact,
                               x+1
                            lim    = ∞,
                            x→0 x2

   so x = 0 is	a	vertical	asymptote	of	the	graph.




                                                .   .   .   .   .    .
Step	0
   Find	when f is	positive, negative, zero, not	defined. We	need	to
   factor f:
                                1     1    x+1
                         f(x) = + 2 =            .
                                x    x       x2
   This	means f is 0 at −1 and	has	trouble	at 0. In	fact,
                              x+1
                           lim    = ∞,
                           x→0 x2

   so x = 0 is	a	vertical	asymptote	of	the	graph. We	can	make	a	sign
   chart	as	follows:
                 −
                 .    0
                      ..         .          .
                                            +
                                                    x
                                                    . +1
                     −
                     . 1
                 .
                 +             0
                               ..           .
                                            +
                                                    .2
                                                    x
                               0
                               .
                 −
                 .    .. .
                      0 +      ∞
                               ..           .
                                            +
                                                    f
                                                    . (x )
                     −
                     . 1       0
                               .
                                                .   .        .   .   .   .
For	horizontal	asymptotes, notice	that

                               x+1
                         lim       = 0,
                         x→∞    x2
so y = 0 is	a	horizontal	asymptote	of	the	graph. The	same	is	true
at −∞.




                                            .   .    .   .    .     .
Step	1: Monotonicity




                       .   .   .   .   .   .
Step	1: Monotonicity

   We	have
                                1     2     x+2
                     f ′ (x ) = − 2
                                    − 3 =− 3 .
                                x    x       x
   The	critical	points	are x = −2 and x = 0. We	have	the	following
   sign	chart:

               .
               +    0
                    ..                 .   −
                                           .
                                                   −
                                                   . (x + 2)
                   −
                   . 2
               −
               .                      0
                                      ..   .
                                           +
                                                   .3
                                                   x
                                      0
                                      .




                                               .        .   .   .   .   .
Step	1: Monotonicity

   We	have
                                1     2     x+2
                     f ′ (x ) = − 2
                                    − 3 =− 3 .
                                x    x       x
   The	critical	points	are x = −2 and x = 0. We	have	the	following
   sign	chart:

               .
               +    0
                    ..                .   −
                                          .
                                                  −
                                                  . (x + 2)
                   −
                   . 2
               −
               .                     0
                                     ..   .
                                          +
                                                  .3
                                                  x
                                     0
                                     .
               −
               .    0
                    ..         .
                               +     ∞
                                     ..   −
                                          .       . ′ (x )
                                                  f
                   −
                   . 2               0
                                     .            f
                                                  .(x)




                                              .        .     .   .   .   .
Step	1: Monotonicity

   We	have
                                1     2     x+2
                     f ′ (x ) = − 2
                                    − 3 =− 3 .
                                x    x       x
   The	critical	points	are x = −2 and x = 0. We	have	the	following
   sign	chart:

               .
               +    0
                    ..                .   −
                                          .
                                                  −
                                                  . (x + 2)
                   −
                   . 2
               −
               .                     0
                                     ..   .
                                          +
                                                  .3
                                                  x
                                     0
                                     .
               − ..
               .  0            .
                               +     ∞
                                     ..   −
                                          .       . ′ (x )
                                                  f
               . −
               ↘ . 2                 0
                                     .            f
                                                  .(x)




                                              .        .     .   .   .   .
Step	1: Monotonicity

   We	have
                                1     2     x+2
                     f ′ (x ) = − 2
                                    − 3 =− 3 .
                                x    x       x
   The	critical	points	are x = −2 and x = 0. We	have	the	following
   sign	chart:

               .
               +    0
                    ..                .   −
                                          .
                                                  −
                                                  . (x + 2)
                   −
                   . 2
               −
               .                     0
                                     ..   .
                                          +
                                                  .3
                                                  x
                                     0
                                     .
               − ..
               .  0            .
                               +     ∞
                                     ..   −
                                          .       . ′ (x )
                                                  f
               . −
               ↘ . 2           ↗
                               .     0
                                     .            f
                                                  .(x)




                                              .        .     .   .   .   .
Step	1: Monotonicity

   We	have
                                1     2     x+2
                     f ′ (x ) = − 2
                                    − 3 =− 3 .
                                x    x       x
   The	critical	points	are x = −2 and x = 0. We	have	the	following
   sign	chart:

               .
               +    0
                    ..                .   −
                                          .
                                                  −
                                                  . (x + 2)
                   −
                   . 2
               −
               .                     .. .
                                     0 +
                                                  .3
                                                  x
                                     0
                                     .
               − ..
               .  0            .
                               +     ∞ −
                                     .. .         . ′ (x )
                                                  f
               . −
               ↘ . 2           ↗
                               .     0 ↘
                                     . .          f
                                                  .(x)




                                              .        .     .   .   .   .
Step	1: Monotonicity

   We	have
                                1     2     x+2
                     f ′ (x ) = − 2
                                    − 3 =− 3 .
                                x    x       x
   The	critical	points	are x = −2 and x = 0. We	have	the	following
   sign	chart:

               .
               +    0
                    ..                .   −
                                          .
                                                  −
                                                  . (x + 2)
                   −
                   . 2
               −
               .                     .. .
                                     0 +
                                                  .3
                                                  x
                                     0
                                     .
               − ..
               .   0           .
                               +     ∞ −
                                     .. .         . ′ (x )
                                                  f
               .  −
               ↘ . 2           ↗
                               .     0 ↘
                                     . .          f
                                                  .(x)
                 m
                 . in



                                              .        .     .   .   .   .
Step	1: Monotonicity

   We	have
                                1     2     x+2
                     f ′ (x ) = − 2
                                    − 3 =− 3 .
                                x    x       x
   The	critical	points	are x = −2 and x = 0. We	have	the	following
   sign	chart:

               .
               +    0
                    ..                .   −
                                          .
                                                  −
                                                  . (x + 2)
                   −
                   . 2
               −
               .                      .. .
                                      0 +
                                                  .3
                                                  x
                                      0
                                      .
               − ..
               .   0           .
                               +     ∞ −
                                     .. .         . ′ (x )
                                                  f
               .  −
               ↘ . 2           ↗
                               .      0 ↘
                                      . .         f
                                                  .(x)
                 m
                 . in                V
                                     .A



                                              .        .     .   .   .   .
Step	2: Concavity




                    .   .   .   .   .   .
Step	2: Concavity

   We	have
                                   2    6   2 (x + 3 )
                       f′′ (x) =      +   =            .
                                   x 3 x4       x4
   The	critical	points	of f′ are −3 and 0. Sign	chart:

             −
             .    0
                  ..                               .       .
                                                           +
                                                                   . x + 3)
                                                                   (
                 −
                 . 3
             .
             +                                   0
                                                 ..        .
                                                           +
                                                                   .4
                                                                   x
                                                 0
                                                 .
                  0
                  ..                             ∞
                                                 ..                .′ (x)
                                                                   f
                 −
                 . 3                             0
                                                 .                 f
                                                                   .(x)




                                                       .       .    .       .   .   .
Step	2: Concavity

   We	have
                                   2    6   2 (x + 3 )
                       f′′ (x) =      +   =            .
                                   x 3 x4       x4
   The	critical	points	of f′ are −3 and 0. Sign	chart:

             −
             .    0
                  ..                               .       .
                                                           +
                                                                   . x + 3)
                                                                   (
                 −
                 . 3
             .
             +                                   0
                                                 ..        .
                                                           +
                                                                   .4
                                                                   x
                                                 0
                                                 .
           −
           . − ..
                0                                ∞
                                                 ..                .′ (x)
                                                                   f
               −
               . 3                               0
                                                 .                 f
                                                                   .(x)




                                                       .       .    .       .   .   .
Step	2: Concavity

   We	have
                                   2    6   2 (x + 3 )
                       f′′ (x) =      +   =            .
                                   x 3 x4       x4
   The	critical	points	of f′ are −3 and 0. Sign	chart:

             −
             .    0
                  ..                               .       .
                                                           +
                                                                   . x + 3)
                                                                   (
                 −
                 . 3
             .
             +                                   0
                                                 ..        .
                                                           +
                                                                   .4
                                                                   x
                                                 0
                                                 .
           −
           . − ..
                0                  . +
                                   +             ∞
                                                 ..                .′ (x)
                                                                   f
               −
               . 3                               0
                                                 .                 f
                                                                   .(x)




                                                       .       .    .       .   .   .
Step	2: Concavity

   We	have
                                   2    6   2 (x + 3 )
                       f′′ (x) =      +   =            .
                                   x 3 x4       x4
   The	critical	points	of f′ are −3 and 0. Sign	chart:

             −
             .    0
                  ..                               .       .
                                                           +
                                                                   . x + 3)
                                                                   (
                 −
                 . 3
             .
             +                                   .. .
                                                 0 +
                                                                   .4
                                                                   x
                                                 0
                                                 .
           −
           . − ..
                0                  . +
                                   +             .. . +
                                                 ∞ +               .′ (x)
                                                                   f
               −
               . 3                               0
                                                 .                 f
                                                                   .(x)




                                                       .       .    .       .   .   .
Step	2: Concavity

   We	have
                                   2    6   2 (x + 3 )
                       f′′ (x) =      +   =            .
                                   x 3 x4       x4
   The	critical	points	of f′ are −3 and 0. Sign	chart:

             −
             .    0
                  ..                               .       .
                                                           +
                                                                   . x + 3)
                                                                   (
                 −
                 . 3
             .
             +                                   .. .
                                                 0 +
                                                                   .4
                                                                   x
                                                 0
                                                 .
           −
           . − ..
               0                   . +
                                   +             .. . +
                                                 ∞ +               .′ (x)
                                                                   f
            .
            ⌢ . 3
               −                                 0
                                                 .                 f
                                                                   .(x)




                                                       .       .    .       .   .   .
Step	2: Concavity

   We	have
                                   2    6   2 (x + 3 )
                       f′′ (x) =      +   =            .
                                   x 3 x4       x4
   The	critical	points	of f′ are −3 and 0. Sign	chart:

             −
             .    0
                  ..                               .       .
                                                           +
                                                                   . x + 3)
                                                                   (
                 −
                 . 3
             .
             +                                   .. .
                                                 0 +
                                                                   .4
                                                                   x
                                                 0
                                                 .
           −
           . − ..
               0                   . +
                                   +             .. . +
                                                 ∞ +               .′ (x)
                                                                   f
            .
            ⌢ . 3
               −                    .
                                    ⌣            0
                                                 .                 f
                                                                   .(x)




                                                       .       .    .       .   .   .
Step	2: Concavity

   We	have
                                   2    6   2 (x + 3 )
                       f′′ (x) =      +   =            .
                                   x 3 x4       x4
   The	critical	points	of f′ are −3 and 0. Sign	chart:

             −
             .    0
                  ..                               .       .
                                                           +
                                                                   . x + 3)
                                                                   (
                 −
                 . 3
             .
             +                                   .. .
                                                 0 +
                                                                   .4
                                                                   x
                                                 0
                                                 .
           −
           . − ..
               0                   . +
                                   +             .. . +
                                                 ∞ +               .′ (x)
                                                                   f
            .
            ⌢ . 3
               −                    .
                                    ⌣            . .
                                                 0 ⌣               f
                                                                   .(x)




                                                       .       .    .       .   .   .
Step	2: Concavity

   We	have
                                   2    6   2 (x + 3 )
                       f′′ (x) =      +   =            .
                                   x 3 x4       x4
   The	critical	points	of f′ are −3 and 0. Sign	chart:

             −
             .    0
                  ..                               .       .
                                                           +
                                                                   . x + 3)
                                                                   (
                 −
                 . 3
             .
             +                                   .. .
                                                 0 +
                                                                   .4
                                                                   x
                                                 0
                                                 .
           −
           . − ..
                0                  . +
                                   +             .. . +
                                                 ∞ +               .′ (x)
                                                                   f
            .
            ⌢ . 3
               −                    .
                                    ⌣            . .
                                                 0 ⌣               f
                                                                   .(x)
               I
               .P




                                                       .       .    .       .   .   .
Step	2: Concavity

   We	have
                                   2    6   2 (x + 3 )
                       f′′ (x) =      +   =            .
                                   x 3 x4       x4
   The	critical	points	of f′ are −3 and 0. Sign	chart:

             −
             .    0
                  ..                               .       .
                                                           +
                                                                   . x + 3)
                                                                   (
                 −
                 . 3
             .
             +                                    .. .
                                                  0 +
                                                                   .4
                                                                   x
                                                  0
                                                  .
           −
           . − ..
                0                  . +
                                   +             .. . +
                                                 ∞ +               .′ (x)
                                                                   f
            .
            ⌢ . 3
               −                    .
                                    ⌣             . .
                                                  0 ⌣              f
                                                                   .(x)
               I
               .P                                V
                                                 .A




                                                       .       .    .       .   .   .
Step	3: Synthesis
                                           .

                  − ..
                  .  0            .
                                  +       ∞ −
                                          .. .         .′
                                                       f
                  . −
                  ↘ . 2           ↗
                                  .       0 ↘
                                          . .          m
                                                       . onotonicity
        −
        . − ..
            0               . +
                            +             ∞ −
                                          .. . −       .′′
                                                       f
         .
         ⌢ . 3
            −                .
                             ⌣            . .
                                          0 ⌣          c
                                                       . oncavity

      0
      .   −
          . 2/9     −
                    . 1/4          0
                                   ..     ∞
                                          ..        0f
                                                    ..
             .         .
    −
    . ∞ . . 3
        − −          −
                     . 2          . 1 .
                                  − +     0
                                          .    .
                                               +   ∞s
                                                   . . hape	of f




                                               .   .     .    .    .   .
Step	3: Synthesis
                                            .

                   − ..
                   .  0            .
                                   +       ∞ −
                                           .. .         .′
                                                        f
                   . −
                   ↘ . 2           ↗
                                   .       0 ↘
                                           . .          m
                                                        . onotonicity
        −
        . − ..
            0                . +
                             +             ∞ −
                                           .. . −       .′′
                                                        f
         .
         ⌢ . 3
            −                 .
                              ⌣            . .
                                           0 ⌣          c
                                                        . oncavity

      0
      .    −
           . 2/9     −
                     . 1/4          0
                                    ..     ∞
                                           ..        0f
                                                     ..
              .         .
    −
    . ∞ . . 3
         − −          −
                      . 2          . 1 .
                                   − +     0
                                           .    .
                                                +   ∞s
                                                    . . hape	of f
     H
     . A




                                                .   .     .    .    .   .
Step	3: Synthesis
                                            .

                   − ..
                   .  0            .
                                   +       ∞ −
                                           .. .         .′
                                                        f
                   . −
                   ↘ . 2           ↗
                                   .       0 ↘
                                           . .          m
                                                        . onotonicity
        −
        . − ..
            0                . +
                             +             ∞ −
                                           .. . −       .′′
                                                        f
         .
         ⌢ . 3
            −                 .
                              ⌣            . .
                                           0 ⌣          c
                                                        . oncavity

      0
      .    −
           . 2/9     −
                     . 1/4          0
                                    ..     ∞
                                           ..        0f
                                                     ..
              .         .
    −
    . ∞ . . 3
         − −          −
                      . 2          . 1 .
                                   − +     0
                                           .    .
                                                +   ∞s
                                                    . . hape	of f
     . A .
     H




                                                .   .     .    .    .   .
Step	3: Synthesis
                                            .

                   − ..
                   .  0            .
                                   +       ∞ −
                                           .. .         .′
                                                        f
                   . −
                   ↘ . 2           ↗
                                   .       0 ↘
                                           . .          m
                                                        . onotonicity
        −
        . − ..
            0                . +
                             +             ∞ −
                                           .. . −       .′′
                                                        f
         .
         ⌢ . 3
            −                 .
                              ⌣            . .
                                           0 ⌣          c
                                                        . oncavity

      0
      .    −
           . 2/9     −
                     . 1/4          0
                                    ..     ∞
                                           ..        0f
                                                     ..
               .        .
    −
    . ∞ . . 3
         − −          −
                      . 2          . 1 .
                                   − +     0
                                           .    .
                                                +   ∞s
                                                    . . hape	of f
     . A .
     H       I
             .P




                                                .   .     .    .    .   .
Step	3: Synthesis
                                         .

                 − ..
                 .  0           .
                                +       ∞ −
                                        .. .         .′
                                                     f
                 . −
                 ↘ . 2          ↗
                                .       0 ↘
                                        . .          m
                                                     . onotonicity
        −
        . − ..
            0             . +
                          +             ∞ −
                                        .. . −       .′′
                                                     f
         .
         ⌢ . 3
            −              .
                           ⌣            . .
                                        0 ⌣          c
                                                     . oncavity

      0
      .    −
           . 2/9  −
                  . 1/4          0
                                 ..     ∞
                                        ..        0f
                                                  ..
               .     .
    −
    . ∞ . . 3
         − −       −
                   . 2          . 1 .
                                − +     0
                                        .    .
                                             +   ∞s
                                                 . . hape	of f
     . A .
     H       .P .
             I




                                             .   .     .    .    .   .
Step	3: Synthesis
                                         .

                 − ..
                 .  0           .
                                +       ∞ −
                                        .. .         .′
                                                     f
                 . −
                 ↘ . 2          ↗
                                .       0 ↘
                                        . .          m
                                                     . onotonicity
        −
        . − ..
            0             . +
                          +             ∞ −
                                        .. . −       .′′
                                                     f
         .
         ⌢ . 3
            −              .
                           ⌣            . .
                                        0 ⌣          c
                                                     . oncavity

      0
      .    −
           . 2/9  −
                  . 1/4          0
                                 ..     ∞
                                        ..        0f
                                                  ..
               .     .
    −
    . ∞ . . 3
         − −       −
                   . 2          . 1 .
                                − +     0
                                        .    .
                                             +   ∞s
                                                 . . hape	of f
     . A .
     H       .P . . in
             I    m




                                             .   .     .    .    .   .
Step	3: Synthesis
                                        .

                 − ..
                 .  0          .
                               +       ∞ −
                                       .. .         .′
                                                    f
                 . −
                 ↘ . 2         ↗
                               .       0 ↘
                                       . .          m
                                                    . onotonicity
        −
        . − ..
            0            . +
                         +             ∞ −
                                       .. . −       .′′
                                                    f
         .
         ⌢ . 3
            −             .
                          ⌣            . .
                                       0 ⌣          c
                                                    . oncavity

      0
      .    −
           . 2/9  −
                  . 1/4         0
                                ..     ∞
                                       ..        0f
                                                 ..
               .     .
    −
    . ∞ . . 3
         − −       −
                   . 2         . 1 .
                               − +     0
                                       .    .
                                            +   ∞s
                                                . . hape	of f
     . A .
     H       .P . . in .
             I    m




                                            .   .     .    .    .   .
Step	3: Synthesis
                                        .

                 − ..
                 .  0          .
                               +       ∞ −
                                       .. .         .′
                                                    f
                 . −
                 ↘ . 2         ↗
                               .       0 ↘
                                       . .          m
                                                    . onotonicity
        −
        . − ..
            0            . +
                         +             ∞ −
                                       .. . −       .′′
                                                    f
         .
         ⌢ . 3
            −             .
                          ⌣            . .
                                       0 ⌣          c
                                                    . oncavity

      0
      .    −
           . 2/9  −
                  . 1/4         0
                                ..     ∞
                                       ..        0f
                                                 ..
               .     .
    −
    . ∞ . . 3
         − −       −
                   . 2         . 1 .
                               − +     0
                                       .    .
                                            +   ∞s
                                                . . hape	of f
     . A .
     H       .P . . in .
             I    m             0
                                .




                                            .   .     .    .    .   .
Step	3: Synthesis
                                        .

                 − ..
                 .  0          .
                               +       ∞ −
                                       .. .         .′
                                                    f
                 . −
                 ↘ . 2         ↗
                               .       0 ↘
                                       . .          m
                                                    . onotonicity
        −
        . − ..
            0            . +
                         +             ∞ −
                                       .. . −       .′′
                                                    f
         .
         ⌢ . 3
            −             .
                          ⌣            . .
                                       0 ⌣          c
                                                    . oncavity

      0
      .    −
           . 2/9  −
                  . 1/4         0
                                ..     ∞
                                       ..        0f
                                                 ..
               .     .
    −
    . ∞ . . 3
         − −       −
                   . 2         . 1 .
                               − +     0
                                       .    .
                                            +   ∞s
                                                . . hape	of f
     . A .
     H       .P . . in .
             I    m             0 .
                                .




                                            .   .     .    .    .   .
Step	3: Synthesis
                                     .

                 − ..
                 .  0          .
                               +    ∞ −
                                    .. .         .′
                                                 f
                 . −
                 ↘ . 2         ↗
                               .    0 ↘
                                    . .          m
                                                 . onotonicity
        −
        . − ..
            0            . +
                         +          ∞ −
                                    .. . −       .′′
                                                 f
         .
         ⌢ . 3
            −             .
                          ⌣         . .
                                    0 ⌣          c
                                                 . oncavity

      0
      .    −
           . 2/9  −
                  . 1/4         0
                                ..   ∞
                                     ..       0f
                                              ..
               .     .
    −
    . ∞ . . 3
         − −       −
                   . 2         . 1 .
                               − + .  0 .
                                        +    ∞s
                                             . . hape	of f
     . A .
     H       .P . . in .
             I    m             0 . .A
                                .    V




                                         .   .     .    .    .   .
Step	3: Synthesis
                                     .

                 − ..
                 .  0          .
                               +    ∞ −
                                    .. .         .′
                                                 f
                 . −
                 ↘ . 2         ↗
                               .    0 ↘
                                    . .          m
                                                 . onotonicity
        −
        . − ..
            0            . +
                         +          ∞ −
                                    .. . −       .′′
                                                 f
         .
         ⌢ . 3
            −             .
                          ⌣         . .
                                    0 ⌣          c
                                                 . oncavity

      0
      .    −
           . 2/9  −
                  . 1/4         0
                                ..   ∞
                                     ..       0f
                                              ..
               .     .
    −
    . ∞ . . 3
         − −       −
                   . 2         . 1 .
                               − + .  0 .
                                        +    ∞s
                                             . . hape	of f
     . A .
     H       .P . . in .
             I    m             0 . .A .
                                .    V




                                         .   .     .    .    .   .
Step	3: Synthesis
                                       .

                 − ..
                 .  0          .
                               +      ∞ −
                                      .. .         .′
                                                   f
                 . −
                 ↘ . 2         ↗
                               .      0 ↘
                                      . .          m
                                                   . onotonicity
        −
        . − ..
            0            . +
                         +            ∞ −
                                      .. . −       .′′
                                                   f
         .
         ⌢ . 3
            −             .
                          ⌣           . .
                                      0 ⌣          c
                                                   . oncavity

      0
      .    −
           . 2/9  −
                  . 1/4         0
                                ..   ∞
                                     ..    0f
                                           ..
               .     .
    −
    . ∞ . . 3
         − −       −
                   . 2         . 1 .
                               − + .  0 .
                                        + ∞s
                                          . . hape	of f
     . A .
     H       .P . . in .
             I    m             0 . .A . . A
                                .    V    H




                                           .   .     .    .   .    .
Step	4: Graph

                                   y
                                   .




                                   .               x
                                                   .
               .    .
         . −3, −2/9) . −2, −1/4)
         (            (



                                       .   .   .       .   .   .
Problem
Graph f(x) = cos x − x




                         .   .   .   .   .   .
Problem
Graph f(x) = cos x − x


                         y
                         .




                             .




                                 .   .   .   .   .   .
Problem
Graph f(x) = x ln x2




                       .   .   .   .   .   .
Problem
Graph f(x) = x ln x2

                       y
                       .




                           .           x
                                       .




                               .   .       .   .   .   .

Lesson 22: Graphing

  • 1.
    Section 4.4 Curve Sketching V63.0121.027, Calculus I November 17, 2009 Announcements Next written assignment will be due Wednesday, Nov 25 next and last quiz will be the week after Thanksgiving Final Exam: Friday, December 18, 2:00–3:50pm . . . . . .
  • 2.
    Outline The Procedure Simple examples A cubic function A quartic function More Examples Points of nondifferentiability Horizontal asymptotes Vertical asymptotes Trigonometric and polynomial together Logarithmic . . . . . .
  • 3.
    Objective Given a function, graph it completely, indicating zeroes asymptotes if applicable critical points local/global max/min inflection points . . Image credit: Image Of Surgery . . . . . .
  • 4.
    The Increasing/Decreasing Test Theorem (The Increasing/Decreasing Test) If f′ > 0 on (a, b), then f is increasing on (a, b). If f′ < 0 on (a, b), then f is decreasing on (a, b). Proof. Pick two points x and y in (a, b) with x < y. We must show f(x) < f(y). By MVT there exists a point c in (x, y) such that f(y) − f(x) = f′ (c) > 0. y−x So f(y) − f(x) = f′ (c)(y − x) > 0. . . . . . .
  • 5.
    Theorem (Concavity Test) If f′′ (x) > 0 for all x in I, then the graph of f is concave upward on I If f′′ (x) < 0 for all x in I, then the graph of f is concave downward on I Proof. Suppose f′′ (x) > 0 on I. This means f′ is increasing on I. Let a and x be in I. The tangent line through (a, f(a)) is the graph of L(x) = f(a) + f′ (a)(x − a) f(x) − f(a) By MVT, there exists a b between a and x with = f′ (b). x−a So f(x) = f(a) + f′ (b)(x − a) ≥ f(a) + f′ (a)(x − a) = L(x) . . . . . .
  • 6.
    Graphing Checklist To graph a function f, follow this plan: 0. Find when f is positive, negative, zero, not defined. 1. Find f′ and form its sign chart. Conclude information about increasing/decreasing and local max/min. 2. Find f′′ and form its sign chart. Conclude concave up/concave down and inflection. 3. Put together a big chart to assemble monotonicity and concavity data 4. Graph! . . . . . .
  • 7.
    Outline The Procedure Simple examples A cubic function A quartic function More Examples Points of nondifferentiability Horizontal asymptotes Vertical asymptotes Trigonometric and polynomial together Logarithmic . . . . . .
  • 8.
    Graphing a cubic Example Graph f(x) = 2x3 − 3x2 − 12x. . . . . . .
  • 9.
    Graphing a cubic Example Graph f(x) = 2x3 − 3x2 − 12x. (Step 0) First, let’s find the zeros. We can at least factor out one power of x: f(x) = x(2x2 − 3x − 12) so f(0) = 0. The other factor is a quadratic, so we the other two roots are √ √ 3 ± 32 − 4(2)(−12) 3 ± 105 x= = 4 4 It’s OK to skip this step for now since the roots are so complicated. . . . . . .
  • 10.
    Step 1: Monotonicity f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: . . . . . . .
  • 11.
    Step 1: Monotonicity f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: . . . −2 x 2 . . x . +1 − . 1 .′ (x) f . . − . 1 2 . f .(x) . . . . . .
  • 12.
    Step 1: Monotonicity f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − . − . . . . + . −2 x 2 . . x . +1 − . 1 .′ (x) f . . − . 1 2 . f .(x) . . . . . .
  • 13.
    Step 1: Monotonicity f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − . − . . . . + . −2 x 2 . − . . . + . + x . +1 − . 1 .′ (x) f . . − . 1 2 . f .(x) . . . . . .
  • 14.
    Step 1: Monotonicity f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − . − . . . . + . −2 x 2 . − . . . + . + x . +1 − . 1 . . + .′ (x) f . − . 1 2 . f .(x) . . . . . .
  • 15.
    Step 1: Monotonicity f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − . − . . . . + . −2 x 2 . − . . . + . + x . +1 − . 1 . . + − . .′ (x) f . − . 1 2 . f .(x) . . . . . .
  • 16.
    Step 1: Monotonicity f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − . − . . . . + . −2 x 2 . − . . . + . + x . +1 − . 1 . . + − . . + .′ (x) f . − . 1 2 . f .(x) . . . . . .
  • 17.
    Step 1: Monotonicity f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − . − . . . . + . −2 x 2 . − . . . + . + x . +1 − . 1 . . + − . . + .′ (x) f . ↗− . . 1 2 . f .(x) . . . . . .
  • 18.
    Step 1: Monotonicity f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − . − . . . . + . −2 x 2 . − . . . + . + x . +1 − . 1 . . + − . . + .′ (x) f . ↗− . . 1 ↘ . 2 . f .(x) . . . . . .
  • 19.
    Step 1: Monotonicity f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − . − . . . . + . −2 x 2 . − . . . + . + x . +1 − . 1 . . + − . . + .′ (x) f . ↗− . . 1 ↘ . 2 . ↗ . f .(x) . . . . . .
  • 20.
    Step 1: Monotonicity f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − . − . . . . + . −2 x 2 . − . . . + . + x . +1 − . 1 . . + − . . + .′ (x) f . ↗− . . 1 ↘ . 2 . ↗ . f .(x) m . ax . . . . . .
  • 21.
    Step 1: Monotonicity f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − . − . . . . + . −2 x 2 . − . . . + . + x . +1 − . 1 . . + − . . + .′ (x) f . ↗− . . 1 ↘ . 2 . ↗ . f .(x) m . ax m . in . . . . . .
  • 22.
    Step 2: Concavity f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: . . . . . . .
  • 23.
    Step 2: Concavity f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: . .′′ (x) f . . 1/2 f .(x) . . . . . .
  • 24.
    Step 2: Concavity f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: . − . − .′′ (x) f . . 1/2 f .(x) . . . . . .
  • 25.
    Step 2: Concavity f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: . − . − . + + .′′ (x) f . . 1/2 f .(x) . . . . . .
  • 26.
    Step 2: Concavity f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: . − . − . + + .′′ (x) f . . ⌢ . 1/2 f .(x) . . . . . .
  • 27.
    Step 2: Concavity f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: . − . − . + + .′′ (x) f . . ⌢ . 1/2 . ⌣ f .(x) . . . . . .
  • 28.
    Step 2: Concavity f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: . − . − . + + .′′ (x) f . . ⌢ . 1/2 . ⌣ f .(x) I .P . . . . . .
  • 29.
    Step 3: One sign chart to rule them all Remember, f(x) = 2x3 − 3x2 − 12x. . . . . . . .
  • 30.
    Step 3: One sign chart to rule them all Remember, f(x) = 2x3 − 3x2 − 12x. − . . . . + − . . + .′ (x) f . ↗− ↘ . . 1 . ↘ . 2 . ↗ . m . onotonicity . . . . . .
  • 31.
    Step 3: One sign chart to rule them all Remember, f(x) = 2x3 − 3x2 − 12x. . . + − . . − . . + .′ (x) f . ↗− . . 1 ↘ . ↘ . . 2 ↗ . m .′′ onotonicity − . − − . − . . + + . + + f . (x) . ⌢ . ⌢ 1/2 . . ⌣ . ⌣ c . oncavity . . . . . .
  • 32.
    Step 3: One sign chart to rule them all Remember, f(x) = 2x3 − 3x2 − 12x. . . + − . . − . . + .′ (x) f . ↗− . . 1 ↘ . ↘ . . 2 ↗ . m .′′ onotonicity − . − − . − . . + + . + + f . (x) . ⌢ ⌢ ./2 . . 1 ⌣ . ⌣ c . oncavity 7 .. − . 6 1/2 −. . 20 f .(x) . − . 1 . 1/2 2 . . hape of f s m . ax I .P m . in . . . . . .
  • 33.
    Combinations of monotonicity and concavity . . increasing, decreasing, concave concave down down I .I I . . I .II I .V . . decreasing, increasing, concave up concave up . . . . . .
  • 34.
    Step 3: One sign chart to rule them all Remember, f(x) = 2x3 − 3x2 − 12x. . . + − . . − . . + .′ (x) f . ↗− . . 1 ↘ . ↘ . . 2 ↗ . m .′′ onotonicity − . − − . − . . + + . + + f . (x) . ⌢ ⌢ ./2 . . 1 ⌣ . ⌣ c . oncavity 7 .. − . 6 1/2 −. . 20 f .(x) . . . 1 − . 1/2 2 . . hape of f s m . ax I .P m . in . . . . . .
  • 35.
    Step 3: One sign chart to rule them all Remember, f(x) = 2x3 − 3x2 − 12x. . . + − . . − . . + .′ (x) f . ↗− . . 1 ↘ . ↘ . . 2 ↗ . m .′′ onotonicity − . − − . − . . + + . + + f . (x) . ⌢ ⌢ ./2 . . 1 ⌣ . ⌣ c . oncavity 7 .. − . 6 1/2 −. . 20 f .(x) . . . 1 . ./2 − 1 2 . . hape of f s m . ax I .P m . in . . . . . .
  • 36.
    Step 3: One sign chart to rule them all Remember, f(x) = 2x3 − 3x2 − 12x. . . + − . . − . . + .′ (x) f . ↗− . . 1 ↘ . ↘ . . 2 ↗ . m .′′ onotonicity − . − − . − . . + + . + + f . (x) . ⌢ ⌢ ./2 . . 1 ⌣ . ⌣ c . oncavity 7 .. − . 6 1/2 −. . 20 f .(x) . . . 1 . ./2 . − 1 2 . . hape of f s m . ax I .P m . in . . . . . .
  • 37.
    Step 3: One sign chart to rule them all Remember, f(x) = 2x3 − 3x2 − 12x. . . + − . . − . . + .′ (x) f . ↗− . . 1 ↘ . ↘ . . 2 ↗ . m .′′ onotonicity − . − − . − . . + + . + + f . (x) . ⌢ ⌢ ./2 . . 1 ⌣ . ⌣ c . oncavity 7 .. − . 6 1/2 −. . 20 f .(x) . . . 1 . ./2 . − 1 2 . . . hape of f s m . ax I .P m . in . . . . . .
  • 38.
    Step 4: Graph f .(x) .(x) = 2x3 − 3x2 − 12x f ( √ ) . −1, 7) ( . . 3− 4105 , 0 . 0, 0 ) ( . . . x . 1/2, −61/2) ( ( . √ ) . . 3+ 4105 , 0 . 2, −20) ( . 7 .. − . 61/2 −. . 20 f .(x) . . . 1 . ./2 . − 1 2 . . . hape of f s m . ax I .P m . in . . . . . .
  • 39.
    Step 4: Graph f .(x) .(x) = 2x3 − 3x2 − 12x f ( √ ) . −1, 7) ( . . 3− 4105 , 0 . 0, 0 ) ( . . . x . 1/2, −61/2) ( ( . √ ) . . 3+ 4105 , 0 . 2, −20) ( . 7 .. − . 61/2 −. . 20 f .(x) . . . 1 . ./2 . − 1 2 . . . hape of f s m . ax I .P m . in . . . . . .
  • 40.
    Step 4: Graph f .(x) .(x) = 2x3 − 3x2 − 12x f ( √ ) . −1, 7) ( . . 3− 4105 , 0 . 0, 0 ) ( . . . x . 1/2, −61/2) ( ( . √ ) . . 3+ 4105 , 0 . 2, −20) ( . 7 .. − . 61/2 −. . 20 f .(x) . . . 1 . ./2 . − 1 2 . . . hape of f s m . ax I .P m . in . . . . . .
  • 41.
    Step 4: Graph f .(x) .(x) = 2x3 − 3x2 − 12x f ( √ ) . −1, 7) ( . . 3− 4105 , 0 . 0, 0 ) ( . . . x . 1/2, −61/2) ( ( . √ ) . . 3+ 4105 , 0 . 2, −20) ( . 7 .. − . 61/2 −. . 20 f .(x) . . . 1 . ./2 . − 1 2 . . . hape of f s m . ax I .P m . in . . . . . .
  • 42.
    Step 4: Graph f .(x) .(x) = 2x3 − 3x2 − 12x f ( √ ) . −1, 7) ( . . 3− 4105 , 0 . 0, 0 ) ( . . . x . 1/2, −61/2) ( ( . √ ) . . 3+ 4105 , 0 . 2, −20) ( . 7 .. − . 61/2 −. . 20 f .(x) . . . 1 . ./2 . − 1 2 . . . hape of f s m . ax I .P m . in . . . . . .
  • 43.
    Graphing a quartic Example Graph f(x) = x4 − 4x3 + 10 . . . . . .
  • 44.
    Graphing a quartic Example Graph f(x) = x4 − 4x3 + 10 (Step 0) We know f(0) = 10 and lim f(x) = +∞. Not too many x→±∞ other points on the graph are evident. . . . . . .
  • 45.
    Step 1: Monotonicity f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) . . . . . .
  • 46.
    Step 1: Monotonicity f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . . . . . . .
  • 47.
    Step 1: Monotonicity f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. 0 .. . x2 4 0 . . . . . . .
  • 48.
    Step 1: Monotonicity f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . x2 4 0 . . . . . . .
  • 49.
    Step 1: Monotonicity f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . x2 4 0 . . . . . . .
  • 50.
    Step 1: Monotonicity f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . . . . . . .
  • 51.
    Step 1: Monotonicity f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . 0 .. . x − 3) ( 3 . . . . . . .
  • 52.
    Step 1: Monotonicity f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . − . 0 .. . x − 3) ( 3 . . . . . . .
  • 53.
    Step 1: Monotonicity f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . − . − . 0 .. . x − 3) ( 3 . . . . . . .
  • 54.
    Step 1: Monotonicity f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . − . − . .. . 0 + . x − 3) ( 3 . . . . . . .
  • 55.
    Step 1: Monotonicity f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . − . − . .. . 0 + . x − 3) ( 3 . 0 .. 0 .. .′ (x) f 0 . 3 . f .(x) . . . . . .
  • 56.
    Step 1: Monotonicity f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . − . − . .. . 0 + . x − 3) ( 3 . − 0 . .. 0 .. .′ (x) f 0 . 3 . f .(x) . . . . . .
  • 57.
    Step 1: Monotonicity f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . − . − . .. . 0 + . x − 3) ( 3 . − 0 . .. − . 0 .. .′ (x) f 0 . 3 . f .(x) . . . . . .
  • 58.
    Step 1: Monotonicity f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . − . − . .. . 0 + . x − 3) ( 3 . − 0 . .. − . .. . 0 + .′ (x) f 0 . 3 . f .(x) . . . . . .
  • 59.
    Step 1: Monotonicity f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . − . − . .. . 0 + . x − 3) ( 3 . − 0 . .. − . .. . 0 + .′ (x) f ↘ 0 . . 3 . f .(x) . . . . . .
  • 60.
    Step 1: Monotonicity f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . − . − . .. . 0 + . x − 3) ( 3 . − 0 . .. − . .. . 0 + .′ (x) f ↘ 0 . . ↘ . 3 . f .(x) . . . . . .
  • 61.
    Step 1: Monotonicity f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . − . − . .. . 0 + . x − 3) ( 3 . − 0 . .. − . .. . 0 + .′ (x) f ↘ 0 . . ↘ . 3 ↗ . . f .(x) . . . . . .
  • 62.
    Step 1: Monotonicity f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. . .. + 0 . + . + . x2 4 0 . − . − . .. . 0 + . x − 3) ( 3 . − 0 . .. − . .. . 0 + .′ (x) f ↘ 0 . . ↘ . 3 ↗ . . f .(x) m . in . . . . . .
  • 63.
    Step 2: Concavity f′′ (x) = 12x2 − 24x = 12x(x − 2) . . . . . .
  • 64.
    Step 2: Concavity f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: . . . . . . .
  • 65.
    Step 2: Concavity f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: 0 .. 1 . 2x 0 . . . . . . .
  • 66.
    Step 2: Concavity f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. 1 . 2x 0 . . . . . . .
  • 67.
    Step 2: Concavity f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + 1 . 2x 0 . . . . . . .
  • 68.
    Step 2: Concavity f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . . . . . . .
  • 69.
    Step 2: Concavity f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . 0 .. . −2 x 2 . . . . . . .
  • 70.
    Step 2: Concavity f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . − . 0 .. . −2 x 2 . . . . . . .
  • 71.
    Step 2: Concavity f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . − . − . 0 .. . −2 x 2 . . . . . . .
  • 72.
    Step 2: Concavity f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . − . − . 0 .. . + . −2 x 2 . . . . . . .
  • 73.
    Step 2: Concavity f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . − . − . 0 .. . + . −2 x 2 . 0 .. 0 .. .′′ (x) f 0 . 2 . f . (x ) . . . . . .
  • 74.
    Step 2: Concavity f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . − . − . 0 .. . + . −2 x 2 . . + .. + 0 0 .. .′′ (x) f 0 . 2 . f . (x ) . . . . . .
  • 75.
    Step 2: Concavity f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . − . − . 0 .. . + . −2 x 2 . . + .. + 0 − . − 0 .. .′′ (x) f 0 . 2 . f . (x ) . . . . . .
  • 76.
    Step 2: Concavity f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . − . − . 0 .. . + . −2 x 2 . . + .. + 0 − . − 0 .. . + + .′′ (x) f 0 . 2 . f . (x ) . . . . . .
  • 77.
    Step 2: Concavity f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . − . − . 0 .. . + . −2 x 2 . . + .. + 0 − . − 0 .. . + + .′′ (x) f . . ⌣ 0 2 . f . (x ) . . . . . .
  • 78.
    Step 2: Concavity f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . − . − . 0 .. . + . −2 x 2 . . + .. + 0 − . − 0 .. . + + .′′ (x) f . . ⌣ 0 . ⌢ 2 . f . (x ) . . . . . .
  • 79.
    Step 2: Concavity f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . − . − . 0 .. . + . −2 x 2 . . + .. + 0 − . − 0 .. . + + .′′ (x) f . . ⌣ 0 . ⌢ 2 . . ⌣ f . (x ) . . . . . .
  • 80.
    Step 2: Concavity f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . − . − . 0 .. . + . −2 x 2 . . + .. + 0 − . − 0 .. . + + .′′ (x) f . . ⌣ 0 . ⌢ 2 . . ⌣ f . (x ) I .P . . . . . .
  • 81.
    Step 2: Concavity f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: − 0 . .. . + . + 1 . 2x 0 . − . − . 0 .. . + . −2 x 2 . . + .. + 0 − . − 0 .. . + + .′′ (x) f . . ⌣ 0 . ⌢ 2 . . ⌣ f . (x ) I .P I .P . . . . . .
  • 82.
    Step 3: Grand Unified Sign Chart . Remember, f(x) = x4 − 4x3 + 10. − 0 . .. − . − 0 + . .. . .′ (x) f ↘ 0 . . ↘ . ↘ 3 ↗ . . . m .′′ onotonicity . + .. + 0 − . − .. . + . + 0+ + f . (x) . . ⌣ 0 . ⌢ 2 . . ⌣ . ⌣ c . oncavity 1. .0 − −. . .6 . 17 f .(x) 0 . 2 . 3 . s . hape I .P I .P . inm . . . . . .
  • 83.
    Step 3: Grand Unified Sign Chart . Remember, f(x) = x4 − 4x3 + 10. − 0 . .. − . − 0 + . .. . .′ (x) f ↘ 0 . . ↘ . ↘ 3 ↗ . . . m .′′ onotonicity . + .. + 0 − . − .. . + . + 0+ + f . (x) . . ⌣ 0 . ⌢ 2 . . ⌣ . ⌣ c . oncavity 1. .0 − −. . .6 . 17 f .(x) . .0 2 . 3 . s . hape I .P I .P . inm . . . . . .
  • 84.
    Step 3: Grand Unified Sign Chart . Remember, f(x) = x4 − 4x3 + 10. − 0 . .. − . − 0 + . .. . .′ (x) f ↘ 0 . . ↘ . ↘ 3 ↗ . . . m .′′ onotonicity . + .. + 0 − . − .. . + . + 0+ + f . (x) . . ⌣ 0 . ⌢ 2 . . ⌣ . ⌣ c . oncavity 1. .0 − −. . .6 . 17 f .(x) . .0 . 2 . 3 . s . hape I .P I .P . inm . . . . . .
  • 85.
    Step 3: Grand Unified Sign Chart . Remember, f(x) = x4 − 4x3 + 10. − 0 . .. − . − 0 + . .. . .′ (x) f ↘ 0 . . ↘ . ↘ 3 ↗ . . . m .′′ onotonicity . + .. + 0 − . − .. . + . + 0+ + f . (x) . . ⌣ 0 . ⌢ 2 . . ⌣ . ⌣ c . oncavity 1. .0 − −. . .6 . 17 f .(x) . .0 . 2 . . . 3 s . hape I .P I .P . inm . . . . . .
  • 86.
    Step 3: Grand Unified Sign Chart . Remember, f(x) = x4 − 4x3 + 10. − 0 . .. − . − 0 + . .. . .′ (x) f ↘ 0 . . ↘ . ↘ 3 ↗ . . . m .′′ onotonicity . + .. + 0 − . − .. . + . + 0+ + f . (x) . . ⌣ 0 . ⌢ 2 . . ⌣ . ⌣ c . oncavity 1. .0 − −. . .6 . 17 f .(x) . .0 . 2 . . . . 3 s . hape I .P I .P . inm . . . . . .
  • 87.
    Step 4: Graph y . .(x) = x4 − 4x3 + 10 f . 0, 10) ( . . . x . . . 2, −6) ( . 3, −17) ( 1. .0 − −. . .6 . 17 f . (x ) . .0 . 2 . . . . 3 s . hape I .P I .P . in m . . . . . .
  • 88.
    Step 4: Graph y . .(x) = x4 − 4x3 + 10 f . 0, 10) ( . . . x . . . 2, −6) ( . 3, −17) ( 1. .0 − −. . .6 . 17 f . (x ) . .0 . 2 . . . . 3 s . hape I .P I .P . in m . . . . . .
  • 89.
    Step 4: Graph y . .(x) = x4 − 4x3 + 10 f . 0, 10) ( . . . x . . . 2, −6) ( . 3, −17) ( 1. .0 − −. . .6 . 17 f . (x ) . .0 . 2 . . . . 3 s . hape I .P I .P . in m . . . . . .
  • 90.
    Step 4: Graph y . .(x) = x4 − 4x3 + 10 f . 0, 10) ( . . . x . . . 2, −6) ( . 3, −17) ( 1. .0 − −. . .6 . 17 f . (x ) . .0 . 2 . . . . 3 s . hape I .P I .P . in m . . . . . .
  • 91.
    Step 4: Graph y . .(x) = x4 − 4x3 + 10 f . 0, 10) ( . . . x . . . 2, −6) ( . 3, −17) ( 1. .0 − −. . .6 . 17 f . (x ) . .0 . 2 . . . . 3 s . hape I .P I .P . in m . . . . . .
  • 92.
    Outline The Procedure Simple examples A cubic function A quartic function More Examples Points of nondifferentiability Horizontal asymptotes Vertical asymptotes Trigonometric and polynomial together Logarithmic . . . . . .
  • 93.
    Example √ Graph f(x) = x + |x| . . . . . .
  • 94.
    Example √ Graph f(x) = x + |x| This function looks strange because of the absolute value. But whenever we become nervous, we can just take cases. . . . . . .
  • 95.
    Step 0: Finding Zeroes √ f(x) = x + |x| First, look at f by itself. We can tell that f(0) = 0 and that f(x) > 0 if x is positive. . . . . . .
  • 96.
    Step 0: Finding Zeroes √ f(x) = x + |x| First, look at f by itself. We can tell that f(0) = 0 and that f(x) > 0 if x is positive. Are there negative numbers which are zeroes for f? . . . . . .
  • 97.
    Step 0: Finding Zeroes √ f(x) = x + |x| First, look at f by itself. We can tell that f(0) = 0 and that f(x) > 0 if x is positive. Are there negative numbers which are zeroes for f? √ x + −x = 0 √ −x = −x −x = x2 x2 + x = 0 The only solutions are x = 0 and x = −1 . . . . . .
  • 98.
    Step 0: Asymptotic behavior √ f(x) = x + |x| lim f(x) = ∞, because both terms tend to ∞. x→∞ . . . . . .
  • 99.
    Step 0: Asymptotic behavior √ f(x) = x + |x| lim f(x) = ∞, because both terms tend to ∞. x→∞ lim f(x) is indeterminate of the form −∞ + ∞. It’s the x→−∞ √ same as lim (−y + y) y→+∞ . . . . . .
  • 100.
    Step 0: Asymptotic behavior √ f(x) = x + |x| lim f(x) = ∞, because both terms tend to ∞. x→∞ lim f(x) is indeterminate of the form −∞ + ∞. It’s the x→−∞ √ same as lim (−y + y) y→+∞ √ √ √ y+y lim (−y + y) = lim ( y − y) · √ y→+∞ y→∞ y+y y − y2 = lim √ = −∞ y→∞ y+y . . . . . .
  • 101.
    Step 1: The derivative √ Remember, f(x) = x + |x|. To find f′ , first assume x > 0. Then d ( √ ) 1 f ′ (x ) = x+ x =1+ √ dx 2 x . . . . . .
  • 102.
    Step 1: The derivative √ Remember, f(x) = x + |x|. To find f′ , first assume x > 0. Then d ( √ ) 1 f ′ (x ) = x+ x =1+ √ dx 2 x Notice f′ (x) > 0 when x > 0 . . . . . .
  • 103.
    Step 1: The derivative √ Remember, f(x) = x + |x|. To find f′ , first assume x > 0. Then d ( √ ) 1 f ′ (x ) = x+ x =1+ √ dx 2 x Notice f′ (x) > 0 when x > 0 lim f′ (x) = ∞ x→0+ . . . . . .
  • 104.
    Step 1: The derivative √ Remember, f(x) = x + |x|. To find f′ , first assume x > 0. Then d ( √ ) 1 f ′ (x ) = x+ x =1+ √ dx 2 x Notice f′ (x) > 0 when x > 0 lim f′ (x) = ∞ x→0+ lim f′ (x) = 1 x→∞ . . . . . .
  • 105.
    Step 1: The derivative √ Remember, f(x) = x + |x|. If x is negative, we have d ( √ ) 1 f′ (x) = x + −x = 1 − √ dx 2 −x √ Again, this looks weird because −x appears to be a negative number. But since x < 0, −x > 0. . . . . . .
  • 106.
    Step 1: The derivative √ Remember, f(x) = x + |x|. If x is negative, we have d ( √ ) 1 f′ (x) = x + −x = 1 − √ dx 2 −x √ Again, this looks weird because −x appears to be a negative number. But since x < 0, −x > 0. Notice lim f′ (x) = −∞ x→0− . . . . . .
  • 107.
    Step 1: The derivative √ Remember, f(x) = x + |x|. If x is negative, we have d ( √ ) 1 f′ (x) = x + −x = 1 − √ dx 2 −x √ Again, this looks weird because −x appears to be a negative number. But since x < 0, −x > 0. Notice lim f′ (x) = −∞ x→0− lim f′ (x) = 1 x→−∞ . . . . . .
  • 108.
    Step 1: Monotonicity Where are the critical points? We see that f′ (x) = 0 when 1 √ 1 1 1 1− √ = 0 =⇒ −x = =⇒ −x = =⇒ x = − 2 −x 2 4 4 . . . . . .
  • 109.
    Step 1: Monotonicity Where are the critical points? We see that f′ (x) = 0 when 1 √ 1 1 1 1− √ = 0 =⇒ −x = =⇒ −x = =⇒ x = − 2 −x 2 4 4 We know f is not differentiable at 0 as well. . . . . . .
  • 110.
    Step 1: Monotonicity Where are the critical points? We see that f′ (x) = 0 when 1 √ 1 1 1 1− √ = 0 =⇒ −x = =⇒ −x = =⇒ x = − 2 −x 2 4 4 We know f is not differentiable at 0 as well. We can’t make a multi-factor sign chart because of the absolute value, but we can test points in between critical points. 0 .. ∓. . ∞ . ′ (x ) f . 1 −4 0 . f .(x) . . . . . .
  • 111.
    Step 1: Monotonicity Where are the critical points? We see that f′ (x) = 0 when 1 √ 1 1 1 1− √ = 0 =⇒ −x = =⇒ −x = =⇒ x = − 2 −x 2 4 4 We know f is not differentiable at 0 as well. We can’t make a multi-factor sign chart because of the absolute value, but we can test points in between critical points. . + 0 .. ∓. . ∞ . ′ (x ) f . 1 −4 0 . f .(x) . . . . . .
  • 112.
    Step 1: Monotonicity Where are the critical points? We see that f′ (x) = 0 when 1 √ 1 1 1 1− √ = 0 =⇒ −x = =⇒ −x = =⇒ x = − 2 −x 2 4 4 We know f is not differentiable at 0 as well. We can’t make a multi-factor sign chart because of the absolute value, but we can test points in between critical points. . + 0 −∓ . .. . . ∞ . ′ (x ) f . 1 −4 0 . f .(x) . . . . . .
  • 113.
    Step 1: Monotonicity Where are the critical points? We see that f′ (x) = 0 when 1 √ 1 1 1 1− √ = 0 =⇒ −x = =⇒ −x = =⇒ x = − 2 −x 2 4 4 We know f is not differentiable at 0 as well. We can’t make a multi-factor sign chart because of the absolute value, but we can test points in between critical points. . + 0 −∓ . .. . . ∞ . + . ′ (x ) f . 1 −4 0 . f .(x) . . . . . .
  • 114.
    Step 1: Monotonicity Where are the critical points? We see that f′ (x) = 0 when 1 √ 1 1 1 1− √ = 0 =⇒ −x = =⇒ −x = =⇒ x = − 2 −x 2 4 4 We know f is not differentiable at 0 as well. We can’t make a multi-factor sign chart because of the absolute value, but we can test points in between critical points. . + 0 −∓ . .. . . ∞ . + . ′ (x ) f ↗ . . 1 −4 0 . f .(x) . . . . . .
  • 115.
    Step 1: Monotonicity Where are the critical points? We see that f′ (x) = 0 when 1 √ 1 1 1 1− √ = 0 =⇒ −x = =⇒ −x = =⇒ x = − 2 −x 2 4 4 We know f is not differentiable at 0 as well. We can’t make a multi-factor sign chart because of the absolute value, but we can test points in between critical points. . + 0 −∓ . .. . . ∞ . + . ′ (x ) f ↗ . −4 ↘ 0 . 1. . f .(x) . . . . . .
  • 116.
    Step 1: Monotonicity Where are the critical points? We see that f′ (x) = 0 when 1 √ 1 1 1 1− √ = 0 =⇒ −x = =⇒ −x = =⇒ x = − 2 −x 2 4 4 We know f is not differentiable at 0 as well. We can’t make a multi-factor sign chart because of the absolute value, but we can test points in between critical points. . + 0 −∓ . .. . . ∞ . + . ′ (x ) f ↗ . −4 ↘ 0 . 1. . ↗ . f .(x) . . . . . .
  • 117.
    Step 1: Monotonicity Where are the critical points? We see that f′ (x) = 0 when 1 √ 1 1 1 1− √ = 0 =⇒ −x = =⇒ −x = =⇒ x = − 2 −x 2 4 4 We know f is not differentiable at 0 as well. We can’t make a multi-factor sign chart because of the absolute value, but we can test points in between critical points. . + 0 −∓ . .. . . ∞ . + . ′ (x ) f ↗ . −4 ↘ 0 . 1. . ↗ . f .(x) . max . . . . . .
  • 118.
    Step 1: Monotonicity Where are the critical points? We see that f′ (x) = 0 when 1 √ 1 1 1 1− √ = 0 =⇒ −x = =⇒ −x = =⇒ x = − 2 −x 2 4 4 We know f is not differentiable at 0 as well. We can’t make a multi-factor sign chart because of the absolute value, but we can test points in between critical points. . + 0 −∓ . .. . . ∞ . + . ′ (x ) f ↗ . −4 ↘ 0 . .1 . . ↗ . f .(x) . max min . . . . . .
  • 119.
    Step 1: Monotonicity Where are the critical points? We see that f′ (x) = 0 when 1 √ 1 1 1 1− √ = 0 =⇒ −x = =⇒ −x = =⇒ x = − 2 −x 2 4 4 We know f is not differentiable at 0 as well. We can’t make a multi-factor sign chart because of the absolute value, but we can test points in between critical points. . + 0 −∓ . .. . . ∞ . + . ′ (x ) f ↗ . −4 ↘ 0 . .1 . . ↗ . f .(x) . max min . . . . . .
  • 120.
    Step 2: Concavity If x > 0, then ( ) ′′ d 1 1 f (x) = 1 + x−1/2 = − x−3/2 dx 2 4 This is negative whenever x > 0. . . . . . .
  • 121.
    Step 2: Concavity If x > 0, then ( ) ′′ d 1 1 f (x) = 1 + x−1/2 = − x−3/2 dx 2 4 This is negative whenever x > 0. If x < 0, then ( ) ′′ d 1 −1/2 1 f (x) = 1 − (−x) = − (−x)−3/2 dx 2 4 which is also always negative for negative x. . . . . . .
  • 122.
    Step 2: Concavity If x > 0, then ( ) ′′ d 1 1 f (x) = 1 + x−1/2 = − x−3/2 dx 2 4 This is negative whenever x > 0. If x < 0, then ( ) ′′ d 1 −1/2 1 f (x) = 1 − (−x) = − (−x)−3/2 dx 2 4 which is also always negative for negative x. 1 In other words, f′′ (x) = − |x|−3/2 . 4 . . . . . .
  • 123.
    Step 2: Concavity If x > 0, then ( ) ′′ d 1 1 f (x) = 1 + x−1/2 = − x−3/2 dx 2 4 This is negative whenever x > 0. If x < 0, then ( ) ′′ d 1 −1/2 1 f (x) = 1 − (−x) = − (−x)−3/2 dx 2 4 which is also always negative for negative x. 1 In other words, f′′ (x) = − |x|−3/2 . 4 Here is the sign chart: − . − −. . ∞ − . − f′′ . . (x ) . ⌢ . ⌢ . 0 . f .(x) . . . . . .
  • 124.
    Step 3: Synthesis Now we can put these things together. √ f(x) = x + |x| ′ . 1 + . + 0 −∓ . .. . . ∞ . + . 1 (x) +. f ↗ . ↗ . −4 ↘ 0 . 1. . ↗ . ↗m . .′′ onotonicity − . ∞ − . − − . . . − ∞ − − . − . ∞ (x) − . f . ⌢ . ⌢ . . ⌢ 0 . ⌢ . . oncavity ⌢c − . ∞ 0 .. .1 4 0 .. . ∞ x) + .(f . − . 1 − . .41 0 . s . hape . zero . max min . . . . . .
  • 125.
    Step 3: Synthesis Now we can put these things together. √ f(x) = x + |x| ′ . 1 + . + 0 −∓ . .. . . ∞ . + . 1 (x) +. f ↗ . ↗ . −4 ↘ 0 . 1. . ↗ . ↗m . .′′ onotonicity − . ∞ − . − − . . . − ∞ − − . − . ∞ (x) − . f . ⌢ . ⌢ . . ⌢ 0 . ⌢ . . oncavity ⌢c − . ∞ 0 .. .1 4 0 .. . ∞ x) + .(f . . . 1 − − . .41 0 . s . hape . zero . max min . . . . . .
  • 126.
    Step 3: Synthesis Now we can put these things together. √ f(x) = x + |x| ′ . 1 + . + 0 −∓ . .. . . ∞ . + . 1 (x) +. f ↗ . ↗ . −4 ↘ 0 . 1. . ↗ . ↗m . .′′ onotonicity − . ∞ − . − − . . . − ∞ − − . − . ∞ (x) − . f . ⌢ . ⌢ . . ⌢ 0 . ⌢ . . oncavity ⌢c − . ∞ 0 .. .1 4 0 .. . ∞ x) + .(f . . . 1 − . − . .41 0 . s . hape . zero . max min . . . . . .
  • 127.
    Step 3: Synthesis Now we can put these things together. √ f(x) = x + |x| ′ . 1 + . + 0 −∓ . .. . . ∞ . + . 1 (x) +. f ↗ . ↗ . −4 ↘ 0 . 1. . ↗ . ↗m . .′′ onotonicity − . ∞ − . − − . . . − ∞ − − . − . ∞ (x) − . f . ⌢ . ⌢ . . ⌢ 0 . ⌢ . . oncavity ⌢c − . ∞ 0 .. .1 4 0 .. . ∞ x) + .(f . . . 1 − . − . .41 . .0 s . hape . zero . max min . . . . . .
  • 128.
    Step 3: Synthesis Now we can put these things together. √ f(x) = x + |x| ′ . 1 + . + 0 −∓ . .. . . ∞ . + . 1 (x) +. f ↗ . ↗ . −4 ↘ 0 . 1. . ↗ . ↗m . .′′ onotonicity − . ∞ − . − − . . . − ∞ − − . − . ∞ (x) − . f . ⌢ . ⌢ . . ⌢ 0 . ⌢ . . oncavity ⌢c − . ∞ 0 .. .1 4 0 .. . ∞ x) + .(f . . . 1 − . − . .41 . .0 . s . hape . zero . max min . . . . . .
  • 129.
    Step 3: Synthesis Now we can put these things together. √ f(x) = x + |x| ′ . 1 + . + 0 −∓ . .. . . ∞ . + . 1 (x) +. f ↗ . ↗ . −4 ↘ 0 . 1. . ↗ . ↗m . .′′ onotonicity − . ∞ − . − − . . . − ∞ − − . − . ∞ (x) − . f . ⌢ . ⌢ . . ⌢ 0 . ⌢ . . oncavity ⌢c − . ∞ 0 .. .1 4 0 .. . ∞ x) + .(f . . . 1 − . − . .41 . .0 . s . hape . zero . max min . . . . . .
  • 130.
    Graph √ f(x) = x + |x| f .(x) .−1, 1) ( 4 4 . −1, 0) ( . . . x . . 0, 0 ) ( − 0 . ∞ .. .1 4 0 .. . ∞ .(x) + f . . − . 1 . − . .41 . . 0 . s . hape . zero . max min . . . . . .
  • 131.
    Graph √ f(x) = x + |x| f .(x) .−1, 1) ( 4 4 . −1, 0) ( . . . x . . 0, 0 ) ( − 0 . ∞ .. .1 4 0 .. . ∞ .(x) + f . . − . 1 . − . .41 . . 0 . s . hape . zero . max min . . . . . .
  • 132.
    Graph √ f(x) = x + |x| f .(x) .−1, 1) ( 4 4 . −1, 0) ( . . . x . . 0, 0 ) ( − 0 . ∞ .. .1 4 0 .. . ∞ .(x) + f . . − . 1 . − . .41 . . 0 . s . hape . zero . max min . . . . . .
  • 133.
    Graph √ f(x) = x + |x| f .(x) .−1, 1) ( 4 4 . −1, 0) ( . . . x . . 0, 0 ) ( − 0 . ∞ .. .1 4 0 .. . ∞ .(x) + f . . − . 1 . − . .41 . . 0 . s . hape . zero . max min . . . . . .
  • 134.
    Graph √ f(x) = x + |x| f .(x) .−1, 1) ( 4 4 . −1, 0) ( . . . x . . 0, 0 ) ( − 0 . ∞ .. .1 4 0 .. . ∞ .(x) + f . . − . 1 . − . .41 . . 0 . s . hape . zero . max min . . . . . .
  • 135.
    Example 2 Graph f(x) = xe−x . . . . . .
  • 136.
    Example 2 Graph f(x) = xe−x Before taking derivatives, we notice that f is odd, that f(0) = 0, and lim f(x) = 0 x→∞ . . . . . .
  • 137.
    Step 1: Monotonicity 2 If f(x) = xe−x , then 2 2 ( ) 2 f′ (x) = 1 · e−x + xe−x (−2x) = 1 − 2x2 e−x ( √ )( √ ) 2 = 1 − 2x 1 + 2x e−x 2 The factor e−x is always positive so it doesn’t figure into the sign of f′ (x). So our sign chart looks like this: . + .. + 0 . − . √ √. . − 1 2x . 1/2 − . 0 .. . + . + √ √ 1 . + 2x − . 1/2 ′ − . 0 .. . + 0 . − . f . (x) √ √. ↘ . − 1/2 ↗ . ↘ . f . (x ) . . . . 1/2 max min . . . . . .
  • 138.
    Step 2: Concavity 2 If f′ (x) = (1 − 2x2 )e−x , we know 2 2 ( ) 2 f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x 2 = 2x(2x2 − 3)e−x − . − . 0 .. . + . + .x 2 0 . − . − . − . 0 . . + √ √ √. . 2x − 3 . 3/2 − . 0 .. . + . + . + √ √ √ . 2x + 3 − 3/2 . − . − .. . + 0 + 0 .. − . − .. 0 . + + .′′ (x) f . ⌢ √ . ⌣ ⌢ √3 . . ⌣ − 3/2 . 0 . f .(x) . . . . /2 IP IP IP . . . . . .
  • 139.
    Step 3: Synthesis 2 f(x) = xe−x − . − 0 + . .. . + . − − .′ (x) f √ . . √. . 0 . ↘ . ↘ 1/2 . .. − ↗ ↗ ↘ . . 1/2. ↘ . m . onotonic − . − .. . + 0+ + 0 − . + .. . − − 0 . − .. . + + .′′ (x) f . ⌢ √. ⌣ ⌣ . . . . √3 . − 3/2 . 0 ⌢ ⌢ . /2 ⌣ c . oncavity √ √ − 2e3 . √1 . 3 − 2e .√1 . 2e3 3 f .(x) . . 0 .. 2e . √. . √ . √ √ . − . . . . 3/2− 1/2 . . . . 0 . . 1/2 . 3/2 . . s . hape IP min IP max IP . . . . . .
  • 140.
    Step 4: Graph f .(x) (√ )( . 1/2, √1 √ √ ) 2 2e . 3/2, 3 .(x) = xe−x f . 2e3 . . x . . 0, 0 ) ( ( . √ √ ) . . − 3/2, − 2e3 ( √ 3 ) . − 1/2, − √1 2e √ √ − 2e3 √1 . 3 − . 2e .√1 . 2e33 f .(x) . . 0 .. 2e . √ √ √. √. . − .. . . 3/2 1/2 . . . . . .1/2.. 3/2 − . 0 . s . hape IP min IP max IP . . . . . .
  • 141.
    Example 1 1 Graph f(x) = + 2 x x . . . . . .
  • 142.
    Step 0 Find when f is positive, negative, zero, not defined. . . . . . .
  • 143.
    Step 0 Find when f is positive, negative, zero, not defined. We need to factor f: 1 1 x+1 f(x) = + 2 = . x x x2 This means f is 0 at −1 and has trouble at 0. In fact, x+1 lim = ∞, x→0 x2 so x = 0 is a vertical asymptote of the graph. . . . . . .
  • 144.
    Step 0 Find when f is positive, negative, zero, not defined. We need to factor f: 1 1 x+1 f(x) = + 2 = . x x x2 This means f is 0 at −1 and has trouble at 0. In fact, x+1 lim = ∞, x→0 x2 so x = 0 is a vertical asymptote of the graph. We can make a sign chart as follows: − . 0 .. . . + x . +1 − . 1 . + 0 .. . + .2 x 0 . − . .. . 0 + ∞ .. . + f . (x ) − . 1 0 . . . . . . .
  • 145.
    For horizontal asymptotes, notice that x+1 lim = 0, x→∞ x2 so y = 0 is a horizontal asymptote of the graph. The same is true at −∞. . . . . . .
  • 146.
  • 147.
    Step 1: Monotonicity We have 1 2 x+2 f ′ (x ) = − 2 − 3 =− 3 . x x x The critical points are x = −2 and x = 0. We have the following sign chart: . + 0 .. . − . − . (x + 2) − . 2 − . 0 .. . + .3 x 0 . . . . . . .
  • 148.
    Step 1: Monotonicity We have 1 2 x+2 f ′ (x ) = − 2 − 3 =− 3 . x x x The critical points are x = −2 and x = 0. We have the following sign chart: . + 0 .. . − . − . (x + 2) − . 2 − . 0 .. . + .3 x 0 . − . 0 .. . + ∞ .. − . . ′ (x ) f − . 2 0 . f .(x) . . . . . .
  • 149.
    Step 1: Monotonicity We have 1 2 x+2 f ′ (x ) = − 2 − 3 =− 3 . x x x The critical points are x = −2 and x = 0. We have the following sign chart: . + 0 .. . − . − . (x + 2) − . 2 − . 0 .. . + .3 x 0 . − .. . 0 . + ∞ .. − . . ′ (x ) f . − ↘ . 2 0 . f .(x) . . . . . .
  • 150.
    Step 1: Monotonicity We have 1 2 x+2 f ′ (x ) = − 2 − 3 =− 3 . x x x The critical points are x = −2 and x = 0. We have the following sign chart: . + 0 .. . − . − . (x + 2) − . 2 − . 0 .. . + .3 x 0 . − .. . 0 . + ∞ .. − . . ′ (x ) f . − ↘ . 2 ↗ . 0 . f .(x) . . . . . .
  • 151.
    Step 1: Monotonicity We have 1 2 x+2 f ′ (x ) = − 2 − 3 =− 3 . x x x The critical points are x = −2 and x = 0. We have the following sign chart: . + 0 .. . − . − . (x + 2) − . 2 − . .. . 0 + .3 x 0 . − .. . 0 . + ∞ − .. . . ′ (x ) f . − ↘ . 2 ↗ . 0 ↘ . . f .(x) . . . . . .
  • 152.
    Step 1: Monotonicity We have 1 2 x+2 f ′ (x ) = − 2 − 3 =− 3 . x x x The critical points are x = −2 and x = 0. We have the following sign chart: . + 0 .. . − . − . (x + 2) − . 2 − . .. . 0 + .3 x 0 . − .. . 0 . + ∞ − .. . . ′ (x ) f . − ↘ . 2 ↗ . 0 ↘ . . f .(x) m . in . . . . . .
  • 153.
    Step 1: Monotonicity We have 1 2 x+2 f ′ (x ) = − 2 − 3 =− 3 . x x x The critical points are x = −2 and x = 0. We have the following sign chart: . + 0 .. . − . − . (x + 2) − . 2 − . .. . 0 + .3 x 0 . − .. . 0 . + ∞ − .. . . ′ (x ) f . − ↘ . 2 ↗ . 0 ↘ . . f .(x) m . in V .A . . . . . .
  • 154.
    Step 2: Concavity . . . . . .
  • 155.
    Step 2: Concavity We have 2 6 2 (x + 3 ) f′′ (x) = + = . x 3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . 0 .. . . + . x + 3) ( − . 3 . + 0 .. . + .4 x 0 . 0 .. ∞ .. .′ (x) f − . 3 0 . f .(x) . . . . . .
  • 156.
    Step 2: Concavity We have 2 6 2 (x + 3 ) f′′ (x) = + = . x 3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . 0 .. . . + . x + 3) ( − . 3 . + 0 .. . + .4 x 0 . − . − .. 0 ∞ .. .′ (x) f − . 3 0 . f .(x) . . . . . .
  • 157.
    Step 2: Concavity We have 2 6 2 (x + 3 ) f′′ (x) = + = . x 3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . 0 .. . . + . x + 3) ( − . 3 . + 0 .. . + .4 x 0 . − . − .. 0 . + + ∞ .. .′ (x) f − . 3 0 . f .(x) . . . . . .
  • 158.
    Step 2: Concavity We have 2 6 2 (x + 3 ) f′′ (x) = + = . x 3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . 0 .. . . + . x + 3) ( − . 3 . + .. . 0 + .4 x 0 . − . − .. 0 . + + .. . + ∞ + .′ (x) f − . 3 0 . f .(x) . . . . . .
  • 159.
    Step 2: Concavity We have 2 6 2 (x + 3 ) f′′ (x) = + = . x 3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . 0 .. . . + . x + 3) ( − . 3 . + .. . 0 + .4 x 0 . − . − .. 0 . + + .. . + ∞ + .′ (x) f . ⌢ . 3 − 0 . f .(x) . . . . . .
  • 160.
    Step 2: Concavity We have 2 6 2 (x + 3 ) f′′ (x) = + = . x 3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . 0 .. . . + . x + 3) ( − . 3 . + .. . 0 + .4 x 0 . − . − .. 0 . + + .. . + ∞ + .′ (x) f . ⌢ . 3 − . ⌣ 0 . f .(x) . . . . . .
  • 161.
    Step 2: Concavity We have 2 6 2 (x + 3 ) f′′ (x) = + = . x 3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . 0 .. . . + . x + 3) ( − . 3 . + .. . 0 + .4 x 0 . − . − .. 0 . + + .. . + ∞ + .′ (x) f . ⌢ . 3 − . ⌣ . . 0 ⌣ f .(x) . . . . . .
  • 162.
    Step 2: Concavity We have 2 6 2 (x + 3 ) f′′ (x) = + = . x 3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . 0 .. . . + . x + 3) ( − . 3 . + .. . 0 + .4 x 0 . − . − .. 0 . + + .. . + ∞ + .′ (x) f . ⌢ . 3 − . ⌣ . . 0 ⌣ f .(x) I .P . . . . . .
  • 163.
    Step 2: Concavity We have 2 6 2 (x + 3 ) f′′ (x) = + = . x 3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . 0 .. . . + . x + 3) ( − . 3 . + .. . 0 + .4 x 0 . − . − .. 0 . + + .. . + ∞ + .′ (x) f . ⌢ . 3 − . ⌣ . . 0 ⌣ f .(x) I .P V .A . . . . . .
  • 164.
    Step 3: Synthesis . − .. . 0 . + ∞ − .. . .′ f . − ↘ . 2 ↗ . 0 ↘ . . m . onotonicity − . − .. 0 . + + ∞ − .. . − .′′ f . ⌢ . 3 − . ⌣ . . 0 ⌣ c . oncavity 0 . − . 2/9 − . 1/4 0 .. ∞ .. 0f .. . . − . ∞ . . 3 − − − . 2 . 1 . − + 0 . . + ∞s . . hape of f . . . . . .
  • 165.
    Step 3: Synthesis . − .. . 0 . + ∞ − .. . .′ f . − ↘ . 2 ↗ . 0 ↘ . . m . onotonicity − . − .. 0 . + + ∞ − .. . − .′′ f . ⌢ . 3 − . ⌣ . . 0 ⌣ c . oncavity 0 . − . 2/9 − . 1/4 0 .. ∞ .. 0f .. . . − . ∞ . . 3 − − − . 2 . 1 . − + 0 . . + ∞s . . hape of f H . A . . . . . .
  • 166.
    Step 3: Synthesis . − .. . 0 . + ∞ − .. . .′ f . − ↘ . 2 ↗ . 0 ↘ . . m . onotonicity − . − .. 0 . + + ∞ − .. . − .′′ f . ⌢ . 3 − . ⌣ . . 0 ⌣ c . oncavity 0 . − . 2/9 − . 1/4 0 .. ∞ .. 0f .. . . − . ∞ . . 3 − − − . 2 . 1 . − + 0 . . + ∞s . . hape of f . A . H . . . . . .
  • 167.
    Step 3: Synthesis . − .. . 0 . + ∞ − .. . .′ f . − ↘ . 2 ↗ . 0 ↘ . . m . onotonicity − . − .. 0 . + + ∞ − .. . − .′′ f . ⌢ . 3 − . ⌣ . . 0 ⌣ c . oncavity 0 . − . 2/9 − . 1/4 0 .. ∞ .. 0f .. . . − . ∞ . . 3 − − − . 2 . 1 . − + 0 . . + ∞s . . hape of f . A . H I .P . . . . . .
  • 168.
    Step 3: Synthesis . − .. . 0 . + ∞ − .. . .′ f . − ↘ . 2 ↗ . 0 ↘ . . m . onotonicity − . − .. 0 . + + ∞ − .. . − .′′ f . ⌢ . 3 − . ⌣ . . 0 ⌣ c . oncavity 0 . − . 2/9 − . 1/4 0 .. ∞ .. 0f .. . . − . ∞ . . 3 − − − . 2 . 1 . − + 0 . . + ∞s . . hape of f . A . H .P . I . . . . . .
  • 169.
    Step 3: Synthesis . − .. . 0 . + ∞ − .. . .′ f . − ↘ . 2 ↗ . 0 ↘ . . m . onotonicity − . − .. 0 . + + ∞ − .. . − .′′ f . ⌢ . 3 − . ⌣ . . 0 ⌣ c . oncavity 0 . − . 2/9 − . 1/4 0 .. ∞ .. 0f .. . . − . ∞ . . 3 − − − . 2 . 1 . − + 0 . . + ∞s . . hape of f . A . H .P . . in I m . . . . . .
  • 170.
    Step 3: Synthesis . − .. . 0 . + ∞ − .. . .′ f . − ↘ . 2 ↗ . 0 ↘ . . m . onotonicity − . − .. 0 . + + ∞ − .. . − .′′ f . ⌢ . 3 − . ⌣ . . 0 ⌣ c . oncavity 0 . − . 2/9 − . 1/4 0 .. ∞ .. 0f .. . . − . ∞ . . 3 − − − . 2 . 1 . − + 0 . . + ∞s . . hape of f . A . H .P . . in . I m . . . . . .
  • 171.
    Step 3: Synthesis . − .. . 0 . + ∞ − .. . .′ f . − ↘ . 2 ↗ . 0 ↘ . . m . onotonicity − . − .. 0 . + + ∞ − .. . − .′′ f . ⌢ . 3 − . ⌣ . . 0 ⌣ c . oncavity 0 . − . 2/9 − . 1/4 0 .. ∞ .. 0f .. . . − . ∞ . . 3 − − − . 2 . 1 . − + 0 . . + ∞s . . hape of f . A . H .P . . in . I m 0 . . . . . . .
  • 172.
    Step 3: Synthesis . − .. . 0 . + ∞ − .. . .′ f . − ↘ . 2 ↗ . 0 ↘ . . m . onotonicity − . − .. 0 . + + ∞ − .. . − .′′ f . ⌢ . 3 − . ⌣ . . 0 ⌣ c . oncavity 0 . − . 2/9 − . 1/4 0 .. ∞ .. 0f .. . . − . ∞ . . 3 − − − . 2 . 1 . − + 0 . . + ∞s . . hape of f . A . H .P . . in . I m 0 . . . . . . . .
  • 173.
    Step 3: Synthesis . − .. . 0 . + ∞ − .. . .′ f . − ↘ . 2 ↗ . 0 ↘ . . m . onotonicity − . − .. 0 . + + ∞ − .. . − .′′ f . ⌢ . 3 − . ⌣ . . 0 ⌣ c . oncavity 0 . − . 2/9 − . 1/4 0 .. ∞ .. 0f .. . . − . ∞ . . 3 − − − . 2 . 1 . − + . 0 . + ∞s . . hape of f . A . H .P . . in . I m 0 . .A . V . . . . . .
  • 174.
    Step 3: Synthesis . − .. . 0 . + ∞ − .. . .′ f . − ↘ . 2 ↗ . 0 ↘ . . m . onotonicity − . − .. 0 . + + ∞ − .. . − .′′ f . ⌢ . 3 − . ⌣ . . 0 ⌣ c . oncavity 0 . − . 2/9 − . 1/4 0 .. ∞ .. 0f .. . . − . ∞ . . 3 − − − . 2 . 1 . − + . 0 . + ∞s . . hape of f . A . H .P . . in . I m 0 . .A . . V . . . . . .
  • 175.
    Step 3: Synthesis . − .. . 0 . + ∞ − .. . .′ f . − ↘ . 2 ↗ . 0 ↘ . . m . onotonicity − . − .. 0 . + + ∞ − .. . − .′′ f . ⌢ . 3 − . ⌣ . . 0 ⌣ c . oncavity 0 . − . 2/9 − . 1/4 0 .. ∞ .. 0f .. . . − . ∞ . . 3 − − − . 2 . 1 . − + . 0 . + ∞s . . hape of f . A . H .P . . in . I m 0 . .A . . A . V H . . . . . .
  • 176.
    Step 4: Graph y . . x . . . . −3, −2/9) . −2, −1/4) ( ( . . . . . .
  • 177.
    Problem Graph f(x) =cos x − x . . . . . .
  • 178.
    Problem Graph f(x) =cos x − x y . . . . . . . .
  • 179.
    Problem Graph f(x) =x ln x2 . . . . . .
  • 180.
    Problem Graph f(x) =x ln x2 y . . x . . . . . . .