LIFTING PRACTICES FOR
ENGINEER
. S T U D E N T M A N U A L .
Prepared by : Mohsen Abozaid
TABLE OF CONTENTS
1. Introduction 3
2. Duties and Responsibilities (Summarized) 4
3. Safety Awareness
3.1. General 5
3.2. Safety System 5
3.3. Personal Protective Equipment 5
3.4. Lifting Hazards 6
3.5. Electrocution Hazard 8
3.6. Overload and Maintenance Hazards 8
4. Hand Signals
4.1. Hand or Radio Signal Policy 9
4.2. Use of Standard Hand Signals 9
5. Types of Hitches 13
6. Wire Rope Slings 14
7. Chain Slings 23
8. Synthetic Flat Webbing 24
9. Synthetic Round Slings 33
10. Shackles 37
11. Plate Clamps 41
12. Hooks 45
13. Eyebolts 48
14. Turnbuckles 51
15. Lifting Beam 52
16. Beam Clamp 54
17. Lifting Appliance
17.1. Hand-Operated Chain Block 57
17.2. Chain Lever Hoist 61
17.3. Wire Rope Grip/Pull Lifting Machine 64
17.4. Familiarization of Crane Operation:
17.4.1. Basic Crane Configuration 66
17.4.2. Basic Crane Function 66
17.5. Familiarization of Crane Types:
17.5.1. Rough Terrain 67
17.5.2. Tower crane 67
17.5.3. Crawler Crane 68
17.5.4. Offshore Crane 68
TABLE OF CONTENTS
18. Load
18.1. Standard Signs Identification 69
18.2. Container/Cargo Boxes 70
18.3. Fuel/Chemical Tanks 70
18.4. Gas Cylinder Rack 71
18.5. Man Baskets 71
18.6. Common Loads
18.6.1. Concrete and Muck Skips 72
18.6.2. Scaffold Tubes 72
18.6.3. Palletized Loads 72
18.6.4. Beams 72
18.6.5. Stillages 73
18.6.6. Rubbish Skips 73
18.6.7. Pipes 73
18.6.8. Mesh 74
18.6.9. Pre Fabricated Rebar Assemblies 74
18.6.10. ISO Containers and Portable Offices 74
18.7. Centre of Gravity 75
19. Table/Chart
19.1. Shackle Angular Loading Capacity 76
19.2. Conversion Table 77
19.3. Formula Volume of Common Shapes 78
19.4. Approximate Density of Common Materials 79
20. Calculation
20.1. Example of Calculating of Sling Loading No. 1 80
20.2. Example of Calculating of Sling Loading No. 2 81
20.3. Sling Angles 82
21. Glossary 83
22. Lifting Plan Preparation
23 Lifting Law.
1. INTRODUCTION
Knowledge of the equipment and materials with which we work is one of the most
important factors in accident prevention. Each piece of equipment and material has
been designed and developed to serve a specific purpose and knowledge of what it
can and cannot do, not only improves efficiency but also eliminates hazards.
Owing to the many variations in rigging practices and the different ways in which rigging is
used, recommendations must, of necessity, be framed in general terms. The
recommendations can only be advisory in nature and are intended to complement
relevant regulations and manufacturers’ requirements which must be observed.
The rigger must apply his or her intelligence, common sense, and experience in
anticipating what will happen when the load is moved. This thought process must
take place before the work is started. In order to ensure the design of a safe and
efficient system, the rigger must answer such question as:
1. What is to be done with load?
2. What will be the travel path of the load to reach the desired location?
3. How will the load be set down at the desired location?
4. How can the hookup be made?
5. What tools are needed to perform the desired task?
6. What other factors are involved (weather, electrical wires, sloping grades, visibility)?
7. Do the tools have the capacity to handle the loads and forces involved?
8. Are additional personnel needed to control the load safely during the Lifting
process?
Four Basic Rules of Rigging
1. Know the Weight
2. Know the Capacity
3. Retain the Load
4. Control the Load
Hoist line
Hook Block
Sling
Rigging
Shackle
Eyebolt
Load
2. RIGGERS
DUTIES AND RESPONSIBILITIES
(SUMMARIZED)
01 Observe all Safety
Pre-cautions
02 Check the load to
be lifted
03 Check the working
area
 Ensure you have the correct PPE to carry out your job on site.
 Observe All Safety Warning Signs and any Emergency
Stop Signals from anyone
 Ensure that you aware of Fire fighting Equipment and
 First Aid Procedures (Emergency Contact number for
Qatar is 999)
 Find the weight and Centre of Gravity (COG)
 Ensure that the hook is directly above the centre of gravity of
the load prior to lifting, NO SIDE LOADING
 Identify the type of load, and locate the maximum radius.
 Identify the hazards (Power Lines, People, other Equipments
and ground conditions.
04 Inspect Rigging
Gears and Lifting
Equipment
05 Attaching and
Detaching Lifting
Equipment
06 Communication
between the Crane
Operator and
Rigger
07 Secure and
Maintain Lifting
Equipment
 Ensure that you carry out a Pre Use Check on Equipment to be
used.
 Ensure that the equipment used has a valid Test
Certificate and correct colour code.
 Always refer to the correct rigging information chart
 Identify the type of Hitch to be used (Choker, Vertical or
Basket)
 Connect the load ensuring that the sling angle is appropriate
to the capacity of the slings used.
 Ensure that You and Crane Operator understand the
correct standard signal being used.
 If you can not see the crane operator when carrying out lifts.
Ensure that other means of communication are in place
(Radio’s and the Correct procedure for use)
 After using any lifting equipment, Ensure that it is Cleaned
and Returned in a Serviceable condition and Stored correctly.
08 Reporting  Always ensure that you report anything that could be
considered a Danger, Either with equipment on your pre-use
check or by anything you have seen on your working site.
 Any defects found on any lifting equipment after use are to be
reported and not to be used until certification. To ensure the
equipment is safe to be used by a competent person.
3.SAFETY AWARENESS
3.1. GENERAL:
 Safe lifting and rigging often needs to be carried out
at a height where danger from falling is greater than
normal.
3.2. SAFETY SYSTEMS:
 A safety system could include either one or a
combination of the following devices:
 Anchors and Inserts
 Ropes and Slings
 Lanyards and Shock absorbers Inertia reels
(retractable lifelines)
 Tensioning devices
 Harnesses and Belts Fig. 1
 Safety nets Fig. 2
 Barricades or Guardrails Fig. 3
Fig. 1 Fig. 2 Fig. 3
3.3. PERSONAL PROTECTIVE EQUIPMENT (PPE)
 Personal protective equipment includes the following:
 Hard hat and safety shoes or boots to approved standard Fig. 4 & 5
 Close-fitting overalls or clothes and close-fitting leather gloves. Fig. 6 & 7
 Safety reflective vest. Fig. 10
 Ear and eye protection. Fig. 8 & 9
Fig. 4
Safety Shoes
Fig. 5
Safety Helmet
Fig. 6
Safety Overall
Fig. 7
Leather Gloves
Fig. 8
Ear and Eye Protection
Fig. 9
Eye Goggle
Fig. 10
Safety Reflective Vest
3. SAFETY AWARENESS
3.4. LIFTING HAZARDS:
 Be aware of the Wind Speed and direction
 The maximum wind capacity is 20 knots
(QP regulations Revision 4, state 25 knots or 12.5m/sec)
However, values set by individual crane manufactures. If
Lesser, are to be used.
 If the wind is above the recommended speed, then the
rigging and crane operations will Not Be allowed to
continue.
 Be aware that for relatively large, light loads, there is a risk
that the load will be blown about by the wind. (see Fig. 11)
 Ensure all hands are free of lifting tackle and stand clear before
the load strain is taken.
 Stay back when slings are pulled out from under loads.
(see Fig. 12)
 Ensure that NO load is to be lifted where the weight is not
stated or unknown. (see Fig. 13)
 Observe & note other activities within the crane’s operating
area to avoid the development of any unforeseen hazards.
 Check that the area around the load to be lifted is clear and
that the load is not attached to the floor, transportation
cradle or adjacent equipment.
(see Fig. 14)
 Ensure taglines are always attached to loads that are likely
to swing, to control the load. (see Fig. 15)
 Check slings are in good condition and adequate for load to
be lifted.
 Check for clear work area.
 Ensure the load is equally distributed.
 Provide packing to prevent sling damage.
 The load should be placed on timber dunnage. (see Fig. 15)
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
3. SAFETY AWARENESS
3.4. LIFTING HAZARDS: (cont.)
During the Lift
 The load can now be lifted and moved to its landing area, while in
the air, avoid:
● Where possible, passing over personnel working on the site
● The public
● Power lines
● Projecting scaffolding
● Air space violation
Landing the Load
 The load should be landed gently to ensure that it is not damaged and
that the crane does not receive any shock loading.
 Before landing the load, check that:
 The landing area will take the weight of the load
 There is sufficient space for the load
 There are strips of timber or similar on which to land this load so
that the slings can be easily removed by hand.
 The Rigger must ensure that he is in a place of safety when receiving
the load, ensuring that he cannot be crushed between the load and a
fixed object or pushed over an open edge.
After the Lift
 Only authorized Riggers are to detach the slings from the load.
 Take care with bundles of tubes and similar items as they can collapse
when landed and pipes can roll, so make sure suitable chocks are
used to prevent this from happening.
 The legs of the sling should now be hooked back onto the master link,
shackle etc on the crane hook, or removed and stored properly.
3.SAFETY AWARENESS
3.5. ELECTROCUTION HAZARDS:
 If a Rigger has to work near Power Lines, he must ensure that
all safety measures are taken and that safety procedures are in
place.
 Clearly indicate to the crane operator where the load has to be
moved / placed and, where possible the Rigger should follow
each load to its destination.
 A rigging component or a wire rope that has been contacted
by an electric arc must be removed until certified safe for
continue use by a competent person.
 The machine is not insulated.
 Accident electrocutions are amongst the most frequently
repeated crane accidents.
 Most of these are caused when the boom contacts or
approaches too close to over head power lines.
 The fatality rate is high, particularly among riggers guiding the
load.
 While the danger is greater from high voltage transmission
lines, where flash over can occur without actual contact. Fatal
accident have resulted from contact with 440 volts and 220
volts service lines.
 The safe procedure is to request the local electrical authority
to cut off the power. If for any reason this is not possible or
practical, and it is necessary for cranes to work close to hot
power lines, then all safety precautions are to be set in place.
 Crane operating near high voltage power lines for guide lines,
follow the Manufacturers table
Fig. 16
3.6. OVER LOAD & FOR MAINTENANCE HAZARDS:
 Be familiar with the lifting capabilities of the crane.
 Be aware of any obstructions within the crane radius and
working area.
 No personnel are allowed below the load whilst lifting is in
progress
Fig. 17
4. HAND SIGNALS
4.1. HAND OR RADIO SIGNAL POLICY:
4.1.1. Ensure that both the Rigger and Crane Operator are familiar with the
Method of Signaling to be used.
4.1.2. Always use clear and distinct signals (either by Hand or by Radio) to
control lifting operations.
4.1.3. If radios are chosen, then the following method of use must be followed.
All instructions must be repeated continuously, for example “LOWER, LOWER,
LOWER….” until the movement is complete. If the instructions stop getting
through to the crane operator, he should immediately bring the load to a HALT.
This will guard against failure of the radio system.
4.1.4. In poor light conditions ALL hand signal shall be exaggerated
4.1.5. Clearly indicate to the Crane Operator where the load has to be moved /
placed and, where possible, he should follow each load to its destination
4.1.6. When lifting a load. Stop the load just clear of the ground to check
security and balance of the load, and check the proper function of the crane’s
hoist brakes.
4.1.7. Stop the lifting operation if anything out of the ordinary occurs and check
that it is safe to continue the operation.
4.1.8. When working at night, a reflective orange glove is useful for making
hand signals more visible.
4.2. ALWAYS USE THE STANDARD HAND SIGNALS:
Fig. 1 HOIST. With forearm vertical,
forefinger pointing up, move hand in
small horizontal circle
Fig. 2 LOWER. With arm extended
downward, forefinger pointing down,
move hand in small horizontal circle
4. HAND SIGNALS
4.2. ALWAYS USE THE STANDARD HAND SIGNALS:
Fig. 3 USE MAIN HOIST. Tap fist on
head; then use regular signals
Fig. 4 USE WHIPLINE (Auxiliary
Hoist). Tap elbow with one hand ;
then use regular signals
Fig. 5 RAISE BOOM. Arm extended,
fingers closed, thumb pointing upward.
Fig. 6 LOWER BOOM. Arm extended,
fingers closed, thumb pointing downward.
Fig. 7 MOVE SLOWLY. Use one hand to give
any motion signal and place other hand
motionless in front of hand giving the motion
signal. (Hoist slowly shown as example)
Fig. 8 RAISE THE BOOM AND LOWER
THE LOAD. With arm extended, thumb
pointing up, flex fingers in and out as
long as load movement is desired
4. HAND SIGNALS
4.2. ALWAYS USE THE STANDARD HAND SIGNALS: (cont.)
Fig. 9 LOWER THE BOOM AND RAISE THE
LOAD. With arm extended, thumb
pointing down, flex fingers in and out as
long as load movement is desired
Fig. 10 SWING. Arm extended, pointing
the direction of swing of boom.
Fig. 11 STOP. Arm extended, palm down,
move arm back and forth horizontally.
Fig. 13 TRAVEL. Arm extended forward,
hand open and slightly raised, make
pushing motion in direction of travel
Fig.12 EMERGENCY STOP. Both arms
extended, palms down, move arms back
and forth horizontally.
Fig. 14 DOG EVERYTHING. Clasp hands in
front of Body
4. HAND SIGNALS
4.2. ALWAYS USE THE STANDARD HAND SIGNALS: (cont.)
Fig. 15 EXTEND BOOM (Telescoping
Booms). Both fists in front of body with
thumbs pointing outward.
Fig. 16 RETRACT BOOM (Telescoping
Booms). Both fists in front of body with
thumbs pointing toward each other.
Fig. 17 TRAVEL (Both Tracks). Use both
fists in front of body, making a circular
motion about each other, indicating
direction of travel, forward or backward.
(For land crane only)
Fig. 19 EXTEND BOOM (Telescoping Boom)
One Hand Signal. One fist in front of chest,
with thumb tapping chest.
Fig. 18 TRAVEL (One Tracks). Lock on side
indicated by raised fist. Travel opposite
track in direction indicated by circular
motion of other fist, rotated vertically in
front of body. (For land crane only)
Fig. 20 RETRACT BOOM (Telescoping Boom)
One Hand Signal. One fist in front of chest,
thumb pointing outward and heel of fist
tapping chest.
5. TYPES OF HITCHES
APPLICATION/RIGGING METHOD:
Fig. 1 Fig. 2 Fig. 3
BASKET HITCHES
Metal Mesh
Slings
Fig. 4 Fig. 5 Fig. 6 Fig. 7
CHOKER HITCHES
Fig. 8 Fig. 9 Fig. 10
BRIDLE HITCHES
6. WIRE ROPE SLING
6.1. TYPE:
SINGLE-LEG
SLING
TWO-LEG SLING THREE-LEG SLING FOUR-LEG SLING
Fig. 1 Fig. 2 Fig. 3 Fig. 4
6.2. IDENTIFICATION:
CORE
MASTER LINK STRAND
IDENTIFICATION
MARKING WIRE
WIRE ROPE FERRULE OR
ALUMINUM
SLEEVE THIMBLE
WIRE ROPE
HOOKS
SAFETY CATCHES
Fig. 6
Fig. 5
6. WIRE ROPE SLING
6.3. TERMINATION IDENTIFICATION:
6.3.1. Formation of Eyes:
6.3.1.1. Ferrule-secured eye slings – The minimum length of plain rope between
the inside ends of ferrules terminating a sling leg shall be 20 times the nominal rope
diameter.
6.3.1.2. Spliced eye slings – The minimum length of plain rope between the tails of
splices shall be at least 15 times the nominal diameter.
6.3.1.3. Hard eyes – Hard eyes shall be fitted with thimbles.
6.3.1.4. Soft eyes – The peripheral length of a soft eye shall be at least four rope lay
lengths.
ID No.
SWL
Aluminum
Sleeve
Fig. 7 Fig. 8 Fig. 9 Fig. 10
FERRULE-SECURED
HARD/THIMBLE EYE
HAND SPLICED SOFT
EYE
FERRULE-SECURED SOFT
EYE WITH STIRRUP
FERRULE-SECURED
SOFT EYE
6.3.1.5. Terminal Fittings:
• The working load limit of any master link shall be at least equal to that of the sling
SWL.
• The working load limit of any intermediate link fitted to a three-leg or four-leg sling
shall be at least equal to 1.6 times the WLL of one of the legs suspended from it.
• The working load limit of the lower terminal fitting(s) shall be at least equal to that
of the leg(s) to which it is/they are fitted.
AT UPPER END AT LOWER END NOMINAL LENGTH OF SLING LEG
(bearing to bearing)
Fig. 11 Fig. 12 Fig. 13
Link
Fig. 14
Shackle
Link
Hook
Fig. 15
6. WIRE ROPE SLING
6.4. WIRE ROPE TYPES:
 Independent Wire Rope Core (IWRC)
19 WIRES PER
STRAND
6 STRANDS PER CABLE
FILLER WIRES
7 x 7
INDEPENDENT
1
WIRE ROPE CORE
(IWRC)
Fig. 16 Fig. 17
6 x 19 (IWRC)
 Fiber Core Wire Ropes (FC)
Fig. 18 Fig. 19
6 x 7 (FC)
Composed with:
 Improved Plow Steel (IPS)
 Extra Improved Plow Steel (EIPS)
 Extra Extra Improved Plow Steel (EEIPS)
6. WIRE ROPE SLING
6.5. INSPECTION:
Check and Recommend for Replacement if
found any one of the following:
 Heat damage, discoloration, loss off lubricant
 More than 10% reduction in rope original
diameter
 High external corrosion, internal corrosion
 Severe distortion-kinks, crushes, knots, bird
cages
 More than maximum allowed broken wires
 Exposure of core, internal damage
 Core protrusion as a result of torsional
unbalance created by shock loading.
 Where the surface wires are worn by 1/3 or
more of their diameter, the rope must be
replaced.
 6 or more randomly broken wires in one lay.
 3 or more broken wires in one strand in one
lay.
 3 or more broken wires in one lay in standing
ropes.
 Estimate rope’s condition at section
showing maximum deterioration.
Fig. 20
Core protrusion
Worn
section
Fig. 21
Enlarged
view of
Single
Strand
Fig. 22
Protrusion of core resulting
from shock loading.
Fig. 23
Bird cages
Fig. 24
Fig. 26
Multi-Strand rope
“Bird cages”
Fig. 25
6. WIRE ROPE SLING
6.5. INSPECTION: (cont.)
TERMINATIONS
1. Eyes
 Distortion
 Excessive wear, damage to thimble
2. Securing
 Any broken wires near to the ferrules/splice
 Broken/damaged ferrules or pulling out
 Crushing, abrasion of splice, pulling out
3. Links (master & intermediate )
 More than 5% stretch of original length of links
 More than 8% wear in links
 Bent or twisted links
 Correct Way – this gives correct diameter.
Fig. 27
 Incorrect Way – this does NOT
gives correct diameter.
Fig. 28
6. WIRE ROPE SLING
6.6 APPLICATION/RIGGING METHOD:
 Use a thimble to protect sling and to
increase D/d ratio.
 Never place sling eye over a fitting with a
smaller diameter than the rope’s
diameter.
 Never place a sling eye greater than one
half the natural length.
 A basket hitch has twice the capacity of a
single leg only if the D/d ratio ≥ 25/1 and
legs of sling are vertical.
(at other angles, see Table)
Fig. 29
Fig. 31
L
Fig. 32
Fig. 30
β d
 A choker hitch has 80% of the capacity of a
single leg only if the corners are softened
and the vertical sling angle β is smaller than
60°.
 Use blocks to prevent angles greater than
60°. (at other angles, see Table)
Fig. 33
D
Fig. 34
Fig. 35
6. WIRE ROPE SLING
6.6. APPLICATION/RIGGING METHOD: (cont.)
1. Straight Vertical Hitch - The total weight of the
load is carried by a single leg.
Fig. 36
2. Single-Leg Sling
Single Choke Hitch – This forms a noose in the
rope and tightens as the load is lifted.
Fig. 37
3. Single-Leg Sling
Double Choke Hitch
Fig. 38
4. Endless-Leg Sling
Double Choke Hitch
5. Two-Leg Sling
Double Basket Hitch
RIGHT
Fig. 39
WRONG
Legs will slide
together.
Fig. 40
6. WIRE ROPE SLING
6.6. APPLICATION/RIGGING METHOD: (cont.)
6. Bridle Hitch – Two, Three, or Four Single leg
slings can be used together to form a bridle hitch.
CAUTION:
• Load may be carried by only 2 legs while 3rd and
4th merely balance it. (Fig 42) Four Points Lift
Fig. 41
Fig. 42
7. Single Basket Hitch – This hitch is ideal for loads
with inherent stabilizing characteristics. The load is
automatically equalized.
8. Double Basket Hitch – Consists of two single
basket hitches passed under the load. The legs of
the hitches must be kept for enough apart to provide
balance without opening excessive sling angles.
9. Double Wrap Basket Hitch – A basket hitch that is
wrapped completely around the load. This method is
excellent for handling loose materials, pipes, rods, or
smooth cylindrical loads.
Fig. 43
60º or more
Fig. 44
Fig. 45
.
10. Double Choker Hitch – Consists of two single chokers
attached to the load and spread to provide load stability.
11. Double Wrap Choker Hitch – The rope or chain is
wrapped completely around the load before being
hooked into the vertical part of the sling. Do not run
the sling through the hook, permitting an unbalanced
load to tip.
Fig. 46

Fig. 47
6. WIRE ROPE SLING
6.6. APPLICATION/RIGGING METHOD: (cont.)
12. Three-Leg Slings
Straight Lift, (SWL) β
 Capacity as per Rigging chart tables depending on included
angle.
β = Beta Angle from the vertical.
13. Four-Leg Slings
Straight Lift, (SWL)
 Capacity as per Rigging chart tables depending on
included angle.
Fig. 48
β
WIRE ROPE SLING
NEVER:
 Overload a wire rope sling-allow for angles & mode of use
 Force or hammer into position
 Join wire ropes with opposite lay
 Use twisted or kinked ropes
 Attempt to shorten, knot or tie a wire rope sling
FIBRE ROPE SLING
NEVER:
 Overload a fiber rope sling allow for angles & mode of use
 Attempt to shorten, knot or tie a fiber rope sling
 Use around sharp edge without protection
 Expose to direct heat
 Wrap a rope around a hook.
Fig. 49

NO HAMMERING
Fig. 50

No Wrap Roping
Fig. 51
7. CHAIN SLING
7.1. TYPE:
Fig. 1 Fig. 2 Fig. 3 Fig. 4
SINGLE-
LEG SLING
TWO-LEG
SLING
THREE-LEG
SLING
FOUR-LEG
SLING
Fig. 5 Fig. 6 Fig. 7 Fig. 8
SINGLE
ADJUSTABLE SLING
DOUBLE
ADJUSTABLE SLING
SINGLE BASKET DOUBLE BASKET
7.2. IDENTIFICATION:
IDENTIFICATION MARKING
MASTER LINK
ADJUSTING
CLUTCHES
INTERMEDIATE
LINKS
CHAIN
JOINING LINK
HOOKS
SAFETY
CATCHES
Fig. 10
Fig. 9
7. CHAIN SLING
7.3. INSPECTION:
Mechanical Joined:
Check and Recommend for Replacement if found
any one of the following:
 More than 5% stretch of original length (terminal, joining,
intermediate links, chain and hooks)
 More than 8% diameter wear of terminal, joining,
intermediate links, chain and hooks
 Existence of nicks, cracks and gouges in terminal, joining,
intermediate links and chain
 Bent, elongated or twisted links, rings
 Lack of free articulation between links
 Distortion of terminal fittings
 Cracks and faults in welded areas
 Excessive corrosion
 Heat discoloration
 Broken, twisted chain
 Improper shortening devices
 Repairs by welding
 Rusty chain
Welded Chain:
Check For:
 More than 8% wear of terminal fittings, joining links
 Existence of nicks, cracks, gouges in terminal fittings,
joining links
 Bent, elongated or twisted joining links
 Distortion of terminal fittings
 Replaced parts not manufacturer certified
Fig. 11
Fig. 12
Fig. 13
Fig. 14
7. CHAIN SLING
7.4. APPLICATION/RIGGING METHOD:
 SINGLE-LEG SLINGS
1. Straight Lift – Safe Working Load
• The SWL will be 100% SWL of a single-leg.
• A suitable method of lifting an a effectively
balanced load from a single lifting point.
(see Fig. 15)
2. Choke Hitch
• The SWL must be reduced by 20% in this
application.(80% SWL of a single leg)
• This method forms a loop which tightens as the
load is lifted.
• Do not attempt to force the bight into closer
contact with the load. Choker hitch is not suitable
for lifting long loads which might tilt. (see Fig. 16)
 SINGLE-LEG SLINGS IN BASKET HITCH
3. Single leg in Basket Hitch (back hooked into top link)
• The SWL will be rated by that of a single-leg sling
reduced by the included angle.
• A single-leg sling back hooked to form a basket hitch
assumes the appearance of a two-leg sling but it
should never be rated as such. It should be noted that
the master link is only designed for single leg loading
and therefore the single leg WLL should never be
exceeded. (see Fig. 17)
4. Double Wrap Sling in Basket Hitch
• The SWL will be that for a two-leg sling reduced
by the included angle. (see Fig. 18)
Fig. 15
Fig. 16
Included
angle
Fig. 17
Included
angle
Fig. 18
7. CHAIN SLING
7.4. APPLICATION/RIGGING METHOD: (cont.)
5. Single Adjustable Basket Sling (see Fig. 19)
• The SWL will be that for a two-leg sling reduced by the
included angle.
• A suitable master link must be fitted for two-leg rating.
(see Fig. 19)
Included
angle
 TWO SINGLE-LEG SLINGS USED TOGETHER
6. Two Single Legs in Straight Lift (see Fig. 20)
• Rate as a two-leg sling.
• The SWL will therefore depend upon the included angle.
Two single-leg slings should not be used together to
form a pair unless:
• They are of the same type, grade, size and length.
• They are both marked with the same SWL.
• The crane hook is large enough to comfortably accept
both upper terminal fittings of the slings.
7. Two Single-Leg in Choke Hitch (see Fig. 21)
• SWL calculated as per No.6 then reduced by 20%
because it is choked, for loose items double wrap is
recommended.
• The SWL will be reduced by 20% in the application.
• Choke hitch with included angle greater than 60º
Included angle is not recommended as sideways
shifting may occur.
• Two single-leg slings should not be used together to
form a pair unless:
1. They are of the same type, grade, size and length.
2. They are both marked with the same SWL.
3. The crane hook is large enough to comfortably
accept both upper terminal fittings of the slings.
Fig. 19
Fig. 20
Fig. 21
Included
angle
Included
angle
e.
uld
s
7. CHAIN SLING
7.4. APPLICATION/RIGGING METHOD: (cont.)
8. Two Single Legs in Basket Hitch (see Fig. 22)
• Rate as a two-leg sling. The SWL should be no more
than that applicable to an equivalent two-leg sling.
• Two single-leg slings should not be used together to
form a pair unless:
1. They are of the same type, grade, size and
length.
2. They are both marked with the same SWL.
3. The crane hook is large enough to comfortably
accept both upper terminal fittings of the slings.
 DOUBLE-LEG SLINGS
1. BRIDLE HITCH (see Fig. 23)
• For two-legged slings, the angle between the legs of the
sling will determine its safe working load (SWL).
• A two-legged sling will be marked with its SWL at 90º (45º
with vertical), which will apply for all angles from 0º - 90º
(0º - 45º with vertical).
• It may also be marked with its SWL at 120º which will
apply for angles between 90º - 120º (45º - 60º with
vertical).
• Note that the SWL for a two-legged sling assumes that
both legs are equally loaded, and that each leg is straight.
2. Choke Hitch (see Fig. 24)
• When using slings in choke hitch multiply the marked
SWL by 0.8 to obtain the reduced maximum load the sling
may lift or the angle between the legs of the sling will
determine its SWL
• For loose items or a better grip, double wrap is
recommended.
3. Basket Hitch (see Fig. 25)
• Capacity as per Rigging chart table depending on included angl
• Be aware of minimum pin diameter for basket hitch.
• The sling assumes the appearance of a four-leg sling but it sho
be noted that the master link will be designed for two-legs load
only and sling should therefore be rated as a two-leg sling.
Fig. 22
Fig. 23
Fig. 24
Fig. 25
7. CHAIN SLING
7.4. APPLICATION/RIGGING METHOD: (cont.)
 THREE-LEG SLINGS (see Fig. 26 & 27)
Choke Hitch
When using slings in choke hitch multiply the marked SWL by 0.8 to
obtain the reduced maximum load the sling may lift or reduce the
safe working load by 20%. If three legs are obviously supporting
most of the load, rate as a three-leg sling.
 For three-legged slings, the maximum angle between the legs of the
sling and the vertical will determine its safe working load (SWL).
 A three-legged sling will be marked with its SWL at 45º, which will
apply for all angles from 0º to 45º.
 Note that the SWL for a three-legged sling assumes that all legs are
equally loaded, and that each leg is at the same angle.
 FOUR-LEG SLINGS (see Fig. 28 & 29)
Straight Lift
 SWL as per Rigging load chart tables depending on the included angle.
 The included angle should be measured between diagonally
opposite legs. SWL as indicated above only in cases where the
load appears to be reasonably equally distributed between all
four legs. If two legs are obviously supporting most of the load,
rate as a two-leg sling. If three legs are obviously supporting
most of the load, rate as a three-leg sling.
 For four-legged slings, the maximum angle between opposite
legs of the will determine its safe working load (SWL).
 A four-legged sling will be marked with its SWL at 90º (45º with
vertical), which will apply for all angles from 0º to check sling
angle 90º (0º - 45º with vertical).
 It may also be marked with its SWL at 120º which will apply for
angles between 90º and 120º (45º - 60º with vertical).
 Note that the SWL for a four-legged sling assumes that all legs
are equally loaded, and that each leg is straight.
Fig. 26
Fig. 27
Fig. 28
Fig. 29
8. SYNTHETIC
FLAT WEBBING SLING
8.1. TYPE & IDENTIFICATION:
VIOLET GREEN YELLOW GREY RED BROWN BLUE ORANGE
1 TONNE 2 TONNE 3 TONNE 4 TONNE 5 TONNE 6 TONNE 8 TONNE 10 TONNE
Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8
MULTI-LEG BRIDLE SLINGS TRIANGLE AND VERTICAL CHOKER SLING
Fig. 9 Fig. 10 Fig. 11 CHOKER WEB SLINGS SLING
Fig. 12 Fig. 13 Fig. 14
GREEN BLUE BROWN
NYLON POLYESTER POLYPROPOLYNE
Resists Alkalis Resists Acids Resists Alkalis & Acids. Is
suitable where the highest
resistance to chemicals,
other than solvents is
required
Fig. 15 Fig. 16 Fig. 17
8. SYNTHETIC
FLAT WEBBING SLING
8.2. INSPECTION:
Eye to eye reinforcement
damaged, chafed or cut
Marking illegible
Stitching damaged or
loose
Webbing damaged, frayed,
signs of chemical attack or
solar degradation
Heat damage including hard
shiny areas due to friction
Webbing cut
Fig. 18
Check and Recommend for Replacement if found
any one of the following:
 Acid or Caustic Burns
 Melting or charring
 Holes, cuts
 Tears, snags
 Broken stitches
 Worn stitches
 Excessive abrasion
 Knots
 Cut – a clean break in the webbing structure of fibers.
This usually results when a sling contacts a sharp object
or unprotected edge of a load. (see fig. 19)
 Tensile Break – a frayed close to the point of failure or
damage. (see fig. 20)
 Cut and Tensile Damage – a cut by a sharp object along
one edge of the sling body. (see fig. 21)
Fig. 19
Fig. 20
Fig. 21
8. SYNTHETIC
FLAT WEBBING SLING
8.2. INSPECTION: (cont.)
 Abrasion Damage – frayed fibers on the surface exposing
the “picks” or cross fibers, of the webbing that hold the load-
bearing (length wise) fibers in place. Occurs either when the
sling slips while in contact with a load during a lift or when
the sling is pulled from under a load. (see fig. 22)
 Acid Damage – nylon and polyester webbing should never be
exposed to any strong acids or corrosive liquids whenever
possible. (see fig. 23 & 24)
8.3. APPLICATION/RIGGING METHOD:
Fig. 22
DROPPED BY ACID
Fig. 23
IMMERSED IN ACID
Fig. 24
 Material – polyester is resistant to moderate strength acids but
is damaged by alkalis; polyamide (Nylon) is virtually immune to
alkalis but is damaged by acids; and polypropylene is little
affected by acids or alkalis but is damaged by some solvents,
tars or paints.
 Capacity – the sling must be both long enough and strong
enough for the load and the slinging method.
 Apply the mode factor for the slinging method.
 If the slings are used in multi-leg arrangement the angle
formed between the legs should not be less than 30° from
Horizontal angle or greater than 90° from Included angle.
8. SYNTHETIC
FLAT WEBBING SLING
8.3. APPLICATION/RIGGING METHOD: (cont.)
ALWAYS:
 Store and handle slings correctly.
 Inspect slings and accessories before use and before placing into
storage.
 Always follow safe slinging practices.
 Connect the sling over 120° angle of choke
Never:
 Attempt to shorten, knot or slings.
 Expose slings to direct heat or frames.
 Use slings at temperature above 80°C or below 0°C without
consulting the supplier.
 Expose slings to chemicals without consulting the supplier.
 Shock load slings
 Use slings which are cut or which have loose or damaged stitching.
9. SYNTHETIC ROUND
SLING
9.1. TYPE:
Violet
1 TONNE
Green
2 TONNE
Yellow
3 TONNE
Gray
4 TONNE
Red
5 TONNE
Brown
6 TONNE
Blue
8 TONNE
Orange
10 TONNE
Fig. 25 Fig. 26 Fig. 27 Fig. 28 Fig. 29 Fig. 30 Fig. 31 Fig. 32
9.2. IDENTIFICATION:
Protective Sleeve
Identification
Marking
Inner core
9.3. INSPECTION:
Fig. 33
 Initial Inspection – before any polyester round sling is placed into service
it shall be inspected by a designated person to ensure that the correct
polyester round sling is being used, as well as to determine that the polyester
round sling meets the requirements of the manufacturer’s specification.
 Frequent Visual Inspection – This inspection shall be made by the person
handling the polyester round sling each time the round sling is used.
 Periodic Inspection – This inspection shall be conducted by a designated
person.
Frequency of inspection should be based on:
1. Frequency of use.
2. Severity of service conditions.
3. Experience gained on service life of polyester round slings used in
similar applications.
4. periodic inspections should be conducted at least monthly.
9. SYNTHETIC ROUND
SLING
9.3. INSPECTION: (cont.)
• Check and Recommend for Replacement if found
any one of the following:
1. If polyester round sling’s identification tag is missing or unreadable.
2. Melting, charring or weld spatter on any part of the polyester round
sling.
3. Holes, tears, cuts, embedded particles, abrasive wear, or snags that
expose the core fibers of the polyester round sling.
4. Broken or worn stitching in the cover which exposes the core fibers.
5. Polyester round slings that are knotted.
6. Acid or Alkali burns on the polyester round sling.
7. Any conditions which cause doubt as to the strength of the polyester
round sling.
Fig. 34 Fig. 35
Fig. 36
Fig. 37
Fig. 38
9. SYNTHETIC ROUND
SLING
9.4. APPLICATION/RIGGING METHOD:
ROUND SLING – are available in a range of materials and
sizes in endless sling form. Select the slings to be used and
plan the lift taking the following into account:
 Material – polyester is resistant to moderate strength acids but
is damaged by alkalis; polyamide (Nylon) is virtually immune to
alkalis but is damaged by acids; polypropylene is affected by
acids or alkalis but is damaged by some solvents, tars and
paints.
 Capacity – the sling must be both long enough and strong
enough for the load and the slinging method.
 Apply the mode factor for the slinging method.
If the slings are to be used in multi-leg arrangement the angle
formed between the legs should not be less than 30° or greater
than 90°.
ALWAYS:
 Inspect carefully the round slings and accessories before use
and before placing into storage.
 Follow safe slinging practices, as given overleaf.
 Position the bight for choke lift over 120° angle of choke.
 Apply correct mode factor for the slinging arrangement.
 Use protection (to avoid cutting, friction etc) and fittings which
allow the sling to form smooth radii.
NEVER:
 Attempt to shorten, knot or tie round slings.
 Expose round slings to direct heat or flames.
 Use round slings at temperatures above 80°C or below 0°C
without consulting the supplier.
 Expose round slings to chemicals without consulting the
Manufacturer.
 Shock load round slings.
 Use round slings with cut or damaged outer covers.
9. SYNTHETIC ROUND
SLING
9.4. APPLICATION/RIGGING METHOD: (cont.)
ROUND SLING – shall not be constricted or bunched between the
ears of a clevis or shackle or in a hook.
 The opening of fitting shall be proper shape and size to ensure
that the fitting will seat properly on the round sling.
BUNCHING
Fig. 39
SYNTHETIC SLING RATED LOAD: (SWL)
 Folding, bunching or pinching of synthetic slings, which occurs
when used with shackles, hooks or other applications will reduce
the rated load.
PINCHING
Fig. 40
10. SHACKLES
10.1. TYPE:
DEE SHACKLES BOW SHACKLES
Fig. 1
Safety Pin Dee
Fig. 2
Round Pin Dee
Fig. 3
Screw Pin Dee
Fig. 4
Safety Pin Bow
Fig. 5
Round Pin Bow
Fig. 6
Screw Pin Bow
10.2. IDENTIFICATION:
Capacity Safe
Quality Mark
Diameter Of
Capacity Safe
Working Load
Quality Mark
Working Load
(SWL)
body (SWL) Diameter Of
body
Identification
Number
Identification
Number
Fig. 7
DEE SHACKLE
Fig. 8
BOW SHACKLE
10. SHACKLES
10.3. INSPECTION:
Check wear
Check cracks, bending
and twisting
Pin always seated
Check wears and
straightness
Check opening width
Fig. 9
• Check and Recommend for Replacement if found
any one of the following:
 Wear of pin and body higher than 8% diameter
 Nicks, cracks and gouges in stressed areas
 Distortion in any axis
 Misalignment of untapped/tapped hole
 Excessive wear of untapped hole
 Incorrect pin inserted. Pin not running free
 Pin screwed, less than outside face flush
 Head of pin not bearing on shoulder of untapped hole
 Thread damage or excessive wear
 Excessive corrosion
 Repairs by welding
 Missing locking devices (cotter pin), if applicable
10. SHACKLES
10.4. APPLICATION/RIGGING METHOD:
 Shackles symmetrically loaded with two leg slings
having a maximum included angle of 120° can be
loaded to Rated Capacity.
 Use bolt-type and Screw Pin Bow Shackles only.
 Riggers do not exceed 120° included angle.
(see Fig. 10)
 Always put the pin on the top of the hook,
otherwise Shackle spread and sling eyes can be
damaged. (see fig. 11 & 12)
 Shackle pin can not turn. (see correct Fig. 13)
 Shackle pin bearing on running line can work
loose. If the load shifts, the sling will unscrew
the shackle pin. (see Fig. 14 & 15)
Fig. 10

Fig. 11 Fig. 12
Fig. 13
Correct

Fig. 14
Incorrect
Fig. 15
 Never replace a shackle pin with ordinary bolt.
The strength of an ordinary bolt is less than that
of a shackle pin. (see Fig.16)
Bolt

Fig. 16
10. SHACKLES
10.4. APPLICATION/RIGGING METHOD: (cont.)
Good Practice
 Washers can be used to take up the space
between the shackle and hook. (see Fig. 17)
Bad Practice
 Never Allow shackle to be Pulled at an Angle, the
legs will open up. (see Fig. 18)
ALWAYS:
 Store and handle shackles correctly.
 Inspect shackles before use and before placing into
storage.
 Select the correct pattern of shackle and pin for the
application.
 Allow for the full resultant imposed load.
 Tighten the screw pin by hand only.
 Ensure the load acts through the center line of the
shackle using spacers if necessary to meet this
requirement.
Packing Hook
Fig. 17

Fig. 18
NEVER:
 Use shackles with bent pins or deformed bodies.
 Force, hammer or wedge shackles into position.
 Eccentrically load shackles.
 Replace the pin with a bolt.
 Fit pins in contact with moving parts which may
loosen or unscrew them.
 Shock load shackles.
 Use shackle across direction it will reduced 50% SWL
11. PLATE CLAMPS
11.1. TYPE:
VERTICAL LIFTING LOCKING HORIZONTAL LIFTING NON-
LOCKING
LOCKING SCREW
Fig. 1 Fig. 2 Fig. 3
11.2. IDENTIFICATION:
LOCKING
LEVER
GRIPPING
CLAMPING
THREADS
SPRING IN
LOCKING
LEVER
Fig. 4
Vertical Lifting Locking
BENT PIN
Fig. 5
Locking Screw Clamp
MOVABLE JAW WITH
BLUNTED TEETH
Fig. 6
Horizontal Lifting Non-Locking
11. PLATE CLAMPS
11.3. INSPECTION:
Pins, bolts or other
fixings insecure
Frame opening
out or cracked
Jaw teeth or friction
material worn or distorted
Suspension point
damaged or incorrect
Locking lever damaged or
unsatisfactory action
Marking illegible
Fig. 7
Vertical and Universal Plate Clamp Inspection Points
Suspension
eyes distorted
Sling of incorrect type,
size or method of
reeving resulting in
wrong geometry
Jaws worn
or distorted
Pins, bolts or other
fixing insecure
Frame opening
out or cracking
Marking illegible
Fig. 8
Horizontal Plate Clamp Inspection Points
11. PLATE CLAMPS
11.3. INSPECTION: (cont.)
Friction Lifting Type
Remove from service if found any of the following
conditions:
• Wear, damage or distortion to fixed and moving jaws
• Frame opening out or cracked
• Insecure, worn or bent pins, bolts etc.
• Worn friction grip material
• Nicks, cracks, gouges
• Excessive corrosion
• Damaged, bent or unsatisfactory acting locking lever
• Improper action of locking lever
• Tight, bent, damaged clamping threads
• Blunted teeth in fixed, movable jaws – see Manufacturer
recommendations
• Worn out, bent pins
Horizontal Lifting Type
Remove from service if found any of the following
conditions:
• Distortion of frame
• Wear on gripping surfaces
• Nicks, cracks, gouges
• Excessive corrosion
• Blunted teeth in fixed, movable jaws – see Manufacturer
recommendations
• Worn out, bent pins
11. PLATE CLAMPS
11.4. APPLICATION/RIGGING METHOD:
 Vertical plate Clamp (Universal Type)
 Locked open for easy placement and removal
 Locked closed for lifting
Fig. 9
Fig. 10
 Horizontal
Type
 Plate Clamp in pairs
Fig. 11 Fig. 12
12. HOOKS
12.1. TYPE:
EYE SLING HOOK CLEVIS SLING HOOK
WITH LATCH
PIPE HOOK
Fig. 1 Fig. 2 Fig. 3
Not to be used for pipe lifting
12.2. IDENTIFICATION:
HOOK EYE
THROAT OPENING
NECK
SAFETY LATCH
SADDLE OR SEAT
Fig. 4
12. HOOKS
12.3. INSPECTION:
Check for wear and
deformation
 Check the hook for the following:
Check for
Cracks and
Twisting
Signs of
“Opening Up”
Check for Wear
and Cracks
Fig. 5
Fig. 6 Fig. 7 Fig. 8 Fig. 9
Remove hook from service if any of the
following conditions has been found:
 Throat opening higher than 15% original throat
 Lateral twist higher than 10 degrees
 Wear in eye and saddle higher than 8% of
original thickness
 Cracks, nicks, scores, gall marks in body
 Misalignment of shank, excessive wear
 Thread damage or excessive wear
 Repair by welding
 Excessive wear, damage to cross head pin
 Damaged or missing locking devices
 No free running of swivel. Bearing damage, if
applicable
 Cracks, defects in trunnion weld joint, if
applicable
 Loose bolts, nuts, pins
 Damaged or missing safety catches, if applicable
 Lack of lubrication
Fig. 10 Fig. 11
MODIFICATION NOT
ALLOWED
Fig. 12
12. HOOKS
12.4. APPLICATION/RIGGING METHOD :
Correct Use of an Eye Hook:
Fig. 13
 When placing two slings on the hook, the sling angle
measured from the horizontal shall be equal to or greater
than 45°. For sling angles less than 45°, a master link, pear
link, bolt-type shackle, or screw pin shackle should be used to
attach the slings to the hook.
Note:
1. Forged swivels and swivel hooks with bronze bushings are to be
used for positioning prior to lifting a load. DO NOT rotate under
load.
2. DO NOT overcrowd the hook.
3. DO NOT swivel the hook while it is supporting a load.
Incorrect Use of an Eye Hook:
 Side Load.
 Back Load.
 Tip Load.

Fig. 16
Fig. 1
7
Fig. 1

8
13. EYEBOLTS
13.1. TYPE & IDENTIFICATION:
Fig. 1
COLLAR EYE BOLT
Fig. 2
DYNAMO EYE BOLT
Fig. 3
EYE BOLT WITH LINK
13.2. INSPECTION:
Remove eyebolt from service if any of the following
conditions has been found:
 Wear in eye and link, if any, higher than 8% diameter
 Nicks, cracks and gouges in shank and eye
 Nicks, cracks and gouges in shank to collar junction
 Distortion in any axis
 Thread damage or excessive wear
 Excessive corrosion
 Any type of repair
 Cleanliness of thread, underside of collar
 Illegible markings
13.3. APPLICATION/RIGGING METHOD:
Lifting With Eye Bolts (see fig. 4)
Never run a sling through a pair of eye
bolts as shown:
 The loads in this fitting result in an
effective load at a much more severe
angle.
 The load P to Q and the loads in A and B
combine to give C.
 Use a pair of shackles instead.
Fig. 4
13. EYEBOLTS
13.3. APPLICATION/RIGGING METHOD: (cont.)
Correct for shoulder Type Eye and Ring Bolts
providing loads are reduced to account for
angular loading.
 More than one eye bolt diameter of threads, only (1)
nut required. (see Fig. 5)
 Tighten hexagonal nut securely against load.
(see Fig. 6)
Fig.5
 One eye bolt diameter of threads or less, use two
(2) nuts. (see Fig. 7)
 Tighten hexagon head nut securely against load.
(see Fig. 8)
 One eye bolt diameter or less. (see Fig. 9)
Fig.6
Correct
Tap Depth:
2.5 x Diameter
Fig.7
Correct
2 x Diameter
(Minimum)
 After slings have been properly attached to the eye
bolts, apply force slowly. Watch the load carefully
and be prepared to stop applying force if the load
starts buckling.
 Buckling may occur if the load is not stiff enough
to resist the compressive forces which result from
the angular loading. (see Fig. 10)
Fig.8
Correct
Fig. 9
Wrong
NOTE:
If used a dynamo eyebolt in pairs a lifting beam
must be used to ensure a vertical lift.
Fig. 10
Wrong
Buckling
13. EYEBOLTS
13.3. APPLICATION/RIGGING METHOD: (cont.)
 If the eye bolt protrudes so far through the load
that the nut cannot be tightened securely against
the load, use properly sized washers to take up
the excess space between the Nut and the Load.
 Thickness of spacers must exceed this distance
between the bottom of the load and the last
thread of the eye bolt.
 Place washers or spacers between nut and load
so that when the nut is tightened securely, the
shoulder is secured flush against the load
surface.
Thickness
Spacer
Fig. 11
Washer
ALWAYS:
 Store and handle eyebolts correctly.
 Inspect eyebolts before use and before placing into storage.
 Select the correct pattern eyebolt for the application.
 Ensure that the eyebolt and tapped hole threads are compatible and strong
enough for the load.
 Correctly align the plane of the eye using shims where necessary.
 Ensure that the collar is fully seated when hand tight.
NEVER:
 Use Tommy bars, grips or wrenches to tighten eyebolts.
 Use dynamo eyebolts for angular loading.
 Use a single eyebolt to lift a load that is free to rotate.
 Reeve slings through the eyes, links or shackles fitted to pairs of eyebolts.
 Force hooks or other fittings into the eye; they must fit freely.
 Shock load eyebolts.

14. TURNBUCKLES
14.1. TYPES OF RIGGING SCREW:
Fig. 1
Hook to Hook Type
Fig. 2
Hook to Eye Type
Fig. 3
Eye to Eye Type
Fig. 4
Jaw to Eye Type
Fig. 5
Jaw to Jaw Type
14.2. INSPECTION:
Check and Recommend for Replacement if Found
any one of the following:
 Cracks and bends.
 Damage and bent rods
 Check thread damage and thread engaged to full length of threaded body.
 Deformation
 Severe Corrosion
14.3. APPLICATION/METHOD:
 Only rigging screws and turnbuckles that are marked with the appropriate
safe working load after proof loading shall be used for lifting applications.
 Securing Turnbuckles – twisting of the turnbuckle might occur, use a lock wire
to prevent rotation of the turnbuckle. (see fig. 6)
 The use of locknuts or mousing is an effective method of preventing
turnbuckles from rotating.
Lock Wire Used
Fig. 6
Correct
Fig. 7
Incorrect
(No Lock Wire)
15. LIFTING BEAM
15.1. APPLICATION REQUIREMENTS TO:
 Reduce headroom
 Provide multiple lift points
 Provide adjustable lifting centers
 Handle out of balance loads
 Remove or control inward or crushing forces
 Allow for special load attachments
15.2. ACCESSORIES AND ATTACHMENTS:
 Slings
 Grabs
 Shackles
 Hooks
 Etc.
15.3. THOROUGH EXAMINATION:
 Beam distorted
 Damaged or corroded
 Worn, loose or missing bolts
 Cracked welds
 Attachment points worn, damaged or
distorted, holes and eyes worn or elongated
 Any other visible defects.
15.4. APPLICATION/METHOD:
 The weight of the beam, together with its
attachments, must be added to the weight of
the load when calculating that total load that will
be imposed on the crane hook.
 Use tag lines to control long loads.
F
Fi
ig
g 1
1
L
Li
if
ft
ti
in
ng
g B
Be
ea
am
m
F
Fi
ig
g.
. 2
2
E
Eq
qu
ua
al
li
iz
ze
er
r B
Be
ea
am
m
F
Fi
ig
g.
. 3
3
R
Ri
ig
gi
id
d B
Be
ea
am
m
15. LIFTING BEAM
15.4. APPLICATION/METHOD: (cont.)
ALWAYS:
 Store and handle lifting beam correctly.
 Refer to the safe use instructions for slings and attachments used with the
beam.
 Include the self weight of the beam and attachments when calculating the
load imposed on the crane hook.
 Ensure the load will remain stable when lifted.
 Ensure that no one lifting point becomes overloaded by the slinging or
handling methods.
 Use tag lines to control long loads.
NEVER:
 Use lifting beams to handle Loads other than those for which they are
designed.
 Fit lifting beams to a hook other than those for which they are designed.
 Use damaged or distorted lifting beams and attachments.
 Unevenly load lifting beams.
 Allow lifting beams to foul any part of the crane or any other obstructions
in the area.
16. BEAM CLAMP
16.1. TYPE:
Fig. 1 Fig. 2
Fig. 3
FIXED BEAM CLAMP
Fig. 4
ADJUSTABLE BEAM CLAMP
16.2. IDENTIFICATION:
SHACKLE HOLE PIVOT PIN
FIXING BOLT IDENTIFICATION
MARKING
FRAME
FRAME
CLAMPING SCREW
Fig. 5
FIXED BEAM CLAMP
Fig. 6
ADJUSTABLE BEAM CLAMP
16. BEAM CLAMP
16.3. INSPECTION:
 Check identification/location and SWL is clearly marked. Then
compare these markings against the current certificate.
 Check all moving parts against seizure, e.g. pivots, pins and load bar.
Where swivel jaws are fitted, ensure that they are free to rotate.
 Check operation of unit and alignment of frame.
 Check bar handle is not dangerous to the operator’s hand.
 Examine stress points for cracks, distortion, nicks, gouging and
corrosion.
 Examine load bearing parts for signs of wear. Maximum permissible
wear must not exceed 8% of bearing cross-section.
 Check the suspension points, shackle, pivot/pins, bolts & nuts,
threads, load bar, jaws/grips and surfaces.
 Check the beam size.
16.4. APPLICATION:
ALWAYS:
 Store and handle beam clamps correctly.
 Inspect beam clamps and accessories before use and before placing into
storage.
 Ensure the supporting structure is adequate for the full load that will be
imposed and suitable for the application.
 Check the clamp is of the correct profile and size, or correctly adjusted, for
the beam width and that it seats correctly on the beam flange.
 Ensure the beam clamp is strong enough for the full load that will be
imposed.
 Check that the clamp is directly over the center of gravity of the load.
16. BEAM CLAMP
16.4. APPLICATION: (cont.)
NEVER:
 Use beam clamps which are unidentified or uncertified for lifting
applications.
 Replace bolts, shackles etc without consulting the supplier.
 Throw or drop beam clamps
 Use beam clamps on damaged or distorted beams.
 Force or wedge hooks of lifting appliances into the attachment eye or
lifting (e.g. Shackle)
 Obliquely load beam clamps without the authority of the supplier.
STORING AND HANDLING BEAM CLAMPS:
 Never return damaged beam clamps to storage. They should be dry,
clean and protected from corrosion. Where necessary fasteners should
be reassembled immediately after removal from the beam.
17. LIFTING APPLIANCE
17.1. HAND-OPERATED CHAIN BLOCK
17.1.1. TYPES:
Fig. 1
HEAVY DUTY
Fig. 2
STANDARD DUTY
17.1.2. IDENTIFICATION:
TOP HOOK WITH
SAFETY CATCH
MAIN FRAME
LOAD CHAIN
HAND CHAIN
HOOK, TERMINAL &
FITTING
Fig. 3
17. LIFTING APPLIANCE
17.1. HAND-OPERATED CHAIN BLOCK (cont.)
17.1.3. INSPECTION:
 Keep the chain block clean and regularly lubricate the load
chain and both hook shanks.
 Carry out a visual inspection every time the chain block is
used and listen for any unusual sounds during operation.
 Depending upon the frequency of use and local conditions
the load chain will eventually show signs of wear, at which
point it should be replaced.
 Overloading or incorrect hooking may distort the hook and
increase the hook opening. If this occurs replace the hook
immediately.
 The components shall be free from deformation, cracks,
flaws or other defects and there shall be no loosening of
connections.
 When the hand chain is released at any point during
raising and lowering, the brake shall hold the weight
of the load
 The block shall be free from deformation, cracks, flaws or
other defects, there shall be no loosening of connections
and the block shall operate satisfactorily.
 On removal of the restraining pin, the brake shall
immediately engage and prevent the load from
descending.
WARNING!
 The chain block should be disassembled, cleaned,
inspected, reassembled and tested by an Authorized
Service Agent annually, or more frequently if used outside,
exposed to the weather.
 The load chain and the hooks are manufactured from
special alloy steels and precisely heat treated. DO NOT
weld or re-heat treat.
SPROCKET
DAMAGED
Fig. 4
SAFETY LATCH
DAMAGED
Fig. 5
SAFETY LATCH
MISSING
NO NAME
PLATE DETAILS
Fig. 6
17. LIFTING APPLIANCE
17.1. HAND-OPERATED CHAIN BLOCK (cont.)
17.1.4. APPLICATION/METHOD:
Hand Chain Blocks – are available in range capacity and with various types
of suspension. Select the block to be used and plan the lift taking the
following into account:
 Type of suspension – hook, trolley etc.
 Capacity, class of use and range of lift.
 Chain blocks are designed for vertical lifting only.
ALWAYS:
 Store and handle chain blocks correctly.
 Inspect chain blocks and accessories before use and before placing into
storage.
 For top hook suspension, use hooks that are fitted with safety catches, or
mouse the hook, ensuring the support fits freely into the seat of the hook.
 For trolley suspension ensure the trolley is correctly set for the beam
width.
 Check that the bottom hook will reach its lowest point without running the
chain fully out.
 Adopt safe slinging practices and follow the instructions for the safe use of
the equipment used.
NEVER:
 Expose chain blocks to chemicals, particularly acids, without consulting the
manufacturer.
 Replace the load chain with a longer one without consulting the
manufacturer.
 Use undue effort to force the block to operate.
 Throw, drop or drag a chain block.
 Allow oil or grease to come into contact with the brake.
 Expose a chain block directly to the elements, water spray, steam etc
without consulting the manufacturer.
17. LIFTING APPLIANCE
17.1. HAND-OPERATED CHAIN BLOCK (cont.)
17.1.5. SAFETY INSTRUCTION:
ENSURE
 That the chain block is in sound condition and good working order. Take action for
immediate repair or replacement of damaged parts.
 The support for the chain block is capable of withstanding a load of at least 1½ times the
chain block safe working load.
 All non-essential persons keep a safe distance whilst the chain block is in use.
 Load slings are fully engaged in load hook and that hook safety latch is in the closed
position.
KEEP
 The chain block clean for the best and safest performance.
 Work area clean and tidy and free from unrelated materials.
LOCATE the chain block in a suitable, well lit work area.
RAISE AND LOWER in a smooth, controlled manner and DO NOT shock load the chain block
by allowing the attached load to fall freely, even for very short distances.
CHECK the brake operation by stopping when the load has been raised a short distance
(100mm) and ensuring that it is held with no downward creep.
USE a qualified person to lubricate and maintain the chain block.
STORE chain block in a dry, cool area when not in use.
DO NOT
 Operate the chain block if damaged.
 Allow untrained persons to operate the chain block.
 Exceed the rated capacity (safe working load) of the chain block.
 Raise or lower the load with jerky or abrupt movements of the hand chain.
 Attempt to lift a load if the load chain is kinked or knotted.
 Try to raise a load with two, or more, chain blocks - use a single block of adequate capacity.
 Use the chain block to drag the load across the floor. Always position the load directly
below the block.
 Wrap the load chain around the load - always us separate, suitable, slings/chains/ropes of
the correct capacity.
 Allow anyone to stand or pass beneath the raised load.
 Use the chain block for purposes other than that for which it is intended.

DANGER! Use the chain block for lifting only, NOT for supporting the lifted load.
17. LIFTING APPLIANCE
17.1.6. INSPECTION:
 Hand Chain
Check For:
 Cracks, distortion, wear or corrosion.
 Cracks, distortion, wear of hand chain wheel.
 Incorrect seating in hand chain wheel.
 Rusty chain.
 Load chain:
Check For:
 Cracks, distortion, wear of blocks, wear, slackness of sheave wheel
 Incorrect seating in sprocket wheel.
 Damage to slack end or load end anchor
 Rusty chain
 Twisted chain in multiple fall
17.2. CHAIN LEVER HOIST
17.2.1. IDENTIFICATION:
Hook
Body Covers
Load Chain
Hook
Safety catch
Markings
Identification
Lever or control
Slack end stop
Safety catch
Fig. 7
HOOKS, TERMINAL FITTINGS
Check for:
 Cracks, distortion or wear of blocks. Wear, slackness of
sheave wheel
17. LIFTING APPLIANCE
17.2.2. INSPECTION: (cont.)
 MAIN FRAME
Check For:
 Cracks, distortion or worn in body, gear covers or chain guides.
 Loose nuts, bolts, rivets, or pins. Thread damage or wear. Missing locking
devices.
 Corrosion, wear or damage to pawl, ratchet or spring.
 Cracks or uneven wear of pinions, gear wheels or bearings.
 Wear, damage to brakes, chain stripper.
 Improper electrical condition, if applicable.
 REPAIR:
Check For:
 Repair not in accordance with manufacturers recommendations.
 Replaced parts incorrectly assembled.
 Replaced parts not manufacturer certified.
 OPERATIONAL TEST:
Check For:
 Undue effort, excessive noise or jumping of chains during
hoisting/lowering.
 Malfunction of pawl, operating spring and ratchet.
 Incorrect action of chain guides.
 Brake operation. Must be kept free of oil, grease etc.
17. LIFTING APPLIANCE
17.2.3. APPLICATION/METHOD:
ALWAYS:
 Store and handle lever hoist correctly.
 Inspect lever hoists and accessories before use and before placing
into storage.
 Ensure any support fits freely into the seat of the hook and does not
exert a side thrust on the point.
 Check the operation of the brake.
 Check that the bottom hook will reach its lowest point without
running the chain against the stop.
 Adopt safe slinging practices and follow the instructions for the safe
use of the equipment used.
NEVER:
 Expose lever hoists to chemicals, particularly acids, without
consulting the manufacturer.
 Replace the load chain with a longer one without consulting the
manufacturer.
 Extend the lever or use undue effort to force the lever hoists to
operate.
 Throw, drop or drag a lever hoist.
 Allow oil or grease to come into contact with the brake.
 Expose a lever hoist directly to the elements, water spray, steam etc
without consulting the manufacturer.
17. LIFTING APPLIANCE
17.3. WIRE ROPE GRIP/PULL LIFTING MACHINE
17.3.1. TYPE:
MATERIAL HOISTING CAPACITY
Fig. 8 Fig. 9 Fig. 10
17.3.2. IDENTIFICATION:
Forward lever Reversing lever
Aluminum housing
Rope clamp
disengagement
lever
Identification
Marking
Safety catch
Hook
Fig. 11
Overload protection
(Shear pin)
17.3.3. APPLICATION/METHOD:
Rigging Arrangement
 Diverters
 Pulley Blocks
 Anchorage and suspension points
 Imposed loads
Storing and Handling
 Never return damaged grip/ pull machines, ropes etc. to storage.
 Grip/Pull machines should be dry, clean and protected from corrosion.
 Rope should be carefully coiled onto a suitable drum or frame for storage,
taking care to avoid any twists
 Store machines and ropes on a suitable rack, not on the floor where they may
be damaged.
17. LIFTING APPLIANCE
17.3. WIRE ROPE GRIP/PULL LIFTING MACHINE
17.3.3. APPLICATION/METHOD: (cont.)
ALWAYS:
 Store and handle grip/pull machine correctly.
 Inspect the machine, rope and accessories before use and before
placing into storage.
 Ensure mounting and suspension points are secure and suitable for the
full loads that will be imposed.
 Ensure the machine is free to align correctly with the rope and the rope
is free of any obstructions.
 Use only the correct rope supplied for the machine.
NEVER:
 Use kinked, damaged ropes or ropes with broken wires.
 Extend or force operating levers.
 Operate raising and lowering levers at the same time.
 Use grip/pull machines if the rope is twisted or trapped.
 Use grip/pull machine for man-riding applications unless they are
specifically designed/adapted for that purpose.
17. LIFTING APPLIANCE
17.4. FAMILIARIZATION OF CRANE OPERATION:
17.4.1. Basic Crane Configuration
AXIS OF
ROTATION
BOOM ANGLE
HORIZONTAL
OPERATING
RADIUS
Fig. 12
Onshore Crane (Rough Terrain)
BALANCE POINT OR
FULCRUM
BOOM
ANGLE IN DEGREES
WEIGHT OF:
BLOCK
SHACKLES AND SLINGS
LOAD
OF ROTATION
RADIUS IN FEET
Fig. 13
Offshore Crane (Pedestal)
17.4.2. Basic Crane Functions: Lifting, Booming & Swinging
BOOMING
LIFTING
SWINGING
Fig. 14
17. LIFTING APPLIANCE
17.5. FAMILIARIZATION OF CRANE TYPES:
The hook is
directly above the
load’s C of G.
Boom angle, boom length and load radius are
known and the crane’s rated capacity is known.
Rigging is
correct.
Load weight is known.
Outrigger pads are
on solid footing or
blocking.
All outrigger beams are fully extended.
(Partial extension permitted as per manufacturer’s
load chart)
All wheels are clear of ground.
Crane is level.
Fig. 15
17.5.1. Rough Terrain
Crane
Fig. 17
17.5.2. Tower Crane
17. LIFTING APPLIANCE
17.5. FAMILIARIZATION OF CRANE TYPES: (Cont.)
The hook is directly
above the load’s
Center of Gravity.
Rigging is
correct.
Boom angle, boom length and load
radius are known and the crane’s
rated capacity is known.
Load
weight is
known.
Fig. 18
17.5.3. Crawler Crane
Crane is set up level
on firm, stable ground
or blocking.
BOOM POINT
EXTENSION (JIB)
LOAD BLOCK
PENDANT CABLES
WHIP LINE
LOAD LINE
TRAVELING
MAST
BOOM
BACKSTOPS
GANTRY
BOOM HEAD
SECTION
BOOM
INTERMEDIATE
SECTION
HEADACHE BALL
BOOM BUTT
SECTION
COUNTER
WEIGHT
PEDESTAL
TURNTABLE CAB
Fig. 19
17.5.4. Offshore Crane
18. LOAD
18.1. STANDARD SIGNS IDENTIFICATION
THIS SIDE UP AWAY FROM
HEAT
THIS SIDE UP
Fig. 1 Fig. 2 Fig. 3
AWAY FROM
WATER
CENTER OF
GRAVITY
NO HOOKS
Fig. 4 Fig. 5
Fig. 6
SLING HERE FRAGILE HANDLE
WITH CARE
SLING HERE
Fig. 7 Fig. 8 Fig. 9
18. LOAD
INSPECTION:
Check For:
 Data plate for standard of manufacture
 Certification date and make sure that there is
at least 1 month certification remaining or to
local regulation
 Capacity of the Cargo Carrying Units (CCU)
and ensure its not overloaded
 Structure and general condition of CCU
 Condition of door locks and seals
Door Seals
Door
Legs for Twists
Slings
 Heavier cargo is at the bottom
 Cargo is lashed down or wedged in place
 Door safety nets are fitted where possible
 Condition of slings and shackles
 Weight as manifested
Locking Mechanical
Damage
Certification
Fig. 10
18.2. CONTAINERS /
CARGO BOXES
Condition of
 Drainage holes are clear, In open top units
ENSURE
 Correct hazard labels are affixed if applicable
 Old hazard labels are removed
 Adequate packing between the items of
freight
 There are loose items on the roof of the CCU
MAKE sure there are no sharp items next to soft
skinned drums
Condition of
Frame
Tank Certification
Correct Hazard
Labels Fitted
Valves are
Locked Shut
Fig. 11
18.3. FUEL /
CHEMICAL TANKS
Gross
Weight for
Overload
18. LOAD
18.4. GAS CYLINDER RACK
18.4.1. INSPECTION:
Securing
 all Gas Cylinder racks should have a primary and
secondary method of securing the cylinders for
transit. (see Fig. 12)
Advisable
 To have an increased factor of safety.
18.5. MAN BASKETS
18.5.1. INSPECTION:
18.5.2. PERSONNEL:
 In suspended baskets a distribution as symmetrical as
possible of the load should be achieved.
 Persons in suspended baskets should fasten their safety
harness onto the anchorages provided.
 The basket rated capacity should not be exceeded.
 Tools and material carried by personnel should be
secured, in particular against displacement, tipping, and
falling out.
 Occupants shall not stand on or work from the handrail or
side protection of the suspended basket or anything in it.
 The basket shall be positioned on a firm surface during
access and egress.
 Any power cables or hoses provided to the basket should
be connected in such a way that they will not interfere
with the safe operation of the basket.
 Power cables or hoses shall not be used as guide ropes.
 When electric welding from the basket, special care shall
be taken to earth the basket in order to protect the crane
and/or its ropes from becoming conductors of electricity.
 All movements should proceed gently with low speeds.
Fig. 12
Fig. 13
18. LOAD
18.6. COMMON LOADS:
18.6.1. Concrete and Muck Skips
Concrete and muck skips should not be lifted directly by the
crane hook. A single-leg sling (commonly known as a
drop or skip chain) should be used, as moving a heavy
crane hook precisely into place can be difficult. (see Fig.
14)
Fig. 14
18.6.2. Scaffold Tubes
When lifting bundles of tubes, bars or other loose
materials, whether banded or not, slings should be double
wrap choke hitch. SWL factor for slings used thus is 0.8 of
SWL. (see Fig.15)
18.6.3. Palletized loads
An example of a frequently lifted load that requires
special equipment is a pallet of bricks, blocks etc
requiring crane forks with safety netting. Note that the
mesh size should be smaller than the smallest item to be
lifted. (see Fig. 16)
18.6.4. Beams
Use double wrapped slings when sling legs can slide
together. SWL factor for slings used thus is 0.8 of SWL.
(see Fig. 17)
Fig. 15
Fig. 16
Fig. 17
18. LOAD
18.6.5. Stillages
Wrap slings round corner posts. Do not attempt to lift double
stacked stillages. Beware of overloading scaffold boards if
landing loaded stillages on a scaffold. SWL factor for chain
slings used thus is 0.8 of SWL. (see Fig. 18)
18.6.6. Rubbish Skips
Typical arrangement of special sling, with steel box sections
under skip, and steel tube spreaders to keep sling legs
vertical. Keyhole plates on skip lugs are for location
purposes, not for lifting. Skips with specially adapted lifting
points are acceptable providing thorough examination is
undertaken at 6 month intervals. Beware of rusted floors,
they can fall out when the skip is lifted. (see Fig. 19)
18.6.7. Pipes
 For short pipes, pass sling through pipe. SWL factor for
webbing slings used thus is 1.4. (see Fig. 20)
 For long pipes, use two slings in choke hitch, double
wrapping if slings are likely to slide together. Provided that
no angle exceeds 90˚at Included angle, then use the SWL
for one sling for the SWL of this arrangement. (see Fig. 21)
 Note that a shackle is required to connect the slings at the
top.
Fig. 18
Fig. 19
Fig. 20
Fig. 21
18. LOAD
18.6.8. Mesh
Pass each hook of a four-legged chain through the
mesh and return to form a choke hitch. Lifting
points to be positioned evenly to prevent undue
bending on the mesh bundle. Tighten bite as
necessary. (see Fig. 22)
18.6.9. Prefabricated Rebar Assemblies
These assemblies rely on tying wire to hold them
together. Attachment points MUST be agreed
(formally) with your Appointed Person and
Temporary Works Coordinator.
18.6.10. ISO Containers and Portable Offices
 Special lifting gear must be used to lift containers.
This gear will be fitted with ISO Twist locks which are
designed to fit the sockets in the corners of the
container. Never use any type of hook, shackle or
other device fitted directly into these sockets.
(see Fig. 23)
 Refer to the portable office manufacturers
literature for maximum weight (office and
contents), and for minimum sling leg length.
Consider carefully for both offices and containers,
secure jack legs. (see Fig. 24)
 To prevent them falling out check for:
• Weight of contents
• Loose items that may slide during lifting
• Condition of floor of containers
• Access to attach and detach slings
Fig. 22
Fig. 23
CONTAINER
Fig. 24
PORTABLE OFFICE
18. LOAD
18.7. CENTRE OF GRAVITY AND SLING LOADING:
Centre of Gravity – is a point which, if the load could
be suspended from it, the load would be in perfect
balance.
The crane hook needs to be directly over the centre
of gravity, for the load to be stable.
 Fig.25 - This load is not stable. The hook is over the
centre of gravity, but the centre of gravity is above
the crane hook. This hook is top-heavy, and could
overturn while being craned.
 Fig.26 & 27 - This load is not stable. The hook is not over
the load’s centre of gravity. Lifting a load with the centre of
gravity offset will cause the load to shift until a balance is
restored. The load will shift until the centre of gravity is
under the hook. this will make landing the load very
difficult, and could cause major problems in crainage.
 Fig. 28 – Start like this…
 The hook is over the centre of gravity.
Fig. 25
Fig. 26
Fig. 27
Fig. 28
19. TABLE/CHART
19.1. SHACKLE ANGULAR LOADING CAPACITY:
Side Loading Reduction and Strength Efficiency Values (For Screw Pin and Bolt-Type
Shackles Only)
NOTE: Do not side load round pin shackles.
Fig. 1
19. TABLE/CHART
19.2. CONVERSION TABLE:
19. TABLE/CHART
19.3. FORMULA-VOLUMES OF COMMON SHAPES:
PYRAMID V=¼ L x B x H SOLID CYLINDER V= π x r² x L
L
H
L B r
Fig. 3 Fig. 4
RECTANGULAR SOLID V=L x B x H THIN WALLED PIPE V= π x d x L x t
L
H
L
B
t
d
Fig. 5 Fig. 6
SPHERE V= 4π x r³
3
THICK WALLED PIPE V= π(r1² - r2²) x L
L
r
Where:
r1
r1 (outer radius) r2
r2 (inner radius)
Fig. 7 Fig. 8
19. TABLE/CHART
19.4. APPROXIMATE DENSITY OF COMMON MATERIALS:
(All Weights in metric Tonnes)
M
Ma
at
te
er
ri
ia
al
ls
s D
De
en
ns
si
it
ty
y k
kg
g/
/m
m³
³ D
De
en
ns
si
it
ty
y l
lb
bs
s/
/f
ft
t³
³
Acetylene 1170 73
Aluminum 2725 170
Argon 1780 111
Brass 8350 520
Concrete 2250 140
Copper 8820 550
Iron 7690 480
Lead 11350 708
Oil 810 50
Paper 1130 70
Propane 2010 125
Rubber (Raw) 950 59
Sand (Dry) 1500 94
Sandstone 2500 156
Steel 7850 490
Water 1025 64
Wood (Average) 800 50
20. CALCULATION
20.1. EXAMPLES OF CALCULATING SLING LOADING:
SLING 1 SLING 2 SLING 1 SLING 2
10,000 kg
D1=5m D2=5m
10,000 kg
D1=8m D2=2m
Fig. 1 Fig. 2
SLING 2 : 10,000 x 8 / (8+2) = 8,000 kg
SLING 1 : 10,000 x 2 / (8+2) = 2,000 KG
Steps:
1. Determine the Horizontal sling
angles. (45°)
2. Select corresponding Load
Angle Factor. (1.414)
3. Multiply Load Weight by Load
Angle Factor to get total load on
sling legs. (2000 kg x 1.414 =
2828 kg) (Fig.3) Note:
2000 kg
Fig. 3
4. Divide total load by the number
of sling legs. (2828 kg ÷ 2 =
1414 kg per sling leg)
5. Select slings from the single
vertical leg column within the
sling capacity table.
• When sling angles are between
those listed in chart, use the next
lower sling angle and corresponding
load angle factor.
• When using 3 or 4 sling legs equal
in length, divide the total load by 2.
• When the load is not distributed
uniformly (equally) on sling legs, the
tension on each leg must be
calculated individually.
20. CALCULATION
20.2. EXAMPLES OF CALCULATING SLING LOADING:
Select slings to pick up the load shown below.
Sling 2
STEPS:
60º
10,000 kg
8 m
H
2 m
COG
• Assume the position of hook directly over the center of gravity of load
• Consider an optimal angle of 60°to the horizontal of load
• Since the angle is 60°, the height of the hook is now fixed as is the sling length.
Because the angle is 60°
• Sling 1 length at 60° = Base/cosine 60º= 8m/0.5 = 16m
• Knowing the L/H = 1.2 for 60° sling angle, the height of the hook is
L/H = 1.2
H = 16/1.2
H = 13.3 m
• Additionally, knowing that L/H = 1.2 for 60° sling angle, the load on sling 1
Force acting on sling 1 is 2000kg, Refer page no: 83, fig 2
• Sling 1’s SWL (minimum) calculation:
Sling 1 = 1.2 x Force A or 1.2 x 2,000 kg = 2,400 kg.
• Sling 2’s length can now be calculated to an exact number
• Length of sling 2 = √ (13.3)2 + (2)2 = 13.44 m
• Sling 2’s SWL (minimum) calculation:
• Force acting on sling 2 is 8000kg, Refer page no: 83, fig 2
L/H = 13.44/13.3 = 1.01
Sling 2 = 1.01 x 8,000 kg = 8,084 kg
• Using wire rope slings, 6 x 19 class rope
• With a ferrule secured wire rope slings , Use velosi Rigging chart no:12.1.1
20. CALCULATION
20.3. SLING ANGLES:
21. GLOSSARY
No. PICTURE DESIGNATION DESCRIPTION STANDARD/
REFERENCE
1 Steel Wire Rope
Slings and their
components
Assembly of one or more
steel wire rope legs or an
endless sling for
attaching loads to the
hook of a crane on other
lifting machine
BS EN 13414- 1
other ASME
B30.9
2 Chain Slings and
their components
Assembly of one or more
chains for attaching loads
to the hooks of a crane
or other lifting machine
BS EN 818-
4,5,6 other
ASME B30.9,
ISO 7593
3 Textile Slings and
their components
FLAT WEBBING SLING
Assembly of one or more
sewn webbing
components for attaching
loads to the hook of a
crane or other lifting
machine.
BS EN 1492- 1
and 2 other
ASME B30.9
ROUND WEBBING SLING
4 Shackles (Dee & Bow
type shackle)
Suitable for use with the
eyes and bodies of
hooks, eyebolts, egg
links, wire rope thimbles,
and for the head fittings
of blocks, etc.
BS 3551 other
US-FED. SPEC-
RR-C-271D
DEE
SHACKLE
BOW
SHACKLE
21. GLOSSARY
No. PICTURE DESIGNATION DESCRIPTION STANDARD/
REFERENCE
5 Clamps (Vertical,
Horizontal lifting &
Locking Screw
types)
Plate clamps are used to
lift and transfer metal
plates during rigging
applications.
BS 13155 other
LOLER, ASME
B30.20
VERTICAL LIFTING
LOCKING
HORIZONTAL LIFTING
NON-LOCKING
LOCKING SCREW
Horizontal Clamps-
lift of non-sagging
plates or bundles.
Vertical Clamps-
are used for turning,
lifting, or moving of
sheets, plates or
fabrications.
6 Hook (Eye Sling, “C”
Hook, Sorting & Pipe
Hook types)
EYE SLING HOOK “C” HOOK
PIPE HOOK SORTING HOOK
7 Lifting Beams
(Spreader &
Equalizer Beam
types) and their
components
Is a device for lifting
loads by means of a
device such as a hoist or
crane.
A crosspiece for spacing
the chains or cables
hanging from the hook
of a crane.
BS EN 1677-1,
2, 3, 5 other
ASME B30.10,
ISO 7597, ISO
8539
LOLER / QP
REG. REV.03
L
Li
if
ft
ti
in
ng
g B
Be
ea
am
m
E
Eq
qu
ua
al
li
iz
ze
er
r B
Be
ea
am
m
8 Hand-Operated
Chain Block and
their components
A device for lifting and
lowering a load
suspended from one
chain (the load chain) by
means of human effort
applied to another chain
(the hand chain) and for
holding the load.
BS EN 13157:
2004
21. GLOSSARY
No. PICTURE DESIGNATION DESCRIPTION STANDARD/
REFERENCE
9 Chain Lever Hoist
and their
components.
A portable tool
reeved with a load
chain, and operated
by a lever so as to
give a mechanical
advantage.
BS EN 13157
other ASME
B30.21
10 Wire rope grip/pull
lifting machine
(Tirfor)
A diverters, pulley
blocks- anchorage and
suspension points –
imposed loads.
BS EN 13157
11 Turnbuckles with
different types
12 Beam Clamps with
two types Fixed &
Adjustable.
FIXED CLAMP
ADJUSTABLE
CLAMP
Rigging screw- a tubular
body internally threaded
at each end, with one
right-hand & one left-
hand thread.
Turnbuckles- an open
body consisting of reins,
with bosses at each end
& internally threaded at
each end, with one
right-hand & one left-
hand thread.
BS 4429:
1987
BS 13155 other
LOLER, ASME
B30.20
Lifting Plan
Lift Description: __________________________________________________
Lift Supervisor: _______________________________
Lift Date: _____________________
Lift Criteria Notes/Comments
1. What item(s) will be lifted?
2. Are there any special precautions (such as mats for mobile cranes)?
3. What is the weight of each item and total weight of the load? (For mobile cranes, see the
manufacturer's instructions about components and attachments that must be considered as part of
the load.)
4. Where is the center of gravity located? Note: The center of gravity of an object is that point at
which the object will balance. A stable load is one in which the center of gravity of the load is
directly below the main hook and below the lowest point of attachment of the slings.
5. List each piece of equipment, accessory, and rigging component, by type and rated capacity,
that will be used during the lift.
a. Crane
b. Hoist
c. Fork Truck
d. Slings (identify the configuration used: choker, basket, or vertical, and angle (see Figure 1
below))
e. Shackles
f. Eye Bolts/Swivel Eyes
g. Turnbuckles
h. Spreader Bars
i. Hook (Type and WLL)
j. Other (Special Lifting Fixture, Below the Hook Lifting Devices, Multi Leg Bridle, etc)
6. Are there designated checkpoints or hold points?
7. If yes, list them and their estimated instrument readings, as relevant, so that job progress can be
checked against the plan.
8. How will you rig the load?
9. Will tag lines be needed to control the load?
10. What personnel will you need to assist with the lift?
a. Crane operator
b. Riggers
c. Spotters
d. Tag Line Handlers
e. Fork truck driver
f. Other
11. Safety equipment (hard hats, safety shoes, gloves)
12. Mobile Crane location
a. Will crane be set up on concrete? If yes, can concrete support the weight of the crane and the
load?
b. Will crane be set up on asphalt? If yes, will cribbing be needed (for asphalt temp > 90° F)?
c. Will crane be set up on gravel or rough ground? If yes, cribbing will be required.
13. Are any of the structures listed below located in the area of the crane set up? If yes, indicate
their location on the Load Path Sketch.
a. Manholes
b. Underground voids
c. Pipe chases
d. Overhead obstructions or power lines
14. Additional information
The chart in the middle offers a handy guide for assessing the effective angle of the sling to the relative weight. It
is always better to limit the angle of the sling. Further, such changes in sling angle must be accounted for in
lifts that are close to the sling weight limit and/or for critical lifts (greater than 90% of the crane limit).
Rigging Sketch
Identify the following on your sketch:
a. Lift point identification
b. Method(s) of attachment
c. Load angle factors (e.g., vertical and horizontal vectors of sling loads)
d. Sling angles
e. Accessories used
f. Other factors affecting the equipment capacity
g. Rated capacity of equipment in the configuration(s) in which it will be used. (For mobile cranes, many
factors affect rated capacity, including boom length, boom angle, and work area.)
Load Path Sketch
A load-path sketch shows the load path and height at key points in the job. For lifts with mobile cranes,
include the crane position(s) relative to the load and relative to surrounding obstructions. Where appropriate,
include floor or soil-loading diagrams. Indicate lifting and travel speed limitations if applicable.
Lifting Equipment and the Law
The Detail Of The Legislation
THE ACTS & REGULATIONS IN DETAIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
• The Lifting Operations and Lifting Equipment Regulations 1998
• The Management of Health and Safety at Work Reg’s 1999
• The Provision and Use of Work Equipment Regulations 1998
• The Supply of Machinery (Safety) (Amendment) Regulations 1994
• The Health and Safety at Work Act 1974
2/13
Where Does the Law Come From?
There are currently five pieces of legislation which affect people whose work brings them into contact with lifting equipment. These Acts and
Regulations are -
• The Lifting Operations and Lifting Equipment Regulations 1998
• The Management of Health and Safety at Work Regulations 1999
• The Provision and Use of Work Equipment Regulations 1998
• The Supply of Machinery (Safety) (Amendments) Regulations 1994 and the EC
Machinery Directive 98/37/EC.
• The Health and Safety at Work Act 1974
Who has responsibilities?
More or less everyone who has any contact or dealing with lifting equipment.
Specific responsibilities are given to -
• The employer of a person who uses lifting equipment at work. All responsibilities ascribed to an employer apply to any person who has
control over or supervises the use of lifting equipment.
• The self-employed who uses lifting equipment.
• The equipment user.
• The equipment examiner.
• The designer, supplier and manufacturer of lifting equipment.
What particular responsibilities do these people have?
The employer must -
Under LOLER Reg.4 Ensure that lifting equipment used in his workplace is of adequate strength and stability for each load.
Under LOLER Reg.5 Make special provisions for lifting equipment that carries people.
Under LOLER Reg.6 Ensure that lifting equipment is installed in such a way as to minimise the risk of a person being struck by
a load, and is otherwise safe.
Under LOLER Reg.7 Ensure that lifting equipment is marked with its Safe Working Load.
Under LOLER Reg.8 Ensure that every lifting operation involving lifting equipment is
(a) properly planned by a competent person;
(b) appropriately supervised; and
(c) carried out in a safe manner.
Under LOLER Reg.9 Have in his possession before the first use of any equipment -
(a) a Report of Thorough Examination of Lifting Equipment; or
(b) an EC Declaration of Conformity if the equipment has not been used before.
Under LOLER Reg.9 (a) Examine “below the hook” items every 6 months.
(b) Examine “above the hook” items every 12 months.
(c) Examine more frequently if circumstances require.
(d) Routine inspect between examinations, where safety requires.
Under LOLER Reg.10 Ensure that equipment is not used until a notified defect is rectified.
Under LOLER Reg.11 Keep the following documents -
(a) EC Declaration of Conformity as long as he keeps the equipment
(b) Report of Thorough Examination for “below the hook” items when examined before first use, for
2 years.
(c) Report of Thorough Examination for “above the hook” items when examined before first use,
as long as he keeps the equipment.
(d) Report of Thorough Examination for all periodic examinations, for 2 years.
3/13
What particular responsibilities do these people have? cont...
Under MHSWR
Reg.13 Ensure that his employees are provided with adequate training on
their being exposed to new or increased risks because of the introduction of new work equipment or a
change of work equipment already in use.
Under PUWER Reg.4 Ensure that work equipment is maintained in an efficient state, in efficient working order and in good repair.
Under PUWER Reg.9 Ensure that all employees who use, or supervise or manage the use of work equipment, have received
adequate training in safety, methods, risks and precautions.
Under HSWA s.2 (a) Provide a safe place of work.
(b) Provide safe handling systems.
(c) Maintain equipment at work.
(d) Provide adequate training.
The self-employed have the same responsibilities as the employer above.
The equipment user must -
Under HSWA s.7 Take care of himself and others whom his acts or omissions at work might affect.
The examiner must -
Under LOLER Reg.10 (a) Immediately notify the employer of any defect he finds.
(b) Give to the employer a written “Report of Thorough Examination of Lifting Equipment”.
(c) Notify the Health & Safety Executive of any imminent risk of serious personal injury.
The designer, supplier and manufacturer must -
Under HSWA s.6 (a) Ensure that the equipment he designs and makes is safe.
(b) Ensure it is installed safely.
(c) Carry out necessary tests and examinations to ensure safety.
(d) Provide adequate “Safe Use” information.
Under SMR Reg 12 (a) Issue an EC Declaration of Comformity
(b) Fix a CE mark to the equipment
(c) Ensure that his machinery complies with the essential health and safety requirements to offset the
particular hazards due to a lifting operation.
4/13
5/13
6/13
.
7/13
The Details of the Legislation
The Lifting Operations and Lifting Equipment Regulations 1998
Referred to below as “LOLER”.
Came into force 5th December 1998.
A Regulation under the Health and Safety at Work etc. Act 1974.
Wording lifted direct from LOLER in Italics.
Definitions (LOLER Regulation 2)
• “accessory for lifting” means work equipment for attaching loads to machinery for lifting. It can be assumed that an “accessory for lifting”
is what used to be described as “lifting tackle” and includes slings, shackles, eyebolts, lifting beams and all “below the hook” items of lifting
equipment.
• “examination scheme” means a suitable scheme drawn up by a competent person for such thorough examinations of lifting equipment at
such intervals as may be appropriate for the purpose described in LOLER.
The definition of a “competent person” is conspicuous by its absence.
• “the Executive” means the Health and Safety Executive.
• “lifting equipment” means work equipment for lifting or lowering loads and includes its attachments used for anchoring, fixing or
supporting it. This definition of lifting equipment goes beyond the pre-LOLER definition in that supporting stools, guys and other such
supports are included.
• “lifting operation” means an operation concerned with the lifting or lowering of a load.
• “load” includes a person.
• “thorough examination”
(a) means a thorough examination by a competent person;
(b) where it is appropriate to carry out testing for the purpose described in [LOLER], includes such
testing by a competent person as is appropriate for the purpose.
• “work equipment” means any machinery, appliance, apparatus, tool or installation
for use at work.
Application (LOLER Regulation 3)
(1) LOLER shall apply -
(a) in Great Britain...
(2) LOLER shall apply to an employer in respect of lifting equipment......provided for use or used by an employee of his at work.
(3) LOLER shall also apply -
(a) to a self-employed person in respect of lifting equipment he uses at work.
(b) to a person who has control to any extent of -
(i) lifting equipment;
(ii) a person at work who uses or supervises or manages the use of lifting equipment; or
(iii) the way in which lifting equipment is used.
LOLER specifically excludes some, but not all, shipping operations.
8/13
The Lifting Operations and Lifting Equipment Regulations 1998 cont...
Strength and stability (LOLER Regulation 4) -
Every employer shall ensure that
(a) lifting equipment is of adequate strength and stability for each load, having regard in particular to
the stress induced at its mounting or fixing point;
(b) every part of a load and anything attached to it and used in lifting it is of adequate strength.
Lifting equipment for lifting persons (LOLER Regulation 5)
(1) Every employer shall ensure that lifting equipment for lifting persons -
(a) is such as to prevent a person using it being crushed, trapped or struck or falling from the carrier;
(b) is such as to prevent as far as is reasonably practicable a person using it, while carrying out
activities from the carrier, being crushed, trapped or struck or falling from the carrier;
(c) has suitable devices to prevent the risk of a carrier falling;
(d) is such that a person trapped in any carrier is not thereby exposed to danger and can be freed.
(2) Every employer shall ensure that if the risk described in paragraph (1) (c) [above] cannot be prevented for reasons inherent in the site and
height differences -
(a) the carrier has an enhanced safety coefficient suspension rope or chain; and
(b) the rope or chain is inspected by a competent person every working day.
Positioning and installing (LOLER Regulation 6)
(1) Every employer shall ensure that lifting equipment is positioned or installed in such a way as to reduce to as low as is reasonably
practicable the risk -
(a) of the lifting equipment or load striking a person; or
(b) from a load -
(i) drifting;
(ii) falling freely; or
(iii) being released unintentionally; and is otherwise safe.
“and is otherwise safe” is a significant catch-all. Lifting installations must be safe!
(2) Every employer shall ensure that there are suitable devices to prevent a person from falling down a shaft or hoistway.
Marking of lifting equipment (LOLER Regulation 7)
Every employer shall ensure that
(a) machinery and accessories for lifting loads are clearly marked to indicate their safe working loads;
(b) where the safe working load of machinery for lifting loads depends on its configuration -
(i) the machinery is clearly marked to indicate its safe working load for each configuration; or
(ii) information which clearly indicates its safe working load for each configuration is kept with
the machinery;
(c) accessories for lifting are also marked in such a way that it is possible to identify the
characteristics for their safe use;
(d) lifting equipment which is designed for lifting persons is appropriately and clearly marked to this
effect; and
(e) lifting equipment which is not designed for lifting persons but which might be so used in error is
appropriately and clearly marked to the effect that it is not designed for lifting persons.
9/1
The Lifting Operations and Lifting Equipment Regulations 1998 cont...
Organisation of lifting operations (LOLER Regulation 8)
(1) Every employer shall ensure that every lifting operation involving lifting equipment is
(d) properly planned by a competent person;
(e) appropriately supervised; and
(f) carried out in a safe manner.
This is a new concept to lifting equipment legislation. It is the “operation” not just the equipment that must be safe.
Thorough examination and inspection (LOLER Regulation 9)
(1) Every employer shall ensure that before lifting equipment is put into service for the first time by him it is thoroughly examined for any
defect unless either -
(a) the lifting equipment has not been used before; and
(b) the employer has an EC declaration of conformity made not more than 12 months before the
equipment is put into service.
(2) Every employer shall ensure that, where the safety of lifting equipment depends on the installation conditions, it is thoroughly examined
(a) after installation and before being put into service for the first time; and
(b) after assembly and before being put into service at a new site or a new location, to ensure that it
has been installed correctly and is safe to operate.
(3) Every employer shall ensure that lifting equipment which is exposed to conditions causing deterioration which is liable to result in
dangerous situations is
(a) thoroughly examined -
(i) in the case of lifting equipment for lifting persons or an accessory for lifting, at least every
6 months;
(ii) in the case of other lifting equipment, at least every 12 months; or
(iii) in either case, in accordance with an examination scheme; and
(iv) each time that exceptional circumstances which are liable to jeopardise the safety of the
lifting equipment have occurred; and
(b) if appropriate for the purpose, is inspected by a competent person at suitable intervals between
thorough examinations, to ensure that health and safety conditions are maintained and that any
deterioration can be detected and remedied in good time.
Reports and defects (LOLER Regulation 10)
(1) A person making a thorough examination for an employer under regulation 9 [of LOLER] shall-
(a) notify the employer forthwith of any defect in the lifting equipment which in his opinion is or
could become a danger to persons;
(b) as soon as is practicable make a report of the thorough examination in writing signed by him or
on his behalf......and containing the information specified in Schedule 1 to -
(i) the employer; and
(ii) any person from whom the lifting equipment has been hired or leased;
(c) where there is in his opinion a defect in the lifting equipment involving an existing or imminent
risk of serious personal injury send a copy of the report as soon as is practicable to the relevant
enforcing authority.
(2) A person making an inspection for an employer under regulation 9 [of LOLER] shall -
(a) notify the employer forthwith of any defect in the lifting equipment which in his opinion is or
10/13
The Lifting Operations and Lifting Equipment Regulations 1998 cont...
could become a danger to persons;
(b as soon as is practicable make a record of the inspection in writing.
(3) Every employer who has been notified [of a defect] shall ensure that lifting equipment is not used -
(a) before the defect is rectified; or
(b) after a time specified [in the defect report] and before the defect is rectified.
Keeping information (LOLER Regulation 11)
(1) an EC declaration of conformity [shall be kept by an employer] so long as he operates the lifting equipment.
(2) The employer shall ensure that the information contained in -
(a) every report of thorough examination is kept available for inspection -
(i) ...for a “prior to first use thorough examination of equipment” (i.e. under Regulation 9 (1))
lifting equipment other than an accessory for lifting (i.e. for “above the hook” equipment)
until he ceases to use the lifting equipment;
(ii) ...for a “prior to first use thorough examination of equipment” (i.e. under Regulation 9 (1)) an
accessory for lifting, (i.e. for “below the hook” equipment) for two years after the report is made.
(iii) ...for a “prior to first use thorough examination of installation” (i.e. under Regulation 9 (2))
until he ceases to use the lifting equipment it was installed or assembled.
(iv) ...for a “periodic examination of equipment” (i.e. under Regulation 9 (3)) until the next report
is made......or the expiration of two years whichever is later.
(b) every [inspection record] is kept available until the next such record is made.
Repeal of provisions of the Factories Act 1961 (LOLER Regulation 15)
Sections 22,23 and 25 to 27 of the Factories Act 1961 (d) are repealed.
Information to be contained in a report of a thorough examination (Schedule 1)
1 The name and address of the employer for whom the thorough examination was made.
2 The address of the premises at which the thorough examination was made.
3 Particulars sufficient to identify the lifting equipment including where known its date of manufacture.
4 The date of the last thorough examination.
5 The safe working load of the lifting equipment or (where its safe working load depends on the configuration of the lifting equipment) its
safe working load for the last configuration in which it was thoroughly examined.
6 In relation to the first thorough examination of lifting equipment after installation or after assembly at a new site or in a new location -
(a) that it is such a thorough examination;
(b) (if such be the case) that it has been installed correctly and would be safe to operate.
7 In relation to a thorough examination of lifting equipment other than a thorough examination to which paragraph 6 relates -
(a) whether it is a thorough examination -
(i) within an interval of 6 months under regulation 9(3)(a)(i);
(ii) within an interval of 12 months under regulation 9(3)(a)(ii);
(iii) in accordance with an examination scheme under regulation 9(3)(a)(iii); or
(iv) after the occurrence of exceptional circumstances under regulation 9(3)(a)(iv);
(v) (if such be the case) that the lifting equipment would be safe to operate.
8 In relation to every thorough examination of lifting equipment -
(a) identification of any part found to have a defect which is or could become a danger to persons,
and a description of the defect;
(b) particulars or any repair, renewal or alteration required to remedy a defect found to be a danger to
persons;
11/13
The Lifting Operations and Lifting Equipment Regulations 1998 cont...
(c) in the case of a defect which is not yet but could become a danger to persons -
(i) the time by which it could become such a danger;
(ii) particulars of any repair, renewal or alteration required to remedy it;
(d) the latest date by which the next thorough examination must be carried out;
(e) where the thorough examination included testing, particulars of any test;
(f) the date of thorough examination.
9. The name, address and qualifications of the person making the report; that he is
self-employed or, if employed, the name and address of his employer.
10 The name and address of a person signing or authenticating the report on behalf
of its author.
11. The date of the report.
The Management of Health and Safety at Work Reg’s 1999
Referred to below as “MHSWR”.
Came into force 29th December 1999.
A Regulation under the Health and Safety at Work etc. Act 1974.
Wording lifted direct from MHSWR in Italics
Capabilities and training (MHSWR Regulation 13)
(2) Every employer shall ensure that his employees are provided with adequate health and safety training -
(b) on their being exposed to new or increased risks because of -
(iii) the introduction of new work equipment or a change respecting work equipment already in
use within the employer’s undertaking.
The Provision and Use of Work Equipment Regulations 1998
Referred to below as “PUWER”.
Came into force 5th December 1998.
A Regulation under the Health and Safety at Work etc. Act 1974.
Wording lifted direct from PUWER in Italics
Interpretation (PUWER Regulation 2)
(1) ...”work equipment” means machinery, appliance, apparatus, tool or installation for use at work...
Application (PUWER Regulation 3)
(1) PUWER shall apply in Great Britain.
Suitability of work equipment (PUWER Regulation 4)
(1) Every employer shall ensure that work equipment is maintained in an efficient state, in efficient working order and in good repair.
12/13
The Lifting Operations and Lifting Equipment Regulations 1998
Training (PUWER Regulation 9)
(1) Every employer shall ensure that all persons who use work equipment have received adequate training for purposes of health and safety,
including training in the methods which may be adopted when using the work equipment, any risks which such use may entail and
precautions to be taken.
(2) Every employer shall ensure that any of his employees who supervises or manages the use of work equipment has received adequate
training for purposes of health and safety, including training in the methods which may be adopted when using the work equipment, any
risks which such use may entail and precautions to be taken.
The Supply of Machinery (Safety) (Amendment) Regulations 1994
Referred to below as “SMR”.
Came into force 1st January 1993.
Requirements for Supply of Relevant Machinery (Regulation 12)
The manufacturer (or original importer into the EC) of a lifting machine (the definition of machine includes all useable equipment,
e.g. shackles, chain slings) must
(a) Satisfy the relevant health and safety requirements detailed in the SMR (see below).
(b) Carry out an appropriate test and assessment procedures.
(c) Issue an EC Declaration of Conformity.
(d) Fix a CE mark.
(e) Ensure the machinery is in fact safe.
Essential Health and Safety Requirements to Offset the Particular Hazards Due to a Lifting Operation (Schedule 4)
The SMR places requirements on the designer and manufacturer of machinery. These requirements cover -
(a) Stability.
(b) Guide rails and rail tracks.
(c) Mechanical strength.
(d) Pulleys, drums, chains or ropes.
(e) Separate lifting accessories.
(f) Control of movements.
(g) Handling of loads.
(h) Control devices.
(i) Loading control.
(j) Risks to exposed persons.
(k) Fitness for purpose.
(l) Marking.
(m) Instruction handbook.
The requirements are detailed, but it is the responsibility of the Rossendale Group to ensure that they are complied with when it
manufactures and supplies or installs lifting equipment.
When the Rossendale Group supplies equipment manufactured by others, it is the responsibility of the manufacturer (or supplier) to ensure
compliance with the essential health and safety requirements.
Under SMR a ’machine’ is much more broadly defined than our traditional understanding. If it is a piece of lifting equipment capable of
being used on it’s own, it is a ‘machine’ under SMR. This would include a shackle or a sling.
The Health and Safety at Work Act 1974
Referred to below as “HSWA”.
Wording lifted direct from HSWA in Italics
General Duties of Employers to their Employees (HSWA Section 2)
(1) It shall be the duty of every employer to ensure, so far as is reasonably practicable, the health, safety and welfare at work of all his
employees.
(2) ...the matters to which that duty extends in particular -
(a) the provision and maintenance of plant and
systems of work that are, so far as is reasonably
practicable, safe and without risks to health;
(b) arrangements for ensuring, so far as is reasonably
practicable, safety and absence of risks to health in
connection with the use, handling, storage and
transport of articles and substances;
(c) the provision of such information, instruction, training
and supervision as is necessary to ensure, so far as is
reasonably practicable, the health and safety at work of
his employees.
(d) so far as is reasonably practicable as regards any place
of work under the employer’s control, the maintenance
of it in a condition that is safe and without risks to
health...
(e) The provision and maintenance of a work
environment for his employees that is, so far as is
reasonably practicable, safe...
General Duties of Manufacturers (HSWA Section 6)
(1) It shall be the duty of any person who designs, manufactures, imports or supplies [lifting equipment] -
(a) to ensure, so far as is reasonably practicable, that the [equipment] is designed and
constructed as
to be safe and to be without risks to health when properly used;
(2) “When properly used” is a significant caveat.
(b) to carry out........such testing and examination as may be necessary [to ensure that
it is safe];
(c) to make available adequate information about the use
for which [the equipment] is designed........and about
any conditions necessary to ensure that, when put to
that use, it will be safe and without risks to health.
(3) It shall be the duty of any person who erects or installs any article for use at work, so far as is
reasonably practicable, that nothing about the way in which it is erected or installed makes it
unsafe.......when properly used.
General Duties of Employees at Work (HSWA Section 7)
It shall be the duty of every employee, while at work -
(a) to take reasonable care for the health and safety of
himself and of other persons who may be affected
by his acts or omissions at work.
American Institute of Steel Construction
AISC Specifications for the design, fabrication,
and erection of structural steel for buildings.
American Iron and Steel Institute
AISI Standards for Type-302 or Type-304
stainless steel.
American National Standards Institute
and
American Society of Mechanical
Engineers
ANSI A10.28, Work Platforms Suspended From
Cranes or Derricks.
ANSI A10.18, Floor and Wall Openings,
Railings and Toe Boards.
ASME B30.2, Overhead and Gantry Cranes
(Top-Running Bridge, Single or Multiple Girder,
Top-Running Trolley Hoist).
ASME B30.5, Mobile and Locomotive Cranes.
ASME B30.6, Derricks.
ASME B30.7, Base-Mounted Drum Hoists.
ASME B30.9, Slings.
ASME B30.10, Hooks.
ASME B30.11, Monorail Systems and
Underhung Cranes.
ASME B30.12, Handling Loads Suspended from
Rotorcraft.
ASME B30.14, Side Boom Tractors.
ASME B30.16, Overhead Hoists (Underhung).
ASME B30.17, Overhead and Gantry Cranes
(Top Running Bridge, Single Girder, Underhung
Hoist).
ASME B30.20, Below-The-Hook Lifting
Devices.
ASME B30.21, Manually Lever Operated
Hoists.
ASME B30.22, Articulating Boom Cranes.
ASME B30.23, Personnel Lifting Systems.
ASME B56.1, Safety Standard for Powered
Industrial Trucks – Low Lift and High Lift
Trucks.
ASME B56.5, Guided Industrial Vehicles.
ASME B56.6, Rough Terrain Fork Lift Trucks.
ASME B56.7, Industrial Crane Trucks.
Special Notice 6-88.
ASME B56.11.4, Forks and Fork Carriers for
Powered Industrial Fork Lift Trucks, Hook Type.
ASME PALD, Portable Automotive Lifting
Devices.
ANSI/ASTM Specification A391, Specification
for Alloy Steel Chain.
ANSI/ASTM Specification E-165, Standard
Practice for Liquid Penetrant Inspection Method.
ANSI/ASTM Specification E-709, Standard
Practice for Magnetic Particle Examination.
ANSI/AWS D14.1, Specification for Welding of
Industrial and Mill Cranes and Other Material
Handling Equipment.
ASME HST-1M, Performance Standard for
Electric Chain Hoists.
ASME HST-2M, Performance Standard for
Hand Chain Manually Operated Chain Hoists.
ANSI/ASME HST-3M, Performance Standard
for Manually Lever Operated Chain Hoists.
-1
ANSI/ASME HST-4M, Performance Standard
for Electric Wire Rope Hoists.
ANSI/ASME HST-5M, Performance Standard
for Air Chain Hoists.
ANSI/ASME HST-6M, Performance Standard
for Air Wire Rope Hoists.
ANSI MH 27.1, Specifications for Underhung
Cranes and Monorail Systems.
ANSI N14.6, Standard for Special Lifting
Devices for shipping Containers Weighing
10,000 Pounds (4500 kg) or More for Nuclear
Materials.
ASME NQA-1, Quality Assurance Program
Requirements for Nuclear Facilities.
ASME Cranes for Nuclear Facilities:
ASME NUM-1, Rules for Construction of
Cranes, Monorails, and Hoists (With Bridge
or Trolley or Hoist of the Underhung Type).
ASME NOG-1, Rule for Construction of
Overhead and Gantry Cranes (Toprunning
Bridge, Multiple Girder).
American Society for Nondestructive
Testing
Recommended Practice No. ASNT-TC-1A.
American Welding Society
ANSI/AWS D1.1 Structural Welding Code –
Steel.
Crane Manufacturers’ Association of
America
CMAA No. 70, Specification for Electric
Overhead Traveling Cranes.
CMAA No. 74, Specification for Top Running
and Under Running, Single Girder, Electric
Overhead Traveling Cranes.
Department of Energy
DOE 440.1A, Worker Protection Management
for Federal and Contractor Employees.
DOE 440.1-6, Suspect Counterfeit Items Guide.
-2
Department of Labor
29 CFR 1910, Occupational Safety and Health
Standards for General Industry.
29 CFR 1926, Occupational Safety and Health
Regulations for Construction.
Department of Transportation
49 CFR 391.41, physical Qualification for
Drivers.
National Fire Protection Association
ANSI/NFPA 505, Powered Industrial Trucks,
Type Designation and Areas of Use.
NFPA 70, National Electrical Code.
Power Crane and Shovel Association
PCSA-4, Mobile Power Crane and Excavator
Standards and Hydraulic Crane Standards.
Society of Automotive Engineers
SAE J376-85, Load-Indicating Devices in
Lifting Crane Service.
Code.SAE J765, Crane Load Stability Test
SAE J874, Center of Gravity Test Code.
SAE J987, Crane Structure, Method of test.
Underwriters’ Laboratories
UL 558, Internal-Combustion-Engine-Powered
Industrial Trucks.
UL 583, Electric-Battery-Powered Industrial
Truck
Lifting equipment, also known as lifting gear, is a general term for any equipment that can be used to lift and lower loads.

Lifting equipment, also known as lifting gear, is a general term for any equipment that can be used to lift and lower loads.

  • 1.
    LIFTING PRACTICES FOR ENGINEER .S T U D E N T M A N U A L . Prepared by : Mohsen Abozaid
  • 3.
    TABLE OF CONTENTS 1.Introduction 3 2. Duties and Responsibilities (Summarized) 4 3. Safety Awareness 3.1. General 5 3.2. Safety System 5 3.3. Personal Protective Equipment 5 3.4. Lifting Hazards 6 3.5. Electrocution Hazard 8 3.6. Overload and Maintenance Hazards 8 4. Hand Signals 4.1. Hand or Radio Signal Policy 9 4.2. Use of Standard Hand Signals 9 5. Types of Hitches 13 6. Wire Rope Slings 14 7. Chain Slings 23 8. Synthetic Flat Webbing 24 9. Synthetic Round Slings 33 10. Shackles 37 11. Plate Clamps 41 12. Hooks 45 13. Eyebolts 48 14. Turnbuckles 51 15. Lifting Beam 52 16. Beam Clamp 54 17. Lifting Appliance 17.1. Hand-Operated Chain Block 57 17.2. Chain Lever Hoist 61 17.3. Wire Rope Grip/Pull Lifting Machine 64 17.4. Familiarization of Crane Operation: 17.4.1. Basic Crane Configuration 66 17.4.2. Basic Crane Function 66 17.5. Familiarization of Crane Types: 17.5.1. Rough Terrain 67 17.5.2. Tower crane 67 17.5.3. Crawler Crane 68 17.5.4. Offshore Crane 68
  • 4.
    TABLE OF CONTENTS 18.Load 18.1. Standard Signs Identification 69 18.2. Container/Cargo Boxes 70 18.3. Fuel/Chemical Tanks 70 18.4. Gas Cylinder Rack 71 18.5. Man Baskets 71 18.6. Common Loads 18.6.1. Concrete and Muck Skips 72 18.6.2. Scaffold Tubes 72 18.6.3. Palletized Loads 72 18.6.4. Beams 72 18.6.5. Stillages 73 18.6.6. Rubbish Skips 73 18.6.7. Pipes 73 18.6.8. Mesh 74 18.6.9. Pre Fabricated Rebar Assemblies 74 18.6.10. ISO Containers and Portable Offices 74 18.7. Centre of Gravity 75 19. Table/Chart 19.1. Shackle Angular Loading Capacity 76 19.2. Conversion Table 77 19.3. Formula Volume of Common Shapes 78 19.4. Approximate Density of Common Materials 79 20. Calculation 20.1. Example of Calculating of Sling Loading No. 1 80 20.2. Example of Calculating of Sling Loading No. 2 81 20.3. Sling Angles 82 21. Glossary 83 22. Lifting Plan Preparation 23 Lifting Law.
  • 5.
    1. INTRODUCTION Knowledge ofthe equipment and materials with which we work is one of the most important factors in accident prevention. Each piece of equipment and material has been designed and developed to serve a specific purpose and knowledge of what it can and cannot do, not only improves efficiency but also eliminates hazards. Owing to the many variations in rigging practices and the different ways in which rigging is used, recommendations must, of necessity, be framed in general terms. The recommendations can only be advisory in nature and are intended to complement relevant regulations and manufacturers’ requirements which must be observed. The rigger must apply his or her intelligence, common sense, and experience in anticipating what will happen when the load is moved. This thought process must take place before the work is started. In order to ensure the design of a safe and efficient system, the rigger must answer such question as: 1. What is to be done with load? 2. What will be the travel path of the load to reach the desired location? 3. How will the load be set down at the desired location? 4. How can the hookup be made? 5. What tools are needed to perform the desired task? 6. What other factors are involved (weather, electrical wires, sloping grades, visibility)? 7. Do the tools have the capacity to handle the loads and forces involved? 8. Are additional personnel needed to control the load safely during the Lifting process? Four Basic Rules of Rigging 1. Know the Weight 2. Know the Capacity 3. Retain the Load 4. Control the Load Hoist line Hook Block Sling Rigging Shackle Eyebolt Load
  • 6.
    2. RIGGERS DUTIES ANDRESPONSIBILITIES (SUMMARIZED) 01 Observe all Safety Pre-cautions 02 Check the load to be lifted 03 Check the working area  Ensure you have the correct PPE to carry out your job on site.  Observe All Safety Warning Signs and any Emergency Stop Signals from anyone  Ensure that you aware of Fire fighting Equipment and  First Aid Procedures (Emergency Contact number for Qatar is 999)  Find the weight and Centre of Gravity (COG)  Ensure that the hook is directly above the centre of gravity of the load prior to lifting, NO SIDE LOADING  Identify the type of load, and locate the maximum radius.  Identify the hazards (Power Lines, People, other Equipments and ground conditions. 04 Inspect Rigging Gears and Lifting Equipment 05 Attaching and Detaching Lifting Equipment 06 Communication between the Crane Operator and Rigger 07 Secure and Maintain Lifting Equipment  Ensure that you carry out a Pre Use Check on Equipment to be used.  Ensure that the equipment used has a valid Test Certificate and correct colour code.  Always refer to the correct rigging information chart  Identify the type of Hitch to be used (Choker, Vertical or Basket)  Connect the load ensuring that the sling angle is appropriate to the capacity of the slings used.  Ensure that You and Crane Operator understand the correct standard signal being used.  If you can not see the crane operator when carrying out lifts. Ensure that other means of communication are in place (Radio’s and the Correct procedure for use)  After using any lifting equipment, Ensure that it is Cleaned and Returned in a Serviceable condition and Stored correctly. 08 Reporting  Always ensure that you report anything that could be considered a Danger, Either with equipment on your pre-use check or by anything you have seen on your working site.  Any defects found on any lifting equipment after use are to be reported and not to be used until certification. To ensure the equipment is safe to be used by a competent person.
  • 7.
    3.SAFETY AWARENESS 3.1. GENERAL: Safe lifting and rigging often needs to be carried out at a height where danger from falling is greater than normal. 3.2. SAFETY SYSTEMS:  A safety system could include either one or a combination of the following devices:  Anchors and Inserts  Ropes and Slings  Lanyards and Shock absorbers Inertia reels (retractable lifelines)  Tensioning devices  Harnesses and Belts Fig. 1  Safety nets Fig. 2  Barricades or Guardrails Fig. 3 Fig. 1 Fig. 2 Fig. 3 3.3. PERSONAL PROTECTIVE EQUIPMENT (PPE)  Personal protective equipment includes the following:  Hard hat and safety shoes or boots to approved standard Fig. 4 & 5  Close-fitting overalls or clothes and close-fitting leather gloves. Fig. 6 & 7  Safety reflective vest. Fig. 10  Ear and eye protection. Fig. 8 & 9 Fig. 4 Safety Shoes Fig. 5 Safety Helmet Fig. 6 Safety Overall Fig. 7 Leather Gloves Fig. 8 Ear and Eye Protection Fig. 9 Eye Goggle Fig. 10 Safety Reflective Vest
  • 8.
    3. SAFETY AWARENESS 3.4.LIFTING HAZARDS:  Be aware of the Wind Speed and direction  The maximum wind capacity is 20 knots (QP regulations Revision 4, state 25 knots or 12.5m/sec) However, values set by individual crane manufactures. If Lesser, are to be used.  If the wind is above the recommended speed, then the rigging and crane operations will Not Be allowed to continue.  Be aware that for relatively large, light loads, there is a risk that the load will be blown about by the wind. (see Fig. 11)  Ensure all hands are free of lifting tackle and stand clear before the load strain is taken.  Stay back when slings are pulled out from under loads. (see Fig. 12)  Ensure that NO load is to be lifted where the weight is not stated or unknown. (see Fig. 13)  Observe & note other activities within the crane’s operating area to avoid the development of any unforeseen hazards.  Check that the area around the load to be lifted is clear and that the load is not attached to the floor, transportation cradle or adjacent equipment. (see Fig. 14)  Ensure taglines are always attached to loads that are likely to swing, to control the load. (see Fig. 15)  Check slings are in good condition and adequate for load to be lifted.  Check for clear work area.  Ensure the load is equally distributed.  Provide packing to prevent sling damage.  The load should be placed on timber dunnage. (see Fig. 15) Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15
  • 9.
    3. SAFETY AWARENESS 3.4.LIFTING HAZARDS: (cont.) During the Lift  The load can now be lifted and moved to its landing area, while in the air, avoid: ● Where possible, passing over personnel working on the site ● The public ● Power lines ● Projecting scaffolding ● Air space violation Landing the Load  The load should be landed gently to ensure that it is not damaged and that the crane does not receive any shock loading.  Before landing the load, check that:  The landing area will take the weight of the load  There is sufficient space for the load  There are strips of timber or similar on which to land this load so that the slings can be easily removed by hand.  The Rigger must ensure that he is in a place of safety when receiving the load, ensuring that he cannot be crushed between the load and a fixed object or pushed over an open edge. After the Lift  Only authorized Riggers are to detach the slings from the load.  Take care with bundles of tubes and similar items as they can collapse when landed and pipes can roll, so make sure suitable chocks are used to prevent this from happening.  The legs of the sling should now be hooked back onto the master link, shackle etc on the crane hook, or removed and stored properly.
  • 10.
    3.SAFETY AWARENESS 3.5. ELECTROCUTIONHAZARDS:  If a Rigger has to work near Power Lines, he must ensure that all safety measures are taken and that safety procedures are in place.  Clearly indicate to the crane operator where the load has to be moved / placed and, where possible the Rigger should follow each load to its destination.  A rigging component or a wire rope that has been contacted by an electric arc must be removed until certified safe for continue use by a competent person.  The machine is not insulated.  Accident electrocutions are amongst the most frequently repeated crane accidents.  Most of these are caused when the boom contacts or approaches too close to over head power lines.  The fatality rate is high, particularly among riggers guiding the load.  While the danger is greater from high voltage transmission lines, where flash over can occur without actual contact. Fatal accident have resulted from contact with 440 volts and 220 volts service lines.  The safe procedure is to request the local electrical authority to cut off the power. If for any reason this is not possible or practical, and it is necessary for cranes to work close to hot power lines, then all safety precautions are to be set in place.  Crane operating near high voltage power lines for guide lines, follow the Manufacturers table Fig. 16 3.6. OVER LOAD & FOR MAINTENANCE HAZARDS:  Be familiar with the lifting capabilities of the crane.  Be aware of any obstructions within the crane radius and working area.  No personnel are allowed below the load whilst lifting is in progress Fig. 17
  • 11.
    4. HAND SIGNALS 4.1.HAND OR RADIO SIGNAL POLICY: 4.1.1. Ensure that both the Rigger and Crane Operator are familiar with the Method of Signaling to be used. 4.1.2. Always use clear and distinct signals (either by Hand or by Radio) to control lifting operations. 4.1.3. If radios are chosen, then the following method of use must be followed. All instructions must be repeated continuously, for example “LOWER, LOWER, LOWER….” until the movement is complete. If the instructions stop getting through to the crane operator, he should immediately bring the load to a HALT. This will guard against failure of the radio system. 4.1.4. In poor light conditions ALL hand signal shall be exaggerated 4.1.5. Clearly indicate to the Crane Operator where the load has to be moved / placed and, where possible, he should follow each load to its destination 4.1.6. When lifting a load. Stop the load just clear of the ground to check security and balance of the load, and check the proper function of the crane’s hoist brakes. 4.1.7. Stop the lifting operation if anything out of the ordinary occurs and check that it is safe to continue the operation. 4.1.8. When working at night, a reflective orange glove is useful for making hand signals more visible. 4.2. ALWAYS USE THE STANDARD HAND SIGNALS: Fig. 1 HOIST. With forearm vertical, forefinger pointing up, move hand in small horizontal circle Fig. 2 LOWER. With arm extended downward, forefinger pointing down, move hand in small horizontal circle
  • 12.
    4. HAND SIGNALS 4.2.ALWAYS USE THE STANDARD HAND SIGNALS: Fig. 3 USE MAIN HOIST. Tap fist on head; then use regular signals Fig. 4 USE WHIPLINE (Auxiliary Hoist). Tap elbow with one hand ; then use regular signals Fig. 5 RAISE BOOM. Arm extended, fingers closed, thumb pointing upward. Fig. 6 LOWER BOOM. Arm extended, fingers closed, thumb pointing downward. Fig. 7 MOVE SLOWLY. Use one hand to give any motion signal and place other hand motionless in front of hand giving the motion signal. (Hoist slowly shown as example) Fig. 8 RAISE THE BOOM AND LOWER THE LOAD. With arm extended, thumb pointing up, flex fingers in and out as long as load movement is desired
  • 13.
    4. HAND SIGNALS 4.2.ALWAYS USE THE STANDARD HAND SIGNALS: (cont.) Fig. 9 LOWER THE BOOM AND RAISE THE LOAD. With arm extended, thumb pointing down, flex fingers in and out as long as load movement is desired Fig. 10 SWING. Arm extended, pointing the direction of swing of boom. Fig. 11 STOP. Arm extended, palm down, move arm back and forth horizontally. Fig. 13 TRAVEL. Arm extended forward, hand open and slightly raised, make pushing motion in direction of travel Fig.12 EMERGENCY STOP. Both arms extended, palms down, move arms back and forth horizontally. Fig. 14 DOG EVERYTHING. Clasp hands in front of Body
  • 14.
    4. HAND SIGNALS 4.2.ALWAYS USE THE STANDARD HAND SIGNALS: (cont.) Fig. 15 EXTEND BOOM (Telescoping Booms). Both fists in front of body with thumbs pointing outward. Fig. 16 RETRACT BOOM (Telescoping Booms). Both fists in front of body with thumbs pointing toward each other. Fig. 17 TRAVEL (Both Tracks). Use both fists in front of body, making a circular motion about each other, indicating direction of travel, forward or backward. (For land crane only) Fig. 19 EXTEND BOOM (Telescoping Boom) One Hand Signal. One fist in front of chest, with thumb tapping chest. Fig. 18 TRAVEL (One Tracks). Lock on side indicated by raised fist. Travel opposite track in direction indicated by circular motion of other fist, rotated vertically in front of body. (For land crane only) Fig. 20 RETRACT BOOM (Telescoping Boom) One Hand Signal. One fist in front of chest, thumb pointing outward and heel of fist tapping chest.
  • 15.
    5. TYPES OFHITCHES APPLICATION/RIGGING METHOD: Fig. 1 Fig. 2 Fig. 3 BASKET HITCHES Metal Mesh Slings Fig. 4 Fig. 5 Fig. 6 Fig. 7 CHOKER HITCHES Fig. 8 Fig. 9 Fig. 10 BRIDLE HITCHES
  • 16.
    6. WIRE ROPESLING 6.1. TYPE: SINGLE-LEG SLING TWO-LEG SLING THREE-LEG SLING FOUR-LEG SLING Fig. 1 Fig. 2 Fig. 3 Fig. 4 6.2. IDENTIFICATION: CORE MASTER LINK STRAND IDENTIFICATION MARKING WIRE WIRE ROPE FERRULE OR ALUMINUM SLEEVE THIMBLE WIRE ROPE HOOKS SAFETY CATCHES Fig. 6 Fig. 5
  • 17.
    6. WIRE ROPESLING 6.3. TERMINATION IDENTIFICATION: 6.3.1. Formation of Eyes: 6.3.1.1. Ferrule-secured eye slings – The minimum length of plain rope between the inside ends of ferrules terminating a sling leg shall be 20 times the nominal rope diameter. 6.3.1.2. Spliced eye slings – The minimum length of plain rope between the tails of splices shall be at least 15 times the nominal diameter. 6.3.1.3. Hard eyes – Hard eyes shall be fitted with thimbles. 6.3.1.4. Soft eyes – The peripheral length of a soft eye shall be at least four rope lay lengths. ID No. SWL Aluminum Sleeve Fig. 7 Fig. 8 Fig. 9 Fig. 10 FERRULE-SECURED HARD/THIMBLE EYE HAND SPLICED SOFT EYE FERRULE-SECURED SOFT EYE WITH STIRRUP FERRULE-SECURED SOFT EYE 6.3.1.5. Terminal Fittings: • The working load limit of any master link shall be at least equal to that of the sling SWL. • The working load limit of any intermediate link fitted to a three-leg or four-leg sling shall be at least equal to 1.6 times the WLL of one of the legs suspended from it. • The working load limit of the lower terminal fitting(s) shall be at least equal to that of the leg(s) to which it is/they are fitted. AT UPPER END AT LOWER END NOMINAL LENGTH OF SLING LEG (bearing to bearing) Fig. 11 Fig. 12 Fig. 13 Link Fig. 14 Shackle Link Hook Fig. 15
  • 18.
    6. WIRE ROPESLING 6.4. WIRE ROPE TYPES:  Independent Wire Rope Core (IWRC) 19 WIRES PER STRAND 6 STRANDS PER CABLE FILLER WIRES 7 x 7 INDEPENDENT 1 WIRE ROPE CORE (IWRC) Fig. 16 Fig. 17 6 x 19 (IWRC)  Fiber Core Wire Ropes (FC) Fig. 18 Fig. 19 6 x 7 (FC) Composed with:  Improved Plow Steel (IPS)  Extra Improved Plow Steel (EIPS)  Extra Extra Improved Plow Steel (EEIPS)
  • 19.
    6. WIRE ROPESLING 6.5. INSPECTION: Check and Recommend for Replacement if found any one of the following:  Heat damage, discoloration, loss off lubricant  More than 10% reduction in rope original diameter  High external corrosion, internal corrosion  Severe distortion-kinks, crushes, knots, bird cages  More than maximum allowed broken wires  Exposure of core, internal damage  Core protrusion as a result of torsional unbalance created by shock loading.  Where the surface wires are worn by 1/3 or more of their diameter, the rope must be replaced.  6 or more randomly broken wires in one lay.  3 or more broken wires in one strand in one lay.  3 or more broken wires in one lay in standing ropes.  Estimate rope’s condition at section showing maximum deterioration. Fig. 20 Core protrusion Worn section Fig. 21 Enlarged view of Single Strand Fig. 22 Protrusion of core resulting from shock loading. Fig. 23 Bird cages Fig. 24 Fig. 26 Multi-Strand rope “Bird cages” Fig. 25
  • 20.
    6. WIRE ROPESLING 6.5. INSPECTION: (cont.) TERMINATIONS 1. Eyes  Distortion  Excessive wear, damage to thimble 2. Securing  Any broken wires near to the ferrules/splice  Broken/damaged ferrules or pulling out  Crushing, abrasion of splice, pulling out 3. Links (master & intermediate )  More than 5% stretch of original length of links  More than 8% wear in links  Bent or twisted links  Correct Way – this gives correct diameter. Fig. 27  Incorrect Way – this does NOT gives correct diameter. Fig. 28
  • 21.
    6. WIRE ROPESLING 6.6 APPLICATION/RIGGING METHOD:  Use a thimble to protect sling and to increase D/d ratio.  Never place sling eye over a fitting with a smaller diameter than the rope’s diameter.  Never place a sling eye greater than one half the natural length.  A basket hitch has twice the capacity of a single leg only if the D/d ratio ≥ 25/1 and legs of sling are vertical. (at other angles, see Table) Fig. 29 Fig. 31 L Fig. 32 Fig. 30 β d  A choker hitch has 80% of the capacity of a single leg only if the corners are softened and the vertical sling angle β is smaller than 60°.  Use blocks to prevent angles greater than 60°. (at other angles, see Table) Fig. 33 D Fig. 34 Fig. 35
  • 22.
    6. WIRE ROPESLING 6.6. APPLICATION/RIGGING METHOD: (cont.) 1. Straight Vertical Hitch - The total weight of the load is carried by a single leg. Fig. 36 2. Single-Leg Sling Single Choke Hitch – This forms a noose in the rope and tightens as the load is lifted. Fig. 37 3. Single-Leg Sling Double Choke Hitch Fig. 38 4. Endless-Leg Sling Double Choke Hitch 5. Two-Leg Sling Double Basket Hitch RIGHT Fig. 39 WRONG Legs will slide together. Fig. 40
  • 23.
    6. WIRE ROPESLING 6.6. APPLICATION/RIGGING METHOD: (cont.) 6. Bridle Hitch – Two, Three, or Four Single leg slings can be used together to form a bridle hitch. CAUTION: • Load may be carried by only 2 legs while 3rd and 4th merely balance it. (Fig 42) Four Points Lift Fig. 41 Fig. 42 7. Single Basket Hitch – This hitch is ideal for loads with inherent stabilizing characteristics. The load is automatically equalized. 8. Double Basket Hitch – Consists of two single basket hitches passed under the load. The legs of the hitches must be kept for enough apart to provide balance without opening excessive sling angles. 9. Double Wrap Basket Hitch – A basket hitch that is wrapped completely around the load. This method is excellent for handling loose materials, pipes, rods, or smooth cylindrical loads. Fig. 43 60º or more Fig. 44 Fig. 45 . 10. Double Choker Hitch – Consists of two single chokers attached to the load and spread to provide load stability. 11. Double Wrap Choker Hitch – The rope or chain is wrapped completely around the load before being hooked into the vertical part of the sling. Do not run the sling through the hook, permitting an unbalanced load to tip. Fig. 46  Fig. 47
  • 24.
    6. WIRE ROPESLING 6.6. APPLICATION/RIGGING METHOD: (cont.) 12. Three-Leg Slings Straight Lift, (SWL) β  Capacity as per Rigging chart tables depending on included angle. β = Beta Angle from the vertical. 13. Four-Leg Slings Straight Lift, (SWL)  Capacity as per Rigging chart tables depending on included angle. Fig. 48 β WIRE ROPE SLING NEVER:  Overload a wire rope sling-allow for angles & mode of use  Force or hammer into position  Join wire ropes with opposite lay  Use twisted or kinked ropes  Attempt to shorten, knot or tie a wire rope sling FIBRE ROPE SLING NEVER:  Overload a fiber rope sling allow for angles & mode of use  Attempt to shorten, knot or tie a fiber rope sling  Use around sharp edge without protection  Expose to direct heat  Wrap a rope around a hook. Fig. 49  NO HAMMERING Fig. 50  No Wrap Roping Fig. 51
  • 25.
    7. CHAIN SLING 7.1.TYPE: Fig. 1 Fig. 2 Fig. 3 Fig. 4 SINGLE- LEG SLING TWO-LEG SLING THREE-LEG SLING FOUR-LEG SLING Fig. 5 Fig. 6 Fig. 7 Fig. 8 SINGLE ADJUSTABLE SLING DOUBLE ADJUSTABLE SLING SINGLE BASKET DOUBLE BASKET 7.2. IDENTIFICATION: IDENTIFICATION MARKING MASTER LINK ADJUSTING CLUTCHES INTERMEDIATE LINKS CHAIN JOINING LINK HOOKS SAFETY CATCHES Fig. 10 Fig. 9
  • 26.
    7. CHAIN SLING 7.3.INSPECTION: Mechanical Joined: Check and Recommend for Replacement if found any one of the following:  More than 5% stretch of original length (terminal, joining, intermediate links, chain and hooks)  More than 8% diameter wear of terminal, joining, intermediate links, chain and hooks  Existence of nicks, cracks and gouges in terminal, joining, intermediate links and chain  Bent, elongated or twisted links, rings  Lack of free articulation between links  Distortion of terminal fittings  Cracks and faults in welded areas  Excessive corrosion  Heat discoloration  Broken, twisted chain  Improper shortening devices  Repairs by welding  Rusty chain Welded Chain: Check For:  More than 8% wear of terminal fittings, joining links  Existence of nicks, cracks, gouges in terminal fittings, joining links  Bent, elongated or twisted joining links  Distortion of terminal fittings  Replaced parts not manufacturer certified Fig. 11 Fig. 12 Fig. 13 Fig. 14
  • 27.
    7. CHAIN SLING 7.4.APPLICATION/RIGGING METHOD:  SINGLE-LEG SLINGS 1. Straight Lift – Safe Working Load • The SWL will be 100% SWL of a single-leg. • A suitable method of lifting an a effectively balanced load from a single lifting point. (see Fig. 15) 2. Choke Hitch • The SWL must be reduced by 20% in this application.(80% SWL of a single leg) • This method forms a loop which tightens as the load is lifted. • Do not attempt to force the bight into closer contact with the load. Choker hitch is not suitable for lifting long loads which might tilt. (see Fig. 16)  SINGLE-LEG SLINGS IN BASKET HITCH 3. Single leg in Basket Hitch (back hooked into top link) • The SWL will be rated by that of a single-leg sling reduced by the included angle. • A single-leg sling back hooked to form a basket hitch assumes the appearance of a two-leg sling but it should never be rated as such. It should be noted that the master link is only designed for single leg loading and therefore the single leg WLL should never be exceeded. (see Fig. 17) 4. Double Wrap Sling in Basket Hitch • The SWL will be that for a two-leg sling reduced by the included angle. (see Fig. 18) Fig. 15 Fig. 16 Included angle Fig. 17 Included angle Fig. 18
  • 28.
    7. CHAIN SLING 7.4.APPLICATION/RIGGING METHOD: (cont.) 5. Single Adjustable Basket Sling (see Fig. 19) • The SWL will be that for a two-leg sling reduced by the included angle. • A suitable master link must be fitted for two-leg rating. (see Fig. 19) Included angle  TWO SINGLE-LEG SLINGS USED TOGETHER 6. Two Single Legs in Straight Lift (see Fig. 20) • Rate as a two-leg sling. • The SWL will therefore depend upon the included angle. Two single-leg slings should not be used together to form a pair unless: • They are of the same type, grade, size and length. • They are both marked with the same SWL. • The crane hook is large enough to comfortably accept both upper terminal fittings of the slings. 7. Two Single-Leg in Choke Hitch (see Fig. 21) • SWL calculated as per No.6 then reduced by 20% because it is choked, for loose items double wrap is recommended. • The SWL will be reduced by 20% in the application. • Choke hitch with included angle greater than 60º Included angle is not recommended as sideways shifting may occur. • Two single-leg slings should not be used together to form a pair unless: 1. They are of the same type, grade, size and length. 2. They are both marked with the same SWL. 3. The crane hook is large enough to comfortably accept both upper terminal fittings of the slings. Fig. 19 Fig. 20 Fig. 21 Included angle Included angle
  • 29.
    e. uld s 7. CHAIN SLING 7.4.APPLICATION/RIGGING METHOD: (cont.) 8. Two Single Legs in Basket Hitch (see Fig. 22) • Rate as a two-leg sling. The SWL should be no more than that applicable to an equivalent two-leg sling. • Two single-leg slings should not be used together to form a pair unless: 1. They are of the same type, grade, size and length. 2. They are both marked with the same SWL. 3. The crane hook is large enough to comfortably accept both upper terminal fittings of the slings.  DOUBLE-LEG SLINGS 1. BRIDLE HITCH (see Fig. 23) • For two-legged slings, the angle between the legs of the sling will determine its safe working load (SWL). • A two-legged sling will be marked with its SWL at 90º (45º with vertical), which will apply for all angles from 0º - 90º (0º - 45º with vertical). • It may also be marked with its SWL at 120º which will apply for angles between 90º - 120º (45º - 60º with vertical). • Note that the SWL for a two-legged sling assumes that both legs are equally loaded, and that each leg is straight. 2. Choke Hitch (see Fig. 24) • When using slings in choke hitch multiply the marked SWL by 0.8 to obtain the reduced maximum load the sling may lift or the angle between the legs of the sling will determine its SWL • For loose items or a better grip, double wrap is recommended. 3. Basket Hitch (see Fig. 25) • Capacity as per Rigging chart table depending on included angl • Be aware of minimum pin diameter for basket hitch. • The sling assumes the appearance of a four-leg sling but it sho be noted that the master link will be designed for two-legs load only and sling should therefore be rated as a two-leg sling. Fig. 22 Fig. 23 Fig. 24 Fig. 25
  • 30.
    7. CHAIN SLING 7.4.APPLICATION/RIGGING METHOD: (cont.)  THREE-LEG SLINGS (see Fig. 26 & 27) Choke Hitch When using slings in choke hitch multiply the marked SWL by 0.8 to obtain the reduced maximum load the sling may lift or reduce the safe working load by 20%. If three legs are obviously supporting most of the load, rate as a three-leg sling.  For three-legged slings, the maximum angle between the legs of the sling and the vertical will determine its safe working load (SWL).  A three-legged sling will be marked with its SWL at 45º, which will apply for all angles from 0º to 45º.  Note that the SWL for a three-legged sling assumes that all legs are equally loaded, and that each leg is at the same angle.  FOUR-LEG SLINGS (see Fig. 28 & 29) Straight Lift  SWL as per Rigging load chart tables depending on the included angle.  The included angle should be measured between diagonally opposite legs. SWL as indicated above only in cases where the load appears to be reasonably equally distributed between all four legs. If two legs are obviously supporting most of the load, rate as a two-leg sling. If three legs are obviously supporting most of the load, rate as a three-leg sling.  For four-legged slings, the maximum angle between opposite legs of the will determine its safe working load (SWL).  A four-legged sling will be marked with its SWL at 90º (45º with vertical), which will apply for all angles from 0º to check sling angle 90º (0º - 45º with vertical).  It may also be marked with its SWL at 120º which will apply for angles between 90º and 120º (45º - 60º with vertical).  Note that the SWL for a four-legged sling assumes that all legs are equally loaded, and that each leg is straight. Fig. 26 Fig. 27 Fig. 28 Fig. 29
  • 31.
    8. SYNTHETIC FLAT WEBBINGSLING 8.1. TYPE & IDENTIFICATION: VIOLET GREEN YELLOW GREY RED BROWN BLUE ORANGE 1 TONNE 2 TONNE 3 TONNE 4 TONNE 5 TONNE 6 TONNE 8 TONNE 10 TONNE Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 MULTI-LEG BRIDLE SLINGS TRIANGLE AND VERTICAL CHOKER SLING Fig. 9 Fig. 10 Fig. 11 CHOKER WEB SLINGS SLING Fig. 12 Fig. 13 Fig. 14 GREEN BLUE BROWN NYLON POLYESTER POLYPROPOLYNE Resists Alkalis Resists Acids Resists Alkalis & Acids. Is suitable where the highest resistance to chemicals, other than solvents is required Fig. 15 Fig. 16 Fig. 17
  • 32.
    8. SYNTHETIC FLAT WEBBINGSLING 8.2. INSPECTION: Eye to eye reinforcement damaged, chafed or cut Marking illegible Stitching damaged or loose Webbing damaged, frayed, signs of chemical attack or solar degradation Heat damage including hard shiny areas due to friction Webbing cut Fig. 18 Check and Recommend for Replacement if found any one of the following:  Acid or Caustic Burns  Melting or charring  Holes, cuts  Tears, snags  Broken stitches  Worn stitches  Excessive abrasion  Knots  Cut – a clean break in the webbing structure of fibers. This usually results when a sling contacts a sharp object or unprotected edge of a load. (see fig. 19)  Tensile Break – a frayed close to the point of failure or damage. (see fig. 20)  Cut and Tensile Damage – a cut by a sharp object along one edge of the sling body. (see fig. 21) Fig. 19 Fig. 20 Fig. 21
  • 33.
    8. SYNTHETIC FLAT WEBBINGSLING 8.2. INSPECTION: (cont.)  Abrasion Damage – frayed fibers on the surface exposing the “picks” or cross fibers, of the webbing that hold the load- bearing (length wise) fibers in place. Occurs either when the sling slips while in contact with a load during a lift or when the sling is pulled from under a load. (see fig. 22)  Acid Damage – nylon and polyester webbing should never be exposed to any strong acids or corrosive liquids whenever possible. (see fig. 23 & 24) 8.3. APPLICATION/RIGGING METHOD: Fig. 22 DROPPED BY ACID Fig. 23 IMMERSED IN ACID Fig. 24  Material – polyester is resistant to moderate strength acids but is damaged by alkalis; polyamide (Nylon) is virtually immune to alkalis but is damaged by acids; and polypropylene is little affected by acids or alkalis but is damaged by some solvents, tars or paints.  Capacity – the sling must be both long enough and strong enough for the load and the slinging method.  Apply the mode factor for the slinging method.  If the slings are used in multi-leg arrangement the angle formed between the legs should not be less than 30° from Horizontal angle or greater than 90° from Included angle.
  • 34.
    8. SYNTHETIC FLAT WEBBINGSLING 8.3. APPLICATION/RIGGING METHOD: (cont.) ALWAYS:  Store and handle slings correctly.  Inspect slings and accessories before use and before placing into storage.  Always follow safe slinging practices.  Connect the sling over 120° angle of choke Never:  Attempt to shorten, knot or slings.  Expose slings to direct heat or frames.  Use slings at temperature above 80°C or below 0°C without consulting the supplier.  Expose slings to chemicals without consulting the supplier.  Shock load slings  Use slings which are cut or which have loose or damaged stitching.
  • 35.
    9. SYNTHETIC ROUND SLING 9.1.TYPE: Violet 1 TONNE Green 2 TONNE Yellow 3 TONNE Gray 4 TONNE Red 5 TONNE Brown 6 TONNE Blue 8 TONNE Orange 10 TONNE Fig. 25 Fig. 26 Fig. 27 Fig. 28 Fig. 29 Fig. 30 Fig. 31 Fig. 32 9.2. IDENTIFICATION: Protective Sleeve Identification Marking Inner core 9.3. INSPECTION: Fig. 33  Initial Inspection – before any polyester round sling is placed into service it shall be inspected by a designated person to ensure that the correct polyester round sling is being used, as well as to determine that the polyester round sling meets the requirements of the manufacturer’s specification.  Frequent Visual Inspection – This inspection shall be made by the person handling the polyester round sling each time the round sling is used.  Periodic Inspection – This inspection shall be conducted by a designated person. Frequency of inspection should be based on: 1. Frequency of use. 2. Severity of service conditions. 3. Experience gained on service life of polyester round slings used in similar applications. 4. periodic inspections should be conducted at least monthly.
  • 36.
    9. SYNTHETIC ROUND SLING 9.3.INSPECTION: (cont.) • Check and Recommend for Replacement if found any one of the following: 1. If polyester round sling’s identification tag is missing or unreadable. 2. Melting, charring or weld spatter on any part of the polyester round sling. 3. Holes, tears, cuts, embedded particles, abrasive wear, or snags that expose the core fibers of the polyester round sling. 4. Broken or worn stitching in the cover which exposes the core fibers. 5. Polyester round slings that are knotted. 6. Acid or Alkali burns on the polyester round sling. 7. Any conditions which cause doubt as to the strength of the polyester round sling. Fig. 34 Fig. 35 Fig. 36 Fig. 37 Fig. 38
  • 37.
    9. SYNTHETIC ROUND SLING 9.4.APPLICATION/RIGGING METHOD: ROUND SLING – are available in a range of materials and sizes in endless sling form. Select the slings to be used and plan the lift taking the following into account:  Material – polyester is resistant to moderate strength acids but is damaged by alkalis; polyamide (Nylon) is virtually immune to alkalis but is damaged by acids; polypropylene is affected by acids or alkalis but is damaged by some solvents, tars and paints.  Capacity – the sling must be both long enough and strong enough for the load and the slinging method.  Apply the mode factor for the slinging method. If the slings are to be used in multi-leg arrangement the angle formed between the legs should not be less than 30° or greater than 90°. ALWAYS:  Inspect carefully the round slings and accessories before use and before placing into storage.  Follow safe slinging practices, as given overleaf.  Position the bight for choke lift over 120° angle of choke.  Apply correct mode factor for the slinging arrangement.  Use protection (to avoid cutting, friction etc) and fittings which allow the sling to form smooth radii. NEVER:  Attempt to shorten, knot or tie round slings.  Expose round slings to direct heat or flames.  Use round slings at temperatures above 80°C or below 0°C without consulting the supplier.  Expose round slings to chemicals without consulting the Manufacturer.  Shock load round slings.  Use round slings with cut or damaged outer covers.
  • 38.
    9. SYNTHETIC ROUND SLING 9.4.APPLICATION/RIGGING METHOD: (cont.) ROUND SLING – shall not be constricted or bunched between the ears of a clevis or shackle or in a hook.  The opening of fitting shall be proper shape and size to ensure that the fitting will seat properly on the round sling. BUNCHING Fig. 39 SYNTHETIC SLING RATED LOAD: (SWL)  Folding, bunching or pinching of synthetic slings, which occurs when used with shackles, hooks or other applications will reduce the rated load. PINCHING Fig. 40
  • 39.
    10. SHACKLES 10.1. TYPE: DEESHACKLES BOW SHACKLES Fig. 1 Safety Pin Dee Fig. 2 Round Pin Dee Fig. 3 Screw Pin Dee Fig. 4 Safety Pin Bow Fig. 5 Round Pin Bow Fig. 6 Screw Pin Bow 10.2. IDENTIFICATION: Capacity Safe Quality Mark Diameter Of Capacity Safe Working Load Quality Mark Working Load (SWL) body (SWL) Diameter Of body Identification Number Identification Number Fig. 7 DEE SHACKLE Fig. 8 BOW SHACKLE
  • 40.
    10. SHACKLES 10.3. INSPECTION: Checkwear Check cracks, bending and twisting Pin always seated Check wears and straightness Check opening width Fig. 9 • Check and Recommend for Replacement if found any one of the following:  Wear of pin and body higher than 8% diameter  Nicks, cracks and gouges in stressed areas  Distortion in any axis  Misalignment of untapped/tapped hole  Excessive wear of untapped hole  Incorrect pin inserted. Pin not running free  Pin screwed, less than outside face flush  Head of pin not bearing on shoulder of untapped hole  Thread damage or excessive wear  Excessive corrosion  Repairs by welding  Missing locking devices (cotter pin), if applicable
  • 41.
    10. SHACKLES 10.4. APPLICATION/RIGGINGMETHOD:  Shackles symmetrically loaded with two leg slings having a maximum included angle of 120° can be loaded to Rated Capacity.  Use bolt-type and Screw Pin Bow Shackles only.  Riggers do not exceed 120° included angle. (see Fig. 10)  Always put the pin on the top of the hook, otherwise Shackle spread and sling eyes can be damaged. (see fig. 11 & 12)  Shackle pin can not turn. (see correct Fig. 13)  Shackle pin bearing on running line can work loose. If the load shifts, the sling will unscrew the shackle pin. (see Fig. 14 & 15) Fig. 10  Fig. 11 Fig. 12 Fig. 13 Correct  Fig. 14 Incorrect Fig. 15  Never replace a shackle pin with ordinary bolt. The strength of an ordinary bolt is less than that of a shackle pin. (see Fig.16) Bolt  Fig. 16
  • 42.
    10. SHACKLES 10.4. APPLICATION/RIGGINGMETHOD: (cont.) Good Practice  Washers can be used to take up the space between the shackle and hook. (see Fig. 17) Bad Practice  Never Allow shackle to be Pulled at an Angle, the legs will open up. (see Fig. 18) ALWAYS:  Store and handle shackles correctly.  Inspect shackles before use and before placing into storage.  Select the correct pattern of shackle and pin for the application.  Allow for the full resultant imposed load.  Tighten the screw pin by hand only.  Ensure the load acts through the center line of the shackle using spacers if necessary to meet this requirement. Packing Hook Fig. 17  Fig. 18 NEVER:  Use shackles with bent pins or deformed bodies.  Force, hammer or wedge shackles into position.  Eccentrically load shackles.  Replace the pin with a bolt.  Fit pins in contact with moving parts which may loosen or unscrew them.  Shock load shackles.  Use shackle across direction it will reduced 50% SWL
  • 43.
    11. PLATE CLAMPS 11.1.TYPE: VERTICAL LIFTING LOCKING HORIZONTAL LIFTING NON- LOCKING LOCKING SCREW Fig. 1 Fig. 2 Fig. 3 11.2. IDENTIFICATION: LOCKING LEVER GRIPPING CLAMPING THREADS SPRING IN LOCKING LEVER Fig. 4 Vertical Lifting Locking BENT PIN Fig. 5 Locking Screw Clamp MOVABLE JAW WITH BLUNTED TEETH Fig. 6 Horizontal Lifting Non-Locking
  • 44.
    11. PLATE CLAMPS 11.3.INSPECTION: Pins, bolts or other fixings insecure Frame opening out or cracked Jaw teeth or friction material worn or distorted Suspension point damaged or incorrect Locking lever damaged or unsatisfactory action Marking illegible Fig. 7 Vertical and Universal Plate Clamp Inspection Points Suspension eyes distorted Sling of incorrect type, size or method of reeving resulting in wrong geometry Jaws worn or distorted Pins, bolts or other fixing insecure Frame opening out or cracking Marking illegible Fig. 8 Horizontal Plate Clamp Inspection Points
  • 45.
    11. PLATE CLAMPS 11.3.INSPECTION: (cont.) Friction Lifting Type Remove from service if found any of the following conditions: • Wear, damage or distortion to fixed and moving jaws • Frame opening out or cracked • Insecure, worn or bent pins, bolts etc. • Worn friction grip material • Nicks, cracks, gouges • Excessive corrosion • Damaged, bent or unsatisfactory acting locking lever • Improper action of locking lever • Tight, bent, damaged clamping threads • Blunted teeth in fixed, movable jaws – see Manufacturer recommendations • Worn out, bent pins Horizontal Lifting Type Remove from service if found any of the following conditions: • Distortion of frame • Wear on gripping surfaces • Nicks, cracks, gouges • Excessive corrosion • Blunted teeth in fixed, movable jaws – see Manufacturer recommendations • Worn out, bent pins
  • 46.
    11. PLATE CLAMPS 11.4.APPLICATION/RIGGING METHOD:  Vertical plate Clamp (Universal Type)  Locked open for easy placement and removal  Locked closed for lifting Fig. 9 Fig. 10  Horizontal Type  Plate Clamp in pairs Fig. 11 Fig. 12
  • 47.
    12. HOOKS 12.1. TYPE: EYESLING HOOK CLEVIS SLING HOOK WITH LATCH PIPE HOOK Fig. 1 Fig. 2 Fig. 3 Not to be used for pipe lifting 12.2. IDENTIFICATION: HOOK EYE THROAT OPENING NECK SAFETY LATCH SADDLE OR SEAT Fig. 4
  • 48.
    12. HOOKS 12.3. INSPECTION: Checkfor wear and deformation  Check the hook for the following: Check for Cracks and Twisting Signs of “Opening Up” Check for Wear and Cracks Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Remove hook from service if any of the following conditions has been found:  Throat opening higher than 15% original throat  Lateral twist higher than 10 degrees  Wear in eye and saddle higher than 8% of original thickness  Cracks, nicks, scores, gall marks in body  Misalignment of shank, excessive wear  Thread damage or excessive wear  Repair by welding  Excessive wear, damage to cross head pin  Damaged or missing locking devices  No free running of swivel. Bearing damage, if applicable  Cracks, defects in trunnion weld joint, if applicable  Loose bolts, nuts, pins  Damaged or missing safety catches, if applicable  Lack of lubrication Fig. 10 Fig. 11 MODIFICATION NOT ALLOWED Fig. 12
  • 49.
    12. HOOKS 12.4. APPLICATION/RIGGINGMETHOD : Correct Use of an Eye Hook: Fig. 13  When placing two slings on the hook, the sling angle measured from the horizontal shall be equal to or greater than 45°. For sling angles less than 45°, a master link, pear link, bolt-type shackle, or screw pin shackle should be used to attach the slings to the hook. Note: 1. Forged swivels and swivel hooks with bronze bushings are to be used for positioning prior to lifting a load. DO NOT rotate under load. 2. DO NOT overcrowd the hook. 3. DO NOT swivel the hook while it is supporting a load. Incorrect Use of an Eye Hook:  Side Load.  Back Load.  Tip Load.  Fig. 16 Fig. 1 7 Fig. 1  8
  • 50.
    13. EYEBOLTS 13.1. TYPE& IDENTIFICATION: Fig. 1 COLLAR EYE BOLT Fig. 2 DYNAMO EYE BOLT Fig. 3 EYE BOLT WITH LINK 13.2. INSPECTION: Remove eyebolt from service if any of the following conditions has been found:  Wear in eye and link, if any, higher than 8% diameter  Nicks, cracks and gouges in shank and eye  Nicks, cracks and gouges in shank to collar junction  Distortion in any axis  Thread damage or excessive wear  Excessive corrosion  Any type of repair  Cleanliness of thread, underside of collar  Illegible markings 13.3. APPLICATION/RIGGING METHOD: Lifting With Eye Bolts (see fig. 4) Never run a sling through a pair of eye bolts as shown:  The loads in this fitting result in an effective load at a much more severe angle.  The load P to Q and the loads in A and B combine to give C.  Use a pair of shackles instead. Fig. 4
  • 51.
    13. EYEBOLTS 13.3. APPLICATION/RIGGINGMETHOD: (cont.) Correct for shoulder Type Eye and Ring Bolts providing loads are reduced to account for angular loading.  More than one eye bolt diameter of threads, only (1) nut required. (see Fig. 5)  Tighten hexagonal nut securely against load. (see Fig. 6) Fig.5  One eye bolt diameter of threads or less, use two (2) nuts. (see Fig. 7)  Tighten hexagon head nut securely against load. (see Fig. 8)  One eye bolt diameter or less. (see Fig. 9) Fig.6 Correct Tap Depth: 2.5 x Diameter Fig.7 Correct 2 x Diameter (Minimum)  After slings have been properly attached to the eye bolts, apply force slowly. Watch the load carefully and be prepared to stop applying force if the load starts buckling.  Buckling may occur if the load is not stiff enough to resist the compressive forces which result from the angular loading. (see Fig. 10) Fig.8 Correct Fig. 9 Wrong NOTE: If used a dynamo eyebolt in pairs a lifting beam must be used to ensure a vertical lift. Fig. 10 Wrong Buckling
  • 52.
    13. EYEBOLTS 13.3. APPLICATION/RIGGINGMETHOD: (cont.)  If the eye bolt protrudes so far through the load that the nut cannot be tightened securely against the load, use properly sized washers to take up the excess space between the Nut and the Load.  Thickness of spacers must exceed this distance between the bottom of the load and the last thread of the eye bolt.  Place washers or spacers between nut and load so that when the nut is tightened securely, the shoulder is secured flush against the load surface. Thickness Spacer Fig. 11 Washer ALWAYS:  Store and handle eyebolts correctly.  Inspect eyebolts before use and before placing into storage.  Select the correct pattern eyebolt for the application.  Ensure that the eyebolt and tapped hole threads are compatible and strong enough for the load.  Correctly align the plane of the eye using shims where necessary.  Ensure that the collar is fully seated when hand tight. NEVER:  Use Tommy bars, grips or wrenches to tighten eyebolts.  Use dynamo eyebolts for angular loading.  Use a single eyebolt to lift a load that is free to rotate.  Reeve slings through the eyes, links or shackles fitted to pairs of eyebolts.  Force hooks or other fittings into the eye; they must fit freely.  Shock load eyebolts.
  • 53.
     14. TURNBUCKLES 14.1. TYPESOF RIGGING SCREW: Fig. 1 Hook to Hook Type Fig. 2 Hook to Eye Type Fig. 3 Eye to Eye Type Fig. 4 Jaw to Eye Type Fig. 5 Jaw to Jaw Type 14.2. INSPECTION: Check and Recommend for Replacement if Found any one of the following:  Cracks and bends.  Damage and bent rods  Check thread damage and thread engaged to full length of threaded body.  Deformation  Severe Corrosion 14.3. APPLICATION/METHOD:  Only rigging screws and turnbuckles that are marked with the appropriate safe working load after proof loading shall be used for lifting applications.  Securing Turnbuckles – twisting of the turnbuckle might occur, use a lock wire to prevent rotation of the turnbuckle. (see fig. 6)  The use of locknuts or mousing is an effective method of preventing turnbuckles from rotating. Lock Wire Used Fig. 6 Correct Fig. 7 Incorrect (No Lock Wire)
  • 54.
    15. LIFTING BEAM 15.1.APPLICATION REQUIREMENTS TO:  Reduce headroom  Provide multiple lift points  Provide adjustable lifting centers  Handle out of balance loads  Remove or control inward or crushing forces  Allow for special load attachments 15.2. ACCESSORIES AND ATTACHMENTS:  Slings  Grabs  Shackles  Hooks  Etc. 15.3. THOROUGH EXAMINATION:  Beam distorted  Damaged or corroded  Worn, loose or missing bolts  Cracked welds  Attachment points worn, damaged or distorted, holes and eyes worn or elongated  Any other visible defects. 15.4. APPLICATION/METHOD:  The weight of the beam, together with its attachments, must be added to the weight of the load when calculating that total load that will be imposed on the crane hook.  Use tag lines to control long loads. F Fi ig g 1 1 L Li if ft ti in ng g B Be ea am m F Fi ig g. . 2 2 E Eq qu ua al li iz ze er r B Be ea am m F Fi ig g. . 3 3 R Ri ig gi id d B Be ea am m
  • 55.
    15. LIFTING BEAM 15.4.APPLICATION/METHOD: (cont.) ALWAYS:  Store and handle lifting beam correctly.  Refer to the safe use instructions for slings and attachments used with the beam.  Include the self weight of the beam and attachments when calculating the load imposed on the crane hook.  Ensure the load will remain stable when lifted.  Ensure that no one lifting point becomes overloaded by the slinging or handling methods.  Use tag lines to control long loads. NEVER:  Use lifting beams to handle Loads other than those for which they are designed.  Fit lifting beams to a hook other than those for which they are designed.  Use damaged or distorted lifting beams and attachments.  Unevenly load lifting beams.  Allow lifting beams to foul any part of the crane or any other obstructions in the area.
  • 56.
    16. BEAM CLAMP 16.1.TYPE: Fig. 1 Fig. 2 Fig. 3 FIXED BEAM CLAMP Fig. 4 ADJUSTABLE BEAM CLAMP 16.2. IDENTIFICATION: SHACKLE HOLE PIVOT PIN FIXING BOLT IDENTIFICATION MARKING FRAME FRAME CLAMPING SCREW Fig. 5 FIXED BEAM CLAMP Fig. 6 ADJUSTABLE BEAM CLAMP
  • 57.
    16. BEAM CLAMP 16.3.INSPECTION:  Check identification/location and SWL is clearly marked. Then compare these markings against the current certificate.  Check all moving parts against seizure, e.g. pivots, pins and load bar. Where swivel jaws are fitted, ensure that they are free to rotate.  Check operation of unit and alignment of frame.  Check bar handle is not dangerous to the operator’s hand.  Examine stress points for cracks, distortion, nicks, gouging and corrosion.  Examine load bearing parts for signs of wear. Maximum permissible wear must not exceed 8% of bearing cross-section.  Check the suspension points, shackle, pivot/pins, bolts & nuts, threads, load bar, jaws/grips and surfaces.  Check the beam size. 16.4. APPLICATION: ALWAYS:  Store and handle beam clamps correctly.  Inspect beam clamps and accessories before use and before placing into storage.  Ensure the supporting structure is adequate for the full load that will be imposed and suitable for the application.  Check the clamp is of the correct profile and size, or correctly adjusted, for the beam width and that it seats correctly on the beam flange.  Ensure the beam clamp is strong enough for the full load that will be imposed.  Check that the clamp is directly over the center of gravity of the load.
  • 58.
    16. BEAM CLAMP 16.4.APPLICATION: (cont.) NEVER:  Use beam clamps which are unidentified or uncertified for lifting applications.  Replace bolts, shackles etc without consulting the supplier.  Throw or drop beam clamps  Use beam clamps on damaged or distorted beams.  Force or wedge hooks of lifting appliances into the attachment eye or lifting (e.g. Shackle)  Obliquely load beam clamps without the authority of the supplier. STORING AND HANDLING BEAM CLAMPS:  Never return damaged beam clamps to storage. They should be dry, clean and protected from corrosion. Where necessary fasteners should be reassembled immediately after removal from the beam.
  • 59.
    17. LIFTING APPLIANCE 17.1.HAND-OPERATED CHAIN BLOCK 17.1.1. TYPES: Fig. 1 HEAVY DUTY Fig. 2 STANDARD DUTY 17.1.2. IDENTIFICATION: TOP HOOK WITH SAFETY CATCH MAIN FRAME LOAD CHAIN HAND CHAIN HOOK, TERMINAL & FITTING Fig. 3
  • 60.
    17. LIFTING APPLIANCE 17.1.HAND-OPERATED CHAIN BLOCK (cont.) 17.1.3. INSPECTION:  Keep the chain block clean and regularly lubricate the load chain and both hook shanks.  Carry out a visual inspection every time the chain block is used and listen for any unusual sounds during operation.  Depending upon the frequency of use and local conditions the load chain will eventually show signs of wear, at which point it should be replaced.  Overloading or incorrect hooking may distort the hook and increase the hook opening. If this occurs replace the hook immediately.  The components shall be free from deformation, cracks, flaws or other defects and there shall be no loosening of connections.  When the hand chain is released at any point during raising and lowering, the brake shall hold the weight of the load  The block shall be free from deformation, cracks, flaws or other defects, there shall be no loosening of connections and the block shall operate satisfactorily.  On removal of the restraining pin, the brake shall immediately engage and prevent the load from descending. WARNING!  The chain block should be disassembled, cleaned, inspected, reassembled and tested by an Authorized Service Agent annually, or more frequently if used outside, exposed to the weather.  The load chain and the hooks are manufactured from special alloy steels and precisely heat treated. DO NOT weld or re-heat treat. SPROCKET DAMAGED Fig. 4 SAFETY LATCH DAMAGED Fig. 5 SAFETY LATCH MISSING NO NAME PLATE DETAILS Fig. 6
  • 61.
    17. LIFTING APPLIANCE 17.1.HAND-OPERATED CHAIN BLOCK (cont.) 17.1.4. APPLICATION/METHOD: Hand Chain Blocks – are available in range capacity and with various types of suspension. Select the block to be used and plan the lift taking the following into account:  Type of suspension – hook, trolley etc.  Capacity, class of use and range of lift.  Chain blocks are designed for vertical lifting only. ALWAYS:  Store and handle chain blocks correctly.  Inspect chain blocks and accessories before use and before placing into storage.  For top hook suspension, use hooks that are fitted with safety catches, or mouse the hook, ensuring the support fits freely into the seat of the hook.  For trolley suspension ensure the trolley is correctly set for the beam width.  Check that the bottom hook will reach its lowest point without running the chain fully out.  Adopt safe slinging practices and follow the instructions for the safe use of the equipment used. NEVER:  Expose chain blocks to chemicals, particularly acids, without consulting the manufacturer.  Replace the load chain with a longer one without consulting the manufacturer.  Use undue effort to force the block to operate.  Throw, drop or drag a chain block.  Allow oil or grease to come into contact with the brake.  Expose a chain block directly to the elements, water spray, steam etc without consulting the manufacturer.
  • 62.
    17. LIFTING APPLIANCE 17.1.HAND-OPERATED CHAIN BLOCK (cont.) 17.1.5. SAFETY INSTRUCTION: ENSURE  That the chain block is in sound condition and good working order. Take action for immediate repair or replacement of damaged parts.  The support for the chain block is capable of withstanding a load of at least 1½ times the chain block safe working load.  All non-essential persons keep a safe distance whilst the chain block is in use.  Load slings are fully engaged in load hook and that hook safety latch is in the closed position. KEEP  The chain block clean for the best and safest performance.  Work area clean and tidy and free from unrelated materials. LOCATE the chain block in a suitable, well lit work area. RAISE AND LOWER in a smooth, controlled manner and DO NOT shock load the chain block by allowing the attached load to fall freely, even for very short distances. CHECK the brake operation by stopping when the load has been raised a short distance (100mm) and ensuring that it is held with no downward creep. USE a qualified person to lubricate and maintain the chain block. STORE chain block in a dry, cool area when not in use. DO NOT  Operate the chain block if damaged.  Allow untrained persons to operate the chain block.  Exceed the rated capacity (safe working load) of the chain block.  Raise or lower the load with jerky or abrupt movements of the hand chain.  Attempt to lift a load if the load chain is kinked or knotted.  Try to raise a load with two, or more, chain blocks - use a single block of adequate capacity.  Use the chain block to drag the load across the floor. Always position the load directly below the block.  Wrap the load chain around the load - always us separate, suitable, slings/chains/ropes of the correct capacity.  Allow anyone to stand or pass beneath the raised load.  Use the chain block for purposes other than that for which it is intended.  DANGER! Use the chain block for lifting only, NOT for supporting the lifted load.
  • 63.
    17. LIFTING APPLIANCE 17.1.6.INSPECTION:  Hand Chain Check For:  Cracks, distortion, wear or corrosion.  Cracks, distortion, wear of hand chain wheel.  Incorrect seating in hand chain wheel.  Rusty chain.  Load chain: Check For:  Cracks, distortion, wear of blocks, wear, slackness of sheave wheel  Incorrect seating in sprocket wheel.  Damage to slack end or load end anchor  Rusty chain  Twisted chain in multiple fall 17.2. CHAIN LEVER HOIST 17.2.1. IDENTIFICATION: Hook Body Covers Load Chain Hook Safety catch Markings Identification Lever or control Slack end stop Safety catch Fig. 7 HOOKS, TERMINAL FITTINGS Check for:  Cracks, distortion or wear of blocks. Wear, slackness of sheave wheel
  • 64.
    17. LIFTING APPLIANCE 17.2.2.INSPECTION: (cont.)  MAIN FRAME Check For:  Cracks, distortion or worn in body, gear covers or chain guides.  Loose nuts, bolts, rivets, or pins. Thread damage or wear. Missing locking devices.  Corrosion, wear or damage to pawl, ratchet or spring.  Cracks or uneven wear of pinions, gear wheels or bearings.  Wear, damage to brakes, chain stripper.  Improper electrical condition, if applicable.  REPAIR: Check For:  Repair not in accordance with manufacturers recommendations.  Replaced parts incorrectly assembled.  Replaced parts not manufacturer certified.  OPERATIONAL TEST: Check For:  Undue effort, excessive noise or jumping of chains during hoisting/lowering.  Malfunction of pawl, operating spring and ratchet.  Incorrect action of chain guides.  Brake operation. Must be kept free of oil, grease etc.
  • 65.
    17. LIFTING APPLIANCE 17.2.3.APPLICATION/METHOD: ALWAYS:  Store and handle lever hoist correctly.  Inspect lever hoists and accessories before use and before placing into storage.  Ensure any support fits freely into the seat of the hook and does not exert a side thrust on the point.  Check the operation of the brake.  Check that the bottom hook will reach its lowest point without running the chain against the stop.  Adopt safe slinging practices and follow the instructions for the safe use of the equipment used. NEVER:  Expose lever hoists to chemicals, particularly acids, without consulting the manufacturer.  Replace the load chain with a longer one without consulting the manufacturer.  Extend the lever or use undue effort to force the lever hoists to operate.  Throw, drop or drag a lever hoist.  Allow oil or grease to come into contact with the brake.  Expose a lever hoist directly to the elements, water spray, steam etc without consulting the manufacturer.
  • 66.
    17. LIFTING APPLIANCE 17.3.WIRE ROPE GRIP/PULL LIFTING MACHINE 17.3.1. TYPE: MATERIAL HOISTING CAPACITY Fig. 8 Fig. 9 Fig. 10 17.3.2. IDENTIFICATION: Forward lever Reversing lever Aluminum housing Rope clamp disengagement lever Identification Marking Safety catch Hook Fig. 11 Overload protection (Shear pin) 17.3.3. APPLICATION/METHOD: Rigging Arrangement  Diverters  Pulley Blocks  Anchorage and suspension points  Imposed loads Storing and Handling  Never return damaged grip/ pull machines, ropes etc. to storage.  Grip/Pull machines should be dry, clean and protected from corrosion.  Rope should be carefully coiled onto a suitable drum or frame for storage, taking care to avoid any twists  Store machines and ropes on a suitable rack, not on the floor where they may be damaged.
  • 67.
    17. LIFTING APPLIANCE 17.3.WIRE ROPE GRIP/PULL LIFTING MACHINE 17.3.3. APPLICATION/METHOD: (cont.) ALWAYS:  Store and handle grip/pull machine correctly.  Inspect the machine, rope and accessories before use and before placing into storage.  Ensure mounting and suspension points are secure and suitable for the full loads that will be imposed.  Ensure the machine is free to align correctly with the rope and the rope is free of any obstructions.  Use only the correct rope supplied for the machine. NEVER:  Use kinked, damaged ropes or ropes with broken wires.  Extend or force operating levers.  Operate raising and lowering levers at the same time.  Use grip/pull machines if the rope is twisted or trapped.  Use grip/pull machine for man-riding applications unless they are specifically designed/adapted for that purpose.
  • 68.
    17. LIFTING APPLIANCE 17.4.FAMILIARIZATION OF CRANE OPERATION: 17.4.1. Basic Crane Configuration AXIS OF ROTATION BOOM ANGLE HORIZONTAL OPERATING RADIUS Fig. 12 Onshore Crane (Rough Terrain) BALANCE POINT OR FULCRUM BOOM ANGLE IN DEGREES WEIGHT OF: BLOCK SHACKLES AND SLINGS LOAD OF ROTATION RADIUS IN FEET Fig. 13 Offshore Crane (Pedestal) 17.4.2. Basic Crane Functions: Lifting, Booming & Swinging BOOMING LIFTING SWINGING Fig. 14
  • 69.
    17. LIFTING APPLIANCE 17.5.FAMILIARIZATION OF CRANE TYPES: The hook is directly above the load’s C of G. Boom angle, boom length and load radius are known and the crane’s rated capacity is known. Rigging is correct. Load weight is known. Outrigger pads are on solid footing or blocking. All outrigger beams are fully extended. (Partial extension permitted as per manufacturer’s load chart) All wheels are clear of ground. Crane is level. Fig. 15 17.5.1. Rough Terrain Crane Fig. 17 17.5.2. Tower Crane
  • 70.
    17. LIFTING APPLIANCE 17.5.FAMILIARIZATION OF CRANE TYPES: (Cont.) The hook is directly above the load’s Center of Gravity. Rigging is correct. Boom angle, boom length and load radius are known and the crane’s rated capacity is known. Load weight is known. Fig. 18 17.5.3. Crawler Crane Crane is set up level on firm, stable ground or blocking. BOOM POINT EXTENSION (JIB) LOAD BLOCK PENDANT CABLES WHIP LINE LOAD LINE TRAVELING MAST BOOM BACKSTOPS GANTRY BOOM HEAD SECTION BOOM INTERMEDIATE SECTION HEADACHE BALL BOOM BUTT SECTION COUNTER WEIGHT PEDESTAL TURNTABLE CAB Fig. 19 17.5.4. Offshore Crane
  • 71.
    18. LOAD 18.1. STANDARDSIGNS IDENTIFICATION THIS SIDE UP AWAY FROM HEAT THIS SIDE UP Fig. 1 Fig. 2 Fig. 3 AWAY FROM WATER CENTER OF GRAVITY NO HOOKS Fig. 4 Fig. 5 Fig. 6 SLING HERE FRAGILE HANDLE WITH CARE SLING HERE Fig. 7 Fig. 8 Fig. 9
  • 72.
    18. LOAD INSPECTION: Check For: Data plate for standard of manufacture  Certification date and make sure that there is at least 1 month certification remaining or to local regulation  Capacity of the Cargo Carrying Units (CCU) and ensure its not overloaded  Structure and general condition of CCU  Condition of door locks and seals Door Seals Door Legs for Twists Slings  Heavier cargo is at the bottom  Cargo is lashed down or wedged in place  Door safety nets are fitted where possible  Condition of slings and shackles  Weight as manifested Locking Mechanical Damage Certification Fig. 10 18.2. CONTAINERS / CARGO BOXES Condition of  Drainage holes are clear, In open top units ENSURE  Correct hazard labels are affixed if applicable  Old hazard labels are removed  Adequate packing between the items of freight  There are loose items on the roof of the CCU MAKE sure there are no sharp items next to soft skinned drums Condition of Frame Tank Certification Correct Hazard Labels Fitted Valves are Locked Shut Fig. 11 18.3. FUEL / CHEMICAL TANKS Gross Weight for Overload
  • 73.
    18. LOAD 18.4. GASCYLINDER RACK 18.4.1. INSPECTION: Securing  all Gas Cylinder racks should have a primary and secondary method of securing the cylinders for transit. (see Fig. 12) Advisable  To have an increased factor of safety. 18.5. MAN BASKETS 18.5.1. INSPECTION: 18.5.2. PERSONNEL:  In suspended baskets a distribution as symmetrical as possible of the load should be achieved.  Persons in suspended baskets should fasten their safety harness onto the anchorages provided.  The basket rated capacity should not be exceeded.  Tools and material carried by personnel should be secured, in particular against displacement, tipping, and falling out.  Occupants shall not stand on or work from the handrail or side protection of the suspended basket or anything in it.  The basket shall be positioned on a firm surface during access and egress.  Any power cables or hoses provided to the basket should be connected in such a way that they will not interfere with the safe operation of the basket.  Power cables or hoses shall not be used as guide ropes.  When electric welding from the basket, special care shall be taken to earth the basket in order to protect the crane and/or its ropes from becoming conductors of electricity.  All movements should proceed gently with low speeds. Fig. 12 Fig. 13
  • 74.
    18. LOAD 18.6. COMMONLOADS: 18.6.1. Concrete and Muck Skips Concrete and muck skips should not be lifted directly by the crane hook. A single-leg sling (commonly known as a drop or skip chain) should be used, as moving a heavy crane hook precisely into place can be difficult. (see Fig. 14) Fig. 14 18.6.2. Scaffold Tubes When lifting bundles of tubes, bars or other loose materials, whether banded or not, slings should be double wrap choke hitch. SWL factor for slings used thus is 0.8 of SWL. (see Fig.15) 18.6.3. Palletized loads An example of a frequently lifted load that requires special equipment is a pallet of bricks, blocks etc requiring crane forks with safety netting. Note that the mesh size should be smaller than the smallest item to be lifted. (see Fig. 16) 18.6.4. Beams Use double wrapped slings when sling legs can slide together. SWL factor for slings used thus is 0.8 of SWL. (see Fig. 17) Fig. 15 Fig. 16 Fig. 17
  • 75.
    18. LOAD 18.6.5. Stillages Wrapslings round corner posts. Do not attempt to lift double stacked stillages. Beware of overloading scaffold boards if landing loaded stillages on a scaffold. SWL factor for chain slings used thus is 0.8 of SWL. (see Fig. 18) 18.6.6. Rubbish Skips Typical arrangement of special sling, with steel box sections under skip, and steel tube spreaders to keep sling legs vertical. Keyhole plates on skip lugs are for location purposes, not for lifting. Skips with specially adapted lifting points are acceptable providing thorough examination is undertaken at 6 month intervals. Beware of rusted floors, they can fall out when the skip is lifted. (see Fig. 19) 18.6.7. Pipes  For short pipes, pass sling through pipe. SWL factor for webbing slings used thus is 1.4. (see Fig. 20)  For long pipes, use two slings in choke hitch, double wrapping if slings are likely to slide together. Provided that no angle exceeds 90˚at Included angle, then use the SWL for one sling for the SWL of this arrangement. (see Fig. 21)  Note that a shackle is required to connect the slings at the top. Fig. 18 Fig. 19 Fig. 20 Fig. 21
  • 76.
    18. LOAD 18.6.8. Mesh Passeach hook of a four-legged chain through the mesh and return to form a choke hitch. Lifting points to be positioned evenly to prevent undue bending on the mesh bundle. Tighten bite as necessary. (see Fig. 22) 18.6.9. Prefabricated Rebar Assemblies These assemblies rely on tying wire to hold them together. Attachment points MUST be agreed (formally) with your Appointed Person and Temporary Works Coordinator. 18.6.10. ISO Containers and Portable Offices  Special lifting gear must be used to lift containers. This gear will be fitted with ISO Twist locks which are designed to fit the sockets in the corners of the container. Never use any type of hook, shackle or other device fitted directly into these sockets. (see Fig. 23)  Refer to the portable office manufacturers literature for maximum weight (office and contents), and for minimum sling leg length. Consider carefully for both offices and containers, secure jack legs. (see Fig. 24)  To prevent them falling out check for: • Weight of contents • Loose items that may slide during lifting • Condition of floor of containers • Access to attach and detach slings Fig. 22 Fig. 23 CONTAINER Fig. 24 PORTABLE OFFICE
  • 77.
    18. LOAD 18.7. CENTREOF GRAVITY AND SLING LOADING: Centre of Gravity – is a point which, if the load could be suspended from it, the load would be in perfect balance. The crane hook needs to be directly over the centre of gravity, for the load to be stable.  Fig.25 - This load is not stable. The hook is over the centre of gravity, but the centre of gravity is above the crane hook. This hook is top-heavy, and could overturn while being craned.  Fig.26 & 27 - This load is not stable. The hook is not over the load’s centre of gravity. Lifting a load with the centre of gravity offset will cause the load to shift until a balance is restored. The load will shift until the centre of gravity is under the hook. this will make landing the load very difficult, and could cause major problems in crainage.  Fig. 28 – Start like this…  The hook is over the centre of gravity. Fig. 25 Fig. 26 Fig. 27 Fig. 28
  • 78.
    19. TABLE/CHART 19.1. SHACKLEANGULAR LOADING CAPACITY: Side Loading Reduction and Strength Efficiency Values (For Screw Pin and Bolt-Type Shackles Only) NOTE: Do not side load round pin shackles. Fig. 1
  • 79.
  • 80.
    19. TABLE/CHART 19.3. FORMULA-VOLUMESOF COMMON SHAPES: PYRAMID V=¼ L x B x H SOLID CYLINDER V= π x r² x L L H L B r Fig. 3 Fig. 4 RECTANGULAR SOLID V=L x B x H THIN WALLED PIPE V= π x d x L x t L H L B t d Fig. 5 Fig. 6 SPHERE V= 4π x r³ 3 THICK WALLED PIPE V= π(r1² - r2²) x L L r Where: r1 r1 (outer radius) r2 r2 (inner radius) Fig. 7 Fig. 8
  • 81.
    19. TABLE/CHART 19.4. APPROXIMATEDENSITY OF COMMON MATERIALS: (All Weights in metric Tonnes) M Ma at te er ri ia al ls s D De en ns si it ty y k kg g/ /m m³ ³ D De en ns si it ty y l lb bs s/ /f ft t³ ³ Acetylene 1170 73 Aluminum 2725 170 Argon 1780 111 Brass 8350 520 Concrete 2250 140 Copper 8820 550 Iron 7690 480 Lead 11350 708 Oil 810 50 Paper 1130 70 Propane 2010 125 Rubber (Raw) 950 59 Sand (Dry) 1500 94 Sandstone 2500 156 Steel 7850 490 Water 1025 64 Wood (Average) 800 50
  • 82.
    20. CALCULATION 20.1. EXAMPLESOF CALCULATING SLING LOADING: SLING 1 SLING 2 SLING 1 SLING 2 10,000 kg D1=5m D2=5m 10,000 kg D1=8m D2=2m Fig. 1 Fig. 2 SLING 2 : 10,000 x 8 / (8+2) = 8,000 kg SLING 1 : 10,000 x 2 / (8+2) = 2,000 KG Steps: 1. Determine the Horizontal sling angles. (45°) 2. Select corresponding Load Angle Factor. (1.414) 3. Multiply Load Weight by Load Angle Factor to get total load on sling legs. (2000 kg x 1.414 = 2828 kg) (Fig.3) Note: 2000 kg Fig. 3 4. Divide total load by the number of sling legs. (2828 kg ÷ 2 = 1414 kg per sling leg) 5. Select slings from the single vertical leg column within the sling capacity table. • When sling angles are between those listed in chart, use the next lower sling angle and corresponding load angle factor. • When using 3 or 4 sling legs equal in length, divide the total load by 2. • When the load is not distributed uniformly (equally) on sling legs, the tension on each leg must be calculated individually.
  • 83.
    20. CALCULATION 20.2. EXAMPLESOF CALCULATING SLING LOADING: Select slings to pick up the load shown below. Sling 2 STEPS: 60º 10,000 kg 8 m H 2 m COG • Assume the position of hook directly over the center of gravity of load • Consider an optimal angle of 60°to the horizontal of load • Since the angle is 60°, the height of the hook is now fixed as is the sling length. Because the angle is 60° • Sling 1 length at 60° = Base/cosine 60º= 8m/0.5 = 16m • Knowing the L/H = 1.2 for 60° sling angle, the height of the hook is L/H = 1.2 H = 16/1.2 H = 13.3 m • Additionally, knowing that L/H = 1.2 for 60° sling angle, the load on sling 1 Force acting on sling 1 is 2000kg, Refer page no: 83, fig 2 • Sling 1’s SWL (minimum) calculation: Sling 1 = 1.2 x Force A or 1.2 x 2,000 kg = 2,400 kg. • Sling 2’s length can now be calculated to an exact number • Length of sling 2 = √ (13.3)2 + (2)2 = 13.44 m • Sling 2’s SWL (minimum) calculation: • Force acting on sling 2 is 8000kg, Refer page no: 83, fig 2 L/H = 13.44/13.3 = 1.01 Sling 2 = 1.01 x 8,000 kg = 8,084 kg • Using wire rope slings, 6 x 19 class rope • With a ferrule secured wire rope slings , Use velosi Rigging chart no:12.1.1
  • 84.
  • 85.
    21. GLOSSARY No. PICTUREDESIGNATION DESCRIPTION STANDARD/ REFERENCE 1 Steel Wire Rope Slings and their components Assembly of one or more steel wire rope legs or an endless sling for attaching loads to the hook of a crane on other lifting machine BS EN 13414- 1 other ASME B30.9 2 Chain Slings and their components Assembly of one or more chains for attaching loads to the hooks of a crane or other lifting machine BS EN 818- 4,5,6 other ASME B30.9, ISO 7593 3 Textile Slings and their components FLAT WEBBING SLING Assembly of one or more sewn webbing components for attaching loads to the hook of a crane or other lifting machine. BS EN 1492- 1 and 2 other ASME B30.9 ROUND WEBBING SLING 4 Shackles (Dee & Bow type shackle) Suitable for use with the eyes and bodies of hooks, eyebolts, egg links, wire rope thimbles, and for the head fittings of blocks, etc. BS 3551 other US-FED. SPEC- RR-C-271D DEE SHACKLE BOW SHACKLE
  • 86.
    21. GLOSSARY No. PICTUREDESIGNATION DESCRIPTION STANDARD/ REFERENCE 5 Clamps (Vertical, Horizontal lifting & Locking Screw types) Plate clamps are used to lift and transfer metal plates during rigging applications. BS 13155 other LOLER, ASME B30.20 VERTICAL LIFTING LOCKING HORIZONTAL LIFTING NON-LOCKING LOCKING SCREW Horizontal Clamps- lift of non-sagging plates or bundles. Vertical Clamps- are used for turning, lifting, or moving of sheets, plates or fabrications. 6 Hook (Eye Sling, “C” Hook, Sorting & Pipe Hook types) EYE SLING HOOK “C” HOOK PIPE HOOK SORTING HOOK 7 Lifting Beams (Spreader & Equalizer Beam types) and their components Is a device for lifting loads by means of a device such as a hoist or crane. A crosspiece for spacing the chains or cables hanging from the hook of a crane. BS EN 1677-1, 2, 3, 5 other ASME B30.10, ISO 7597, ISO 8539 LOLER / QP REG. REV.03 L Li if ft ti in ng g B Be ea am m E Eq qu ua al li iz ze er r B Be ea am m 8 Hand-Operated Chain Block and their components A device for lifting and lowering a load suspended from one chain (the load chain) by means of human effort applied to another chain (the hand chain) and for holding the load. BS EN 13157: 2004
  • 87.
    21. GLOSSARY No. PICTUREDESIGNATION DESCRIPTION STANDARD/ REFERENCE 9 Chain Lever Hoist and their components. A portable tool reeved with a load chain, and operated by a lever so as to give a mechanical advantage. BS EN 13157 other ASME B30.21 10 Wire rope grip/pull lifting machine (Tirfor) A diverters, pulley blocks- anchorage and suspension points – imposed loads. BS EN 13157 11 Turnbuckles with different types 12 Beam Clamps with two types Fixed & Adjustable. FIXED CLAMP ADJUSTABLE CLAMP Rigging screw- a tubular body internally threaded at each end, with one right-hand & one left- hand thread. Turnbuckles- an open body consisting of reins, with bosses at each end & internally threaded at each end, with one right-hand & one left- hand thread. BS 4429: 1987 BS 13155 other LOLER, ASME B30.20
  • 88.
    Lifting Plan Lift Description:__________________________________________________ Lift Supervisor: _______________________________ Lift Date: _____________________ Lift Criteria Notes/Comments 1. What item(s) will be lifted? 2. Are there any special precautions (such as mats for mobile cranes)? 3. What is the weight of each item and total weight of the load? (For mobile cranes, see the manufacturer's instructions about components and attachments that must be considered as part of the load.) 4. Where is the center of gravity located? Note: The center of gravity of an object is that point at which the object will balance. A stable load is one in which the center of gravity of the load is directly below the main hook and below the lowest point of attachment of the slings. 5. List each piece of equipment, accessory, and rigging component, by type and rated capacity, that will be used during the lift. a. Crane b. Hoist c. Fork Truck d. Slings (identify the configuration used: choker, basket, or vertical, and angle (see Figure 1 below)) e. Shackles f. Eye Bolts/Swivel Eyes g. Turnbuckles h. Spreader Bars i. Hook (Type and WLL) j. Other (Special Lifting Fixture, Below the Hook Lifting Devices, Multi Leg Bridle, etc) 6. Are there designated checkpoints or hold points? 7. If yes, list them and their estimated instrument readings, as relevant, so that job progress can be checked against the plan. 8. How will you rig the load? 9. Will tag lines be needed to control the load? 10. What personnel will you need to assist with the lift? a. Crane operator b. Riggers
  • 89.
    c. Spotters d. TagLine Handlers e. Fork truck driver f. Other 11. Safety equipment (hard hats, safety shoes, gloves) 12. Mobile Crane location a. Will crane be set up on concrete? If yes, can concrete support the weight of the crane and the load? b. Will crane be set up on asphalt? If yes, will cribbing be needed (for asphalt temp > 90° F)? c. Will crane be set up on gravel or rough ground? If yes, cribbing will be required. 13. Are any of the structures listed below located in the area of the crane set up? If yes, indicate their location on the Load Path Sketch. a. Manholes b. Underground voids c. Pipe chases d. Overhead obstructions or power lines 14. Additional information The chart in the middle offers a handy guide for assessing the effective angle of the sling to the relative weight. It is always better to limit the angle of the sling. Further, such changes in sling angle must be accounted for in lifts that are close to the sling weight limit and/or for critical lifts (greater than 90% of the crane limit). Rigging Sketch
  • 90.
    Identify the followingon your sketch: a. Lift point identification b. Method(s) of attachment c. Load angle factors (e.g., vertical and horizontal vectors of sling loads) d. Sling angles e. Accessories used f. Other factors affecting the equipment capacity g. Rated capacity of equipment in the configuration(s) in which it will be used. (For mobile cranes, many factors affect rated capacity, including boom length, boom angle, and work area.) Load Path Sketch A load-path sketch shows the load path and height at key points in the job. For lifts with mobile cranes, include the crane position(s) relative to the load and relative to surrounding obstructions. Where appropriate, include floor or soil-loading diagrams. Indicate lifting and travel speed limitations if applicable.
  • 91.
    Lifting Equipment andthe Law The Detail Of The Legislation THE ACTS & REGULATIONS IN DETAIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • The Lifting Operations and Lifting Equipment Regulations 1998 • The Management of Health and Safety at Work Reg’s 1999 • The Provision and Use of Work Equipment Regulations 1998 • The Supply of Machinery (Safety) (Amendment) Regulations 1994 • The Health and Safety at Work Act 1974
  • 92.
    2/13 Where Does theLaw Come From? There are currently five pieces of legislation which affect people whose work brings them into contact with lifting equipment. These Acts and Regulations are - • The Lifting Operations and Lifting Equipment Regulations 1998 • The Management of Health and Safety at Work Regulations 1999 • The Provision and Use of Work Equipment Regulations 1998 • The Supply of Machinery (Safety) (Amendments) Regulations 1994 and the EC Machinery Directive 98/37/EC. • The Health and Safety at Work Act 1974 Who has responsibilities? More or less everyone who has any contact or dealing with lifting equipment. Specific responsibilities are given to - • The employer of a person who uses lifting equipment at work. All responsibilities ascribed to an employer apply to any person who has control over or supervises the use of lifting equipment. • The self-employed who uses lifting equipment. • The equipment user. • The equipment examiner. • The designer, supplier and manufacturer of lifting equipment. What particular responsibilities do these people have? The employer must - Under LOLER Reg.4 Ensure that lifting equipment used in his workplace is of adequate strength and stability for each load. Under LOLER Reg.5 Make special provisions for lifting equipment that carries people. Under LOLER Reg.6 Ensure that lifting equipment is installed in such a way as to minimise the risk of a person being struck by a load, and is otherwise safe. Under LOLER Reg.7 Ensure that lifting equipment is marked with its Safe Working Load. Under LOLER Reg.8 Ensure that every lifting operation involving lifting equipment is (a) properly planned by a competent person; (b) appropriately supervised; and (c) carried out in a safe manner. Under LOLER Reg.9 Have in his possession before the first use of any equipment - (a) a Report of Thorough Examination of Lifting Equipment; or (b) an EC Declaration of Conformity if the equipment has not been used before. Under LOLER Reg.9 (a) Examine “below the hook” items every 6 months. (b) Examine “above the hook” items every 12 months. (c) Examine more frequently if circumstances require. (d) Routine inspect between examinations, where safety requires. Under LOLER Reg.10 Ensure that equipment is not used until a notified defect is rectified. Under LOLER Reg.11 Keep the following documents - (a) EC Declaration of Conformity as long as he keeps the equipment (b) Report of Thorough Examination for “below the hook” items when examined before first use, for 2 years. (c) Report of Thorough Examination for “above the hook” items when examined before first use, as long as he keeps the equipment. (d) Report of Thorough Examination for all periodic examinations, for 2 years.
  • 93.
    3/13 What particular responsibilitiesdo these people have? cont... Under MHSWR Reg.13 Ensure that his employees are provided with adequate training on their being exposed to new or increased risks because of the introduction of new work equipment or a change of work equipment already in use. Under PUWER Reg.4 Ensure that work equipment is maintained in an efficient state, in efficient working order and in good repair. Under PUWER Reg.9 Ensure that all employees who use, or supervise or manage the use of work equipment, have received adequate training in safety, methods, risks and precautions. Under HSWA s.2 (a) Provide a safe place of work. (b) Provide safe handling systems. (c) Maintain equipment at work. (d) Provide adequate training. The self-employed have the same responsibilities as the employer above. The equipment user must - Under HSWA s.7 Take care of himself and others whom his acts or omissions at work might affect. The examiner must - Under LOLER Reg.10 (a) Immediately notify the employer of any defect he finds. (b) Give to the employer a written “Report of Thorough Examination of Lifting Equipment”. (c) Notify the Health & Safety Executive of any imminent risk of serious personal injury. The designer, supplier and manufacturer must - Under HSWA s.6 (a) Ensure that the equipment he designs and makes is safe. (b) Ensure it is installed safely. (c) Carry out necessary tests and examinations to ensure safety. (d) Provide adequate “Safe Use” information. Under SMR Reg 12 (a) Issue an EC Declaration of Comformity (b) Fix a CE mark to the equipment (c) Ensure that his machinery complies with the essential health and safety requirements to offset the particular hazards due to a lifting operation.
  • 94.
  • 95.
  • 96.
  • 97.
    7/13 The Details ofthe Legislation The Lifting Operations and Lifting Equipment Regulations 1998 Referred to below as “LOLER”. Came into force 5th December 1998. A Regulation under the Health and Safety at Work etc. Act 1974. Wording lifted direct from LOLER in Italics. Definitions (LOLER Regulation 2) • “accessory for lifting” means work equipment for attaching loads to machinery for lifting. It can be assumed that an “accessory for lifting” is what used to be described as “lifting tackle” and includes slings, shackles, eyebolts, lifting beams and all “below the hook” items of lifting equipment. • “examination scheme” means a suitable scheme drawn up by a competent person for such thorough examinations of lifting equipment at such intervals as may be appropriate for the purpose described in LOLER. The definition of a “competent person” is conspicuous by its absence. • “the Executive” means the Health and Safety Executive. • “lifting equipment” means work equipment for lifting or lowering loads and includes its attachments used for anchoring, fixing or supporting it. This definition of lifting equipment goes beyond the pre-LOLER definition in that supporting stools, guys and other such supports are included. • “lifting operation” means an operation concerned with the lifting or lowering of a load. • “load” includes a person. • “thorough examination” (a) means a thorough examination by a competent person; (b) where it is appropriate to carry out testing for the purpose described in [LOLER], includes such testing by a competent person as is appropriate for the purpose. • “work equipment” means any machinery, appliance, apparatus, tool or installation for use at work. Application (LOLER Regulation 3) (1) LOLER shall apply - (a) in Great Britain... (2) LOLER shall apply to an employer in respect of lifting equipment......provided for use or used by an employee of his at work. (3) LOLER shall also apply - (a) to a self-employed person in respect of lifting equipment he uses at work. (b) to a person who has control to any extent of - (i) lifting equipment; (ii) a person at work who uses or supervises or manages the use of lifting equipment; or (iii) the way in which lifting equipment is used. LOLER specifically excludes some, but not all, shipping operations.
  • 98.
    8/13 The Lifting Operationsand Lifting Equipment Regulations 1998 cont... Strength and stability (LOLER Regulation 4) - Every employer shall ensure that (a) lifting equipment is of adequate strength and stability for each load, having regard in particular to the stress induced at its mounting or fixing point; (b) every part of a load and anything attached to it and used in lifting it is of adequate strength. Lifting equipment for lifting persons (LOLER Regulation 5) (1) Every employer shall ensure that lifting equipment for lifting persons - (a) is such as to prevent a person using it being crushed, trapped or struck or falling from the carrier; (b) is such as to prevent as far as is reasonably practicable a person using it, while carrying out activities from the carrier, being crushed, trapped or struck or falling from the carrier; (c) has suitable devices to prevent the risk of a carrier falling; (d) is such that a person trapped in any carrier is not thereby exposed to danger and can be freed. (2) Every employer shall ensure that if the risk described in paragraph (1) (c) [above] cannot be prevented for reasons inherent in the site and height differences - (a) the carrier has an enhanced safety coefficient suspension rope or chain; and (b) the rope or chain is inspected by a competent person every working day. Positioning and installing (LOLER Regulation 6) (1) Every employer shall ensure that lifting equipment is positioned or installed in such a way as to reduce to as low as is reasonably practicable the risk - (a) of the lifting equipment or load striking a person; or (b) from a load - (i) drifting; (ii) falling freely; or (iii) being released unintentionally; and is otherwise safe. “and is otherwise safe” is a significant catch-all. Lifting installations must be safe! (2) Every employer shall ensure that there are suitable devices to prevent a person from falling down a shaft or hoistway. Marking of lifting equipment (LOLER Regulation 7) Every employer shall ensure that (a) machinery and accessories for lifting loads are clearly marked to indicate their safe working loads; (b) where the safe working load of machinery for lifting loads depends on its configuration - (i) the machinery is clearly marked to indicate its safe working load for each configuration; or (ii) information which clearly indicates its safe working load for each configuration is kept with the machinery; (c) accessories for lifting are also marked in such a way that it is possible to identify the characteristics for their safe use; (d) lifting equipment which is designed for lifting persons is appropriately and clearly marked to this effect; and (e) lifting equipment which is not designed for lifting persons but which might be so used in error is appropriately and clearly marked to the effect that it is not designed for lifting persons.
  • 99.
    9/1 The Lifting Operationsand Lifting Equipment Regulations 1998 cont... Organisation of lifting operations (LOLER Regulation 8) (1) Every employer shall ensure that every lifting operation involving lifting equipment is (d) properly planned by a competent person; (e) appropriately supervised; and (f) carried out in a safe manner. This is a new concept to lifting equipment legislation. It is the “operation” not just the equipment that must be safe. Thorough examination and inspection (LOLER Regulation 9) (1) Every employer shall ensure that before lifting equipment is put into service for the first time by him it is thoroughly examined for any defect unless either - (a) the lifting equipment has not been used before; and (b) the employer has an EC declaration of conformity made not more than 12 months before the equipment is put into service. (2) Every employer shall ensure that, where the safety of lifting equipment depends on the installation conditions, it is thoroughly examined (a) after installation and before being put into service for the first time; and (b) after assembly and before being put into service at a new site or a new location, to ensure that it has been installed correctly and is safe to operate. (3) Every employer shall ensure that lifting equipment which is exposed to conditions causing deterioration which is liable to result in dangerous situations is (a) thoroughly examined - (i) in the case of lifting equipment for lifting persons or an accessory for lifting, at least every 6 months; (ii) in the case of other lifting equipment, at least every 12 months; or (iii) in either case, in accordance with an examination scheme; and (iv) each time that exceptional circumstances which are liable to jeopardise the safety of the lifting equipment have occurred; and (b) if appropriate for the purpose, is inspected by a competent person at suitable intervals between thorough examinations, to ensure that health and safety conditions are maintained and that any deterioration can be detected and remedied in good time. Reports and defects (LOLER Regulation 10) (1) A person making a thorough examination for an employer under regulation 9 [of LOLER] shall- (a) notify the employer forthwith of any defect in the lifting equipment which in his opinion is or could become a danger to persons; (b) as soon as is practicable make a report of the thorough examination in writing signed by him or on his behalf......and containing the information specified in Schedule 1 to - (i) the employer; and (ii) any person from whom the lifting equipment has been hired or leased; (c) where there is in his opinion a defect in the lifting equipment involving an existing or imminent risk of serious personal injury send a copy of the report as soon as is practicable to the relevant enforcing authority. (2) A person making an inspection for an employer under regulation 9 [of LOLER] shall - (a) notify the employer forthwith of any defect in the lifting equipment which in his opinion is or
  • 100.
    10/13 The Lifting Operationsand Lifting Equipment Regulations 1998 cont... could become a danger to persons; (b as soon as is practicable make a record of the inspection in writing. (3) Every employer who has been notified [of a defect] shall ensure that lifting equipment is not used - (a) before the defect is rectified; or (b) after a time specified [in the defect report] and before the defect is rectified. Keeping information (LOLER Regulation 11) (1) an EC declaration of conformity [shall be kept by an employer] so long as he operates the lifting equipment. (2) The employer shall ensure that the information contained in - (a) every report of thorough examination is kept available for inspection - (i) ...for a “prior to first use thorough examination of equipment” (i.e. under Regulation 9 (1)) lifting equipment other than an accessory for lifting (i.e. for “above the hook” equipment) until he ceases to use the lifting equipment; (ii) ...for a “prior to first use thorough examination of equipment” (i.e. under Regulation 9 (1)) an accessory for lifting, (i.e. for “below the hook” equipment) for two years after the report is made. (iii) ...for a “prior to first use thorough examination of installation” (i.e. under Regulation 9 (2)) until he ceases to use the lifting equipment it was installed or assembled. (iv) ...for a “periodic examination of equipment” (i.e. under Regulation 9 (3)) until the next report is made......or the expiration of two years whichever is later. (b) every [inspection record] is kept available until the next such record is made. Repeal of provisions of the Factories Act 1961 (LOLER Regulation 15) Sections 22,23 and 25 to 27 of the Factories Act 1961 (d) are repealed. Information to be contained in a report of a thorough examination (Schedule 1) 1 The name and address of the employer for whom the thorough examination was made. 2 The address of the premises at which the thorough examination was made. 3 Particulars sufficient to identify the lifting equipment including where known its date of manufacture. 4 The date of the last thorough examination. 5 The safe working load of the lifting equipment or (where its safe working load depends on the configuration of the lifting equipment) its safe working load for the last configuration in which it was thoroughly examined. 6 In relation to the first thorough examination of lifting equipment after installation or after assembly at a new site or in a new location - (a) that it is such a thorough examination; (b) (if such be the case) that it has been installed correctly and would be safe to operate. 7 In relation to a thorough examination of lifting equipment other than a thorough examination to which paragraph 6 relates - (a) whether it is a thorough examination - (i) within an interval of 6 months under regulation 9(3)(a)(i); (ii) within an interval of 12 months under regulation 9(3)(a)(ii); (iii) in accordance with an examination scheme under regulation 9(3)(a)(iii); or (iv) after the occurrence of exceptional circumstances under regulation 9(3)(a)(iv); (v) (if such be the case) that the lifting equipment would be safe to operate. 8 In relation to every thorough examination of lifting equipment - (a) identification of any part found to have a defect which is or could become a danger to persons, and a description of the defect; (b) particulars or any repair, renewal or alteration required to remedy a defect found to be a danger to persons;
  • 101.
    11/13 The Lifting Operationsand Lifting Equipment Regulations 1998 cont... (c) in the case of a defect which is not yet but could become a danger to persons - (i) the time by which it could become such a danger; (ii) particulars of any repair, renewal or alteration required to remedy it; (d) the latest date by which the next thorough examination must be carried out; (e) where the thorough examination included testing, particulars of any test; (f) the date of thorough examination. 9. The name, address and qualifications of the person making the report; that he is self-employed or, if employed, the name and address of his employer. 10 The name and address of a person signing or authenticating the report on behalf of its author. 11. The date of the report. The Management of Health and Safety at Work Reg’s 1999 Referred to below as “MHSWR”. Came into force 29th December 1999. A Regulation under the Health and Safety at Work etc. Act 1974. Wording lifted direct from MHSWR in Italics Capabilities and training (MHSWR Regulation 13) (2) Every employer shall ensure that his employees are provided with adequate health and safety training - (b) on their being exposed to new or increased risks because of - (iii) the introduction of new work equipment or a change respecting work equipment already in use within the employer’s undertaking. The Provision and Use of Work Equipment Regulations 1998 Referred to below as “PUWER”. Came into force 5th December 1998. A Regulation under the Health and Safety at Work etc. Act 1974. Wording lifted direct from PUWER in Italics Interpretation (PUWER Regulation 2) (1) ...”work equipment” means machinery, appliance, apparatus, tool or installation for use at work... Application (PUWER Regulation 3) (1) PUWER shall apply in Great Britain. Suitability of work equipment (PUWER Regulation 4) (1) Every employer shall ensure that work equipment is maintained in an efficient state, in efficient working order and in good repair.
  • 102.
    12/13 The Lifting Operationsand Lifting Equipment Regulations 1998 Training (PUWER Regulation 9) (1) Every employer shall ensure that all persons who use work equipment have received adequate training for purposes of health and safety, including training in the methods which may be adopted when using the work equipment, any risks which such use may entail and precautions to be taken. (2) Every employer shall ensure that any of his employees who supervises or manages the use of work equipment has received adequate training for purposes of health and safety, including training in the methods which may be adopted when using the work equipment, any risks which such use may entail and precautions to be taken. The Supply of Machinery (Safety) (Amendment) Regulations 1994 Referred to below as “SMR”. Came into force 1st January 1993. Requirements for Supply of Relevant Machinery (Regulation 12) The manufacturer (or original importer into the EC) of a lifting machine (the definition of machine includes all useable equipment, e.g. shackles, chain slings) must (a) Satisfy the relevant health and safety requirements detailed in the SMR (see below). (b) Carry out an appropriate test and assessment procedures. (c) Issue an EC Declaration of Conformity. (d) Fix a CE mark. (e) Ensure the machinery is in fact safe. Essential Health and Safety Requirements to Offset the Particular Hazards Due to a Lifting Operation (Schedule 4) The SMR places requirements on the designer and manufacturer of machinery. These requirements cover - (a) Stability. (b) Guide rails and rail tracks. (c) Mechanical strength. (d) Pulleys, drums, chains or ropes. (e) Separate lifting accessories. (f) Control of movements. (g) Handling of loads. (h) Control devices. (i) Loading control. (j) Risks to exposed persons. (k) Fitness for purpose. (l) Marking. (m) Instruction handbook. The requirements are detailed, but it is the responsibility of the Rossendale Group to ensure that they are complied with when it manufactures and supplies or installs lifting equipment. When the Rossendale Group supplies equipment manufactured by others, it is the responsibility of the manufacturer (or supplier) to ensure compliance with the essential health and safety requirements. Under SMR a ’machine’ is much more broadly defined than our traditional understanding. If it is a piece of lifting equipment capable of being used on it’s own, it is a ‘machine’ under SMR. This would include a shackle or a sling.
  • 103.
    The Health andSafety at Work Act 1974 Referred to below as “HSWA”. Wording lifted direct from HSWA in Italics General Duties of Employers to their Employees (HSWA Section 2) (1) It shall be the duty of every employer to ensure, so far as is reasonably practicable, the health, safety and welfare at work of all his employees. (2) ...the matters to which that duty extends in particular - (a) the provision and maintenance of plant and systems of work that are, so far as is reasonably practicable, safe and without risks to health; (b) arrangements for ensuring, so far as is reasonably practicable, safety and absence of risks to health in connection with the use, handling, storage and transport of articles and substances; (c) the provision of such information, instruction, training and supervision as is necessary to ensure, so far as is reasonably practicable, the health and safety at work of his employees. (d) so far as is reasonably practicable as regards any place of work under the employer’s control, the maintenance of it in a condition that is safe and without risks to health... (e) The provision and maintenance of a work environment for his employees that is, so far as is reasonably practicable, safe... General Duties of Manufacturers (HSWA Section 6) (1) It shall be the duty of any person who designs, manufactures, imports or supplies [lifting equipment] - (a) to ensure, so far as is reasonably practicable, that the [equipment] is designed and constructed as to be safe and to be without risks to health when properly used; (2) “When properly used” is a significant caveat. (b) to carry out........such testing and examination as may be necessary [to ensure that it is safe]; (c) to make available adequate information about the use for which [the equipment] is designed........and about any conditions necessary to ensure that, when put to that use, it will be safe and without risks to health. (3) It shall be the duty of any person who erects or installs any article for use at work, so far as is reasonably practicable, that nothing about the way in which it is erected or installed makes it unsafe.......when properly used. General Duties of Employees at Work (HSWA Section 7) It shall be the duty of every employee, while at work - (a) to take reasonable care for the health and safety of himself and of other persons who may be affected by his acts or omissions at work.
  • 104.
    American Institute ofSteel Construction AISC Specifications for the design, fabrication, and erection of structural steel for buildings. American Iron and Steel Institute AISI Standards for Type-302 or Type-304 stainless steel. American National Standards Institute and American Society of Mechanical Engineers ANSI A10.28, Work Platforms Suspended From Cranes or Derricks. ANSI A10.18, Floor and Wall Openings, Railings and Toe Boards. ASME B30.2, Overhead and Gantry Cranes (Top-Running Bridge, Single or Multiple Girder, Top-Running Trolley Hoist). ASME B30.5, Mobile and Locomotive Cranes. ASME B30.6, Derricks. ASME B30.7, Base-Mounted Drum Hoists. ASME B30.9, Slings. ASME B30.10, Hooks. ASME B30.11, Monorail Systems and Underhung Cranes. ASME B30.12, Handling Loads Suspended from Rotorcraft. ASME B30.14, Side Boom Tractors. ASME B30.16, Overhead Hoists (Underhung). ASME B30.17, Overhead and Gantry Cranes (Top Running Bridge, Single Girder, Underhung Hoist). ASME B30.20, Below-The-Hook Lifting Devices. ASME B30.21, Manually Lever Operated Hoists. ASME B30.22, Articulating Boom Cranes. ASME B30.23, Personnel Lifting Systems. ASME B56.1, Safety Standard for Powered Industrial Trucks – Low Lift and High Lift Trucks. ASME B56.5, Guided Industrial Vehicles. ASME B56.6, Rough Terrain Fork Lift Trucks. ASME B56.7, Industrial Crane Trucks. Special Notice 6-88. ASME B56.11.4, Forks and Fork Carriers for Powered Industrial Fork Lift Trucks, Hook Type. ASME PALD, Portable Automotive Lifting Devices. ANSI/ASTM Specification A391, Specification for Alloy Steel Chain. ANSI/ASTM Specification E-165, Standard Practice for Liquid Penetrant Inspection Method. ANSI/ASTM Specification E-709, Standard Practice for Magnetic Particle Examination. ANSI/AWS D14.1, Specification for Welding of Industrial and Mill Cranes and Other Material Handling Equipment. ASME HST-1M, Performance Standard for Electric Chain Hoists. ASME HST-2M, Performance Standard for Hand Chain Manually Operated Chain Hoists. ANSI/ASME HST-3M, Performance Standard for Manually Lever Operated Chain Hoists. -1
  • 105.
    ANSI/ASME HST-4M, PerformanceStandard for Electric Wire Rope Hoists. ANSI/ASME HST-5M, Performance Standard for Air Chain Hoists. ANSI/ASME HST-6M, Performance Standard for Air Wire Rope Hoists. ANSI MH 27.1, Specifications for Underhung Cranes and Monorail Systems. ANSI N14.6, Standard for Special Lifting Devices for shipping Containers Weighing 10,000 Pounds (4500 kg) or More for Nuclear Materials. ASME NQA-1, Quality Assurance Program Requirements for Nuclear Facilities. ASME Cranes for Nuclear Facilities: ASME NUM-1, Rules for Construction of Cranes, Monorails, and Hoists (With Bridge or Trolley or Hoist of the Underhung Type). ASME NOG-1, Rule for Construction of Overhead and Gantry Cranes (Toprunning Bridge, Multiple Girder). American Society for Nondestructive Testing Recommended Practice No. ASNT-TC-1A. American Welding Society ANSI/AWS D1.1 Structural Welding Code – Steel. Crane Manufacturers’ Association of America CMAA No. 70, Specification for Electric Overhead Traveling Cranes. CMAA No. 74, Specification for Top Running and Under Running, Single Girder, Electric Overhead Traveling Cranes. Department of Energy DOE 440.1A, Worker Protection Management for Federal and Contractor Employees. DOE 440.1-6, Suspect Counterfeit Items Guide. -2 Department of Labor 29 CFR 1910, Occupational Safety and Health Standards for General Industry. 29 CFR 1926, Occupational Safety and Health Regulations for Construction. Department of Transportation 49 CFR 391.41, physical Qualification for Drivers. National Fire Protection Association ANSI/NFPA 505, Powered Industrial Trucks, Type Designation and Areas of Use. NFPA 70, National Electrical Code. Power Crane and Shovel Association PCSA-4, Mobile Power Crane and Excavator Standards and Hydraulic Crane Standards. Society of Automotive Engineers SAE J376-85, Load-Indicating Devices in Lifting Crane Service. Code.SAE J765, Crane Load Stability Test SAE J874, Center of Gravity Test Code. SAE J987, Crane Structure, Method of test. Underwriters’ Laboratories UL 558, Internal-Combustion-Engine-Powered Industrial Trucks. UL 583, Electric-Battery-Powered Industrial Truck