2. การเชื่อมประพจน์ (1) การเชื่อมประพจน์ด้วยตัวเชื่อม “ และ ” ถ้า p และ q เป็นประพจน์ p และ q เขียนแทนด้วย p q ตารางค่าความจริงของ p q เขียนได้ดังนี้ p q p q T T T T F F F T F F F F ตัวอย่าง p : 2 เป็นจำนวนคู่ (T) , q : 2 มากกว่า 3 (F) p q : 2 เป็นจำนวนคู่ และ 2 มากกว่า 3 (F)
4.
(2) การเชื่อมประพจน์ด้วยตัวเชื่อม “ หรือ ” ถ้า p และ q เป็นประพจน์ p หรือ q เขียนแทนด้วย p q ตารางค่าความจริงของ p q เขียนได้ดังนี้ p q p q T T T T F T F T T F F F ตัวอย่าง p : 2 เป็นจำนวนคี่ (F) , q : 2 มากกว่า 3 (F) p q : 2 เป็นจำนวนคี่ หรือ 2 มากกว่า 3 (F)
5.
( 3 ) การเชื่อมประพจน์ด้วยตัวเชื่อม “ ถ้า ... แล้ว ... ” ถ้า p และ q เป็นประพจน์ ถ้า p แล้ว q เขียนแทนด้วย p q ตารางค่าความจริงของ p q เขียนได้ดังนี้ p q p q T T T T F F F T T F F T ตัวอย่าง p : 2 เป็นจำนวนคี่ (F) , q : 2 มากกว่า 3 (F) p q : ถ้า 2 เป็นจำนวนคี่ แล้ว 2 มากกว่า 3 (T)
6.
( 4 ) การเชื่อมประพจน์ด้วยตัวเชื่อม “ ก็ต่อเมื่อ ” ถ้า p และ q เป็นประพจน์ p ก็ต่อเมื่อ q เขียนแทนด้วย p q ตารางค่าความจริงของ p q เขียนได้ดังนี้ p q p q T T T T F F F T F F F T ตัวอย่าง p : 2 เป็นจำนวนคี่ (F) , q : 2 มากกว่า 3 (F) p q : 2 เป็นจำนวนคี่ ก็ต่อเมื่อ 2 มากกว่า 3 (T)
7.
(5) นิเสธของประพจน์นิเสธของประพจน์ p เขียนแทนด้วย ~ p ตารางค่าความจริงของ ~ p เขียนได้ดังนี้ p ~ p T F F T ตัวอย่าง p : 0 เป็นจำนวนเต็ม (T) ~ p : 0 ไม่เป็นจำนวนเต็ม (F) q : 2 มากกว่า 3 (F) ~ q : 2 ไม่มากกว่า 3 (T)
8.
การหาค่าความจริงของประพจน์ การหาค่าความจริงของประพจน์ที่มีตัวเชื่อม อาจทำได้รวดเร็วขึ้น โดยใช้แผนภาพดังนี้ ตัวอย่าง กำหนดให้ p เป็นจริง และ q เป็นเท็จ จงหาค่าความจริงของ วิธีทำ T F T T T T ดังนั้น ประพจน์ มีค่าความจริงเป็น จริง *
9.
ตัวอย่าง กำหนดให้ p , r เป็นจริง และ q , s เป็นเท็จ จงหาค่าความจริงของ วิธีทำ T F T F F F F T F T F ดังนั้น ประพจน์ มีค่าความจริงเป็น เท็จ *
10.
การสร้างตารางค่าความจริง ประพจน์ที่มีตัวเชื่อม เช่น เมื่อ p , q และ r เป็นประพจน์ย่อยที่ยังไม่ กำหนดค่าความจริง จะเรียก p , q และ r ว่า ตัวแปรแทนประพจน์ และเรียกประพจน์ ว่า รูปแบบของประพจน์ ดังนั้น ในการพิจารณาค่าความจริงจึงต้องพิจารณาทุกกรณี โดยสร้างเป็นตาราง ดังนี้ ตัวอย่าง จงสร้างตารางค่าความจริงของ วิธีทำ p q ~q T T F F T T F T T T F T F F T F F T F T
สัจนิรันดร์ (Tautology)บทนิยาม รูปแบบของประพจน์ที่มีค่าความจริงเป็นจริงทุกกรณี เรียกว่า สัจนิรันดร์ การพิจารณาว่าประพจน์ใดเป็นสัจนิรันดร์ ทำได้ 2 วิธี คือ 1. การพิจารณาจากตารางค่าความจริง ตัวอย่าง จงแสดงว่า เป็นสัจนิรันดร์ p q ~q T T F T T T F T F T F T F T T F F T T T
14.
2. การพิจารณาโดยวิธีหาข้อขัดแย้งซึ่งวิธีนี้จะสมมุติให้รูปแบบของประพจน์ที่กำหนดให้เป็นเท็จ แล้วจึงหาค่าความจริงของประพจน์ย่อย หากมีข้อขัดแย้งกับที่สมมุติใว้ แสดงว่า รูปแบบของประพจน์นั้นเป็นสัจนิรันดร์ ตัวอย่าง จงแสดงว่า เป็นสัจนิรันดร์ วิธีทำ F T F T T T F T T จะเห็นได้ว่าค่าความจริงของ q เกิดข้อขัดแย้ง ดังนั้น แสดงว่าประพจน์ เป็นสัจนิรันดร์ *
15.
7. การอ้างเหตุผลการอ้างเหตุผล คือการอ้างว่า เมื่อมีข้อความ P 1 , P 2 , P 3 ,…,P n ชุดหนึ่ง แล้วสามารถสรุปได้ข้อความ C การอ้างเหตุผลประกอบด้วยสองส่วนคือ เหตุหรือสิ่งที่กำหนดให้ ได้แก่ ข้อความ P 1 , P 2 , P 3 ,…,P n และ ผลหรือข้อสรุป ได้แก่ ข้อความ C การอ้างเหตุผลอาจจะสมเหตุสมผลหรือไม่สมเหตุสมผลก็ได้ ถ้า เป็นสัจนิรัดร์ จะกล่าวว่า การอ้างเหตุผลนี้ สมเหตุสมผล (valid) ถ้า ไม่เป็นสัจนิรันดร์ ก็กล่าวได้ว่า การอ้างเหตุผลนี้ ไม่สมเหตุสมผล (invalid) ดังนั้น ในการตรวจสอบความสมเหตุสมผล จึงใช้วิธีเดียวกับการตรวจสอบสัจนิรันดร์
16.
ตัวอย่าง จงพิจารณาว่าการอ้างเหตุผลต่อไปนี้สมเหตุสมผลหรือไม่ เหตุ 1. ถ้าฝนตกแล้วถนนลื่น 2. ฝนไม่ตก ผล ถนนไม่ลื่น วิธีทำ ให้ p แทน ฝนตก และ q แทน ถนนลื่น จะได้ ตรวจสอบรูปแบบของประพจน์ว่าเป็นสัจนิรันดร์หรือไม่ F T F T T T F F T จากแผนภาพ รูปแบบของประพจน์ไม่เป็นสัจนิรันดร์ ดังนั้น การอ้างเหตุผล ไม่สมเหตุสมผล
12. ค่าความจริงของประโยคที่มีตัวบ่งปริมาณสองตัวบทนิยาม ประโยค มีค่าความจริงเป็นจริง ก็ต่อเมื่อ แทน x และ y ด้วยสมาชิกทุกตัว ใน U แล้วทำให้ P(x,y) เป็นจริงเสมอ ประโยค มีค่าความจริงเป็นเท็จ ก็ต่อเมื่อ แทน x และ y ด้วยสมาชิกบางตัว ใน U แล้วทำให้ P(x,y) เป็นเท็จ ตัวอย่าง จงหาค่าความจริงของประโยคต่อไปนี้ 1) 2)
23.
บทนิยาม ประโยค มีค่าความจริงเป็นจริงก็ต่อเมื่อ แทน x และ y ด้วยสมาชิกบางตัว ใน U แล้วทำให้ P(x,y) เป็นจริง ประโยค มีค่าความจริงเป็นเท็จ ก็ต่อเมื่อ แทน x และ y ด้วยสมาชิกทุกตัว ใน U แล้วทำให้ P(x,y) เป็นเท็จเสมอ ตัวอย่าง จงหาค่าความจริงของประโยคต่อไปนี้ 1) 2)
24.
บทนิยาม ประโยค มีค่าความจริงเป็นจริง ก็ต่อเมื่อ แทน x ด้วยสมาชิกทุกตัว ใน U แล้วทำให้ เป็นจริง ประโยค มีค่าความจริงเป็นเท็จก็ต่อเมื่อ แทน x ด้วยสมาชิกบางตัว ใน U แล้วทำให้ เป็นเท็จ ตัวอย่าง จงหาค่าความจริงของประโยคต่อไปนี้ 1) 2)
25.
บทนิยาม ประโยค มีค่าความจริงเป็นจริง ก็ต่อเมื่อ แทน x ด้วยสมาชิกบางตัว ใน U แล้วทำให้ เป็นจริง ประโยค มีค่าความจริงเป็นเท็จก็ต่อเมื่อ แทน x ด้วยสมาชิกทุกตัว ใน U แล้วทำให้ เป็นเท็จ ตัวอย่าง จงหาค่าความจริงของประโยคต่อไปนี้ 1) 2)