SlideShare a Scribd company logo
LTE Architecture &
Interfaces
Prepared By: RF Team
AbdelRahman Fady & Mohamed Mohsen
Course Contents
• Historical vision
• LTE Capabilities
• System architecture
General Revision
3GPP and IEEE evolutions
3GPP evolution
• 1G (Early 1980s)
– Analog speech communications.
– Analog FDMA.
– Ex: AMPS
• 2G: Started years ago with GSM: Mainly voice
– – Digital modulation of speech communications.
– – Advanced security and roaming.
– – TDMA and narrowband CDMA.
– – Ex: GSM, IS-95 (cdmaOne), and PDC
• 2.5G: Adding Packet Services: GPRS, EDGE
• 3G: Adding 3G Air Interface: UMTS
• 3G Architecture:
• Support of 2G/2.5G and 3G Access
• Handover between GSM and UMTS technologies
• 3G Extensions:
• HSDPA/HSUPA
• IP Multi Media Subsystem (IMS)
• Inter-working with WLAN (I-WLAN)
• Beyond 3G:
• Long Term Evolution (LTE)
• System Architecture Evolution (SAE)
• Adding Mobility towards I-WLAN and non-3GPP air interfaces
3GPP2 evolution
• CDMA2000 1X (1999)
• CDMA2000 1xEV-DO (2000)
• EV-DO Rev. A (2004): VoIP
• EV-DO Rev. B (2006): Multi-carrier
• Ultra Mobile Broadband (UMB), f.k.a. EV-DO Rev.C
– Based on EV-DO, IEEE 802.20, and FLASH-OFDM
– Spec finalized in April 2007.
– Commercially available in early 2009.
IEEE 802.16 Evolution
• 802.16 (2002): Line-of-sight fixed operation in 10 to 66
GHz
• 802.16a (2003): Air interface support for 2 to 11 GHz
• 802.16d (2004): Minor improvements to fixes to 16a
• 802.16e (2006): Support for vehicular mobility and
asymmetrical link
• 802.16m (in progress): Higher data rate, reduced
latency, and efficient security mechanism
Beyond 3G
• International Mobile Télécommunications (IMT)-2000
introduced global standard for 3G.
• Systems beyond IMT-2000 (IMT-Advanced) is set to introduce
evolutionary path beyond 3G.
• Mobile class targets 100 Mbps with high mobility and nomadic/
local area class targets 1 Gbps with low mobility.
• 3GPP and 3GPP2 are currently developing evolutionary/
revolutionary systems beyond 3G.
– 3GPP Long Term Evolution (LTE)
– 3GPP2 Ultra Mobile Broadband (UMB)
• IEEE 802.16-based WiMax is also evolving towards 4G through
802.16m.
Beyond 3G
• Release 99 (Mar. 2000): UMTS/WCDMA
• Rel-5 (Mar. 2002): HSDPA
• Rel-6 (Mar. 2005): HSUPA
• Rel-7 (2007):
DL MIMO, IMS (IP Multimedia Subsystem),
optimized real-time services (VoIP, gaming, push-to-talk).
• Long Term Evolution (LTE)
– 3GPP work on the Evolution of the 3G Mobile System started in
November 2004.
– Standardized in the form of Rel-8.
– Spec finalized and approved in January 2008.
– Target deployment in 2010.
• LTE advanced
Course Contents
• Historical Vision
• LTE Capabilities
• System architecture
Beyond 3G3G evolution
Why LTE ……?
• Need for PS optimized system
• Evolve UMTS towards packet only
system
• Need for higher data rates
• Can be achieved with HSDPA/HSUPA
• and/or new air interface defined by
3GPP LTE
• Less processor load cost
• Less number of transitions between
different states will lead definitely to
less processor load
• Need for high quality of services
• Use of licensed frequencies to
guarantee quality of services
• Always-on experience (reduce control
plane latency significantly)
• Reduce round trip delay (→ 3GPP LTE)
• Need for cheaper infrastructure
• Simplify architecture, reduce number
LTE Defined Data Rates
• Downlink
– 100Mbps theoretical
• Uplink
– 50Mbps theoretical
• Generally we can say the downlink rate relative to
HZ 5 bits/s/HZ and for Uplink 2.5bits/s/HZ
LTE duplexing and accessing
• Duplexing Methods
– FDD
• UL and DL can reach the peak traffic simultaneously
– TDD
• UL and DL can not reach the peak traffic
simultaneously
• Accessing techniques
– OFDMA for the DL
– SC-FDMA for the UL
Modulation and coding
• Adaptive Modulation and Coding
– DL Modulations: QPSK, 16-QAM and 64-QAM
modulation
– UL Modulations: QPSK and 16-QAM
– Turbo code
LTE Maximum Latency (1-2)
• For control Plane
– The delay of changing the mobile mode from the
active to non active and vice versa
• If the terminal was in the idle mode it needs 100msec
• If the terminal was in the dormant it needs 50msec
• For User Plane
– Time the terminal takes to transmit small packets
to the RAN and Vice versa is 5 msec
LTE Maximum Latency (2-2)
• What is the idle mode
– Terminal unknown for the RAN
– No Radio resources assigned
• What is the dormant mode
– Terminal is known for the RAN
– No Radio resources assigned
LTE theoretical Capacity
• Active Mode
– At 5MHZ BW the Cell can
support 200 users
simultaneously.
– At BW more than 5 MHZ
the Cell can support up to
400 Simultaneously
terminal.
• IDLE Mode
– Can support more than 400
Users at the same time
LTE System Performance targets(1-2)
• User throughput
– 95% from the users will take
average throughput
– 5% will be little bit smaller
than the average
• Spectrum efficiency
– It define high spectrum
efficiency Bits/MHZ/Cell
• Coverage
– 5 Km with high throughput
– 30 Km with low throughput
– 100Km with very low
throughput
LTE System Performance targets(2-2)
• Mobility
– 0-15km/ hour the more
better subscriber behavior.
– 120 km/ hour the accepted
behavior.
– 350 km/ hour very low data
rate and data throughput.
• Enhanced MBMS
– Up to 16 multimedia
channels per just one carrier
LTE deployment aspects
• Flexible spectrum
– The carrier could be 1.25
MHZ , 1.6 MHZ, 2.5 MHZ
,5MHZ , 10MHZ , 15MHZ or
20 MHZ
– Can use the IMT2000 Band
• 1910-1920 and 2010-2025 are
the TDD Band
• 1920- 1960 FDD UL and 2110-
2170 FDD DL
• Stand alone
• Coexisted with WCDMA and
GSM
– HO from LTE to GSM 500msec
for NRT and 300 for RT and
the same for GSM
• LTE Frequency Reuse Pattern
– Generally it is equal to 1
– IIC (Inter cell interference coordinator) is used to reduce
the interference and make the reuse for cell outer area > 1
Interference handling
Architecture and Migration
• LTE RAN agreed on the following
– Packet bearer support
• Real Time
• Conversational
– Reduce the number of the new
interfaces
– NO RNC
– NO CS-CN
– Reduce the single point of failure
– NO RNC
– Separate the treatment of different
types of traffic (O&M, Control and
Data) to utilize the BW
– Reduce the variable delay and Jitter
(TCP/IP)
– Agreed QOS between Transmitting end
and receiving end
– No SHO or Macro diversity
– MIMO and Tx diversity techniques
used
Complexity
• Easy design
• Less complex
• No redundant feature
• Minimize Cost and maintain system
performance
– Low complexity
– Low power consumption
LTE Services (1-2)
LTE Services (2-2)
Course Contents
• Historical Vision
• LTE Capabilities
• System architecture
Network architecture Evolution
3GPP-LTE Architecture High level
(1-2)
3GPP-LTE Architecture High level
(2-2)
SAE Network Architecture
Evolved UTRAN
EPC (1-5)
EPC (2-5)
EPC (3-5)
EPC (4-5)
EPC (5-5)
Interfaces
UTRAN interfaces
EPC Interfaces ( 1 – 5 )
EPC Interfaces ( 1 – 5 )
EPC Interfaces ( 2 – 5 )
EPC Interfaces ( 3 – 5 )
EPC Interfaces ( 4 – 5 )
EPC Interfaces ( 5 – 5 )
Interworking Architecture (1 – 4)
Interworking ArchitectureInterworking Architecture (2 – 4)
Interworking ArchitectureInterworking Architecture (3 – 4)
Interworking ArchitectureInterworking Architecture (4 – 4)
Roaming Architecture (1 - 3)
Roaming Architecture (2 - 3)
Roaming Architecture (3 - 3)
Overall LTE system Architecture
Thank You

More Related Content

PPT
LTE - Long Term Evolution
PDF
LTE Air Interface
PDF
LTE (Long Term Evolution) Introduction
PPTX
4G technology
PPTX
Lte training an introduction-to-lte-basics
PPTX
LTE Basic
PDF
LTE Basics
PDF
Radio network overview
LTE - Long Term Evolution
LTE Air Interface
LTE (Long Term Evolution) Introduction
4G technology
Lte training an introduction-to-lte-basics
LTE Basic
LTE Basics
Radio network overview

What's hot (20)

PDF
5g architecture, Industrial Training
PDF
Throughput calculation for LTE TDD and FDD systems
PPTX
LTE Training Course
PDF
5G technical_overview_training_sec_1
PDF
5G Network Architecture, Design and Optimisation
PDF
Best practices-lte-call-flow-guide
PDF
5 g core overview
PDF
Mobile Networks Architecture and Security (2G to 5G)
PDF
LTE KPI and PI Formula_NOKIA.pdf
PPTX
5G NR parameters
PDF
5G NR: Key features and enhancements
PDF
Pci planning-for-lte
PDF
LTE Architecture Overview
PDF
5 g ran architcture
PPT
08. DRIVE TEST Analysis
PPTX
Mobile Networks Overview (2G / 3G / 4G-LTE)
PPTX
395317358-LTE-Resource-Usage-Optimization.pptx
PDF
5g introduction_NR
PDF
What is-twamp
5g architecture, Industrial Training
Throughput calculation for LTE TDD and FDD systems
LTE Training Course
5G technical_overview_training_sec_1
5G Network Architecture, Design and Optimisation
Best practices-lte-call-flow-guide
5 g core overview
Mobile Networks Architecture and Security (2G to 5G)
LTE KPI and PI Formula_NOKIA.pdf
5G NR parameters
5G NR: Key features and enhancements
Pci planning-for-lte
LTE Architecture Overview
5 g ran architcture
08. DRIVE TEST Analysis
Mobile Networks Overview (2G / 3G / 4G-LTE)
395317358-LTE-Resource-Usage-Optimization.pptx
5g introduction_NR
What is-twamp
Ad

Similar to LTE Architecture and interfaces (20)

PDF
Lte training session_1
PPT
Lte basics
PDF
4 g long term evolution introduction 18-jan-2014
PPTX
Lte principles overview
PDF
389282805-lte-fundamentals-training-and-certification-by-telcoma-global.pdf
PPT
LTE @ Yogyakarta, 19 December 2001
PDF
Cellular technology overview
PDF
Introduction to 3GPP and LTE standardization
PPTX
LTE Fundamentals Training and Certification by TELCOMA Global
PDF
LTE, LTE-A and 5G
PDF
1 lf-pau-lte
PDF
LTE Fundamentals Training and Certification by TELCOMA Global
PDF
4G Overview -4G Overview Sessions 1&2&3.pdf
DOCX
LTE (4G) PROJECT REPORT
PDF
session_2_lte new challenge biskupski.pdf
PPTX
lte_principle (1).pptx
PPTX
LTE_A_Telecoma_new.pptx
PPTX
Long Term Evolution
PDF
Slides dayone-121110052003-phpapp02
PPT
LTE Engg Seminar
Lte training session_1
Lte basics
4 g long term evolution introduction 18-jan-2014
Lte principles overview
389282805-lte-fundamentals-training-and-certification-by-telcoma-global.pdf
LTE @ Yogyakarta, 19 December 2001
Cellular technology overview
Introduction to 3GPP and LTE standardization
LTE Fundamentals Training and Certification by TELCOMA Global
LTE, LTE-A and 5G
1 lf-pau-lte
LTE Fundamentals Training and Certification by TELCOMA Global
4G Overview -4G Overview Sessions 1&2&3.pdf
LTE (4G) PROJECT REPORT
session_2_lte new challenge biskupski.pdf
lte_principle (1).pptx
LTE_A_Telecoma_new.pptx
Long Term Evolution
Slides dayone-121110052003-phpapp02
LTE Engg Seminar
Ad

More from Abdulrahman Fady (9)

PPTX
IoT Applications and Networks
PPT
Layer 3 messages (2G)
PPT
Leadership workshop
PPTX
Magic of execution
PDF
Cognitive radio
PDF
LTE Planning
PDF
LTE Air Interface
PDF
LTE Procedures
PDF
LTE Key Technologies
IoT Applications and Networks
Layer 3 messages (2G)
Leadership workshop
Magic of execution
Cognitive radio
LTE Planning
LTE Air Interface
LTE Procedures
LTE Key Technologies

LTE Architecture and interfaces

  • 1. LTE Architecture & Interfaces Prepared By: RF Team AbdelRahman Fady & Mohamed Mohsen
  • 2. Course Contents • Historical vision • LTE Capabilities • System architecture
  • 3. General Revision 3GPP and IEEE evolutions
  • 4. 3GPP evolution • 1G (Early 1980s) – Analog speech communications. – Analog FDMA. – Ex: AMPS • 2G: Started years ago with GSM: Mainly voice – – Digital modulation of speech communications. – – Advanced security and roaming. – – TDMA and narrowband CDMA. – – Ex: GSM, IS-95 (cdmaOne), and PDC • 2.5G: Adding Packet Services: GPRS, EDGE • 3G: Adding 3G Air Interface: UMTS • 3G Architecture: • Support of 2G/2.5G and 3G Access • Handover between GSM and UMTS technologies • 3G Extensions: • HSDPA/HSUPA • IP Multi Media Subsystem (IMS) • Inter-working with WLAN (I-WLAN) • Beyond 3G: • Long Term Evolution (LTE) • System Architecture Evolution (SAE) • Adding Mobility towards I-WLAN and non-3GPP air interfaces
  • 5. 3GPP2 evolution • CDMA2000 1X (1999) • CDMA2000 1xEV-DO (2000) • EV-DO Rev. A (2004): VoIP • EV-DO Rev. B (2006): Multi-carrier • Ultra Mobile Broadband (UMB), f.k.a. EV-DO Rev.C – Based on EV-DO, IEEE 802.20, and FLASH-OFDM – Spec finalized in April 2007. – Commercially available in early 2009.
  • 6. IEEE 802.16 Evolution • 802.16 (2002): Line-of-sight fixed operation in 10 to 66 GHz • 802.16a (2003): Air interface support for 2 to 11 GHz • 802.16d (2004): Minor improvements to fixes to 16a • 802.16e (2006): Support for vehicular mobility and asymmetrical link • 802.16m (in progress): Higher data rate, reduced latency, and efficient security mechanism
  • 7. Beyond 3G • International Mobile Télécommunications (IMT)-2000 introduced global standard for 3G. • Systems beyond IMT-2000 (IMT-Advanced) is set to introduce evolutionary path beyond 3G. • Mobile class targets 100 Mbps with high mobility and nomadic/ local area class targets 1 Gbps with low mobility. • 3GPP and 3GPP2 are currently developing evolutionary/ revolutionary systems beyond 3G. – 3GPP Long Term Evolution (LTE) – 3GPP2 Ultra Mobile Broadband (UMB) • IEEE 802.16-based WiMax is also evolving towards 4G through 802.16m.
  • 8. Beyond 3G • Release 99 (Mar. 2000): UMTS/WCDMA • Rel-5 (Mar. 2002): HSDPA • Rel-6 (Mar. 2005): HSUPA • Rel-7 (2007): DL MIMO, IMS (IP Multimedia Subsystem), optimized real-time services (VoIP, gaming, push-to-talk). • Long Term Evolution (LTE) – 3GPP work on the Evolution of the 3G Mobile System started in November 2004. – Standardized in the form of Rel-8. – Spec finalized and approved in January 2008. – Target deployment in 2010. • LTE advanced
  • 9. Course Contents • Historical Vision • LTE Capabilities • System architecture
  • 11. Why LTE ……? • Need for PS optimized system • Evolve UMTS towards packet only system • Need for higher data rates • Can be achieved with HSDPA/HSUPA • and/or new air interface defined by 3GPP LTE • Less processor load cost • Less number of transitions between different states will lead definitely to less processor load • Need for high quality of services • Use of licensed frequencies to guarantee quality of services • Always-on experience (reduce control plane latency significantly) • Reduce round trip delay (→ 3GPP LTE) • Need for cheaper infrastructure • Simplify architecture, reduce number
  • 12. LTE Defined Data Rates • Downlink – 100Mbps theoretical • Uplink – 50Mbps theoretical • Generally we can say the downlink rate relative to HZ 5 bits/s/HZ and for Uplink 2.5bits/s/HZ
  • 13. LTE duplexing and accessing • Duplexing Methods – FDD • UL and DL can reach the peak traffic simultaneously – TDD • UL and DL can not reach the peak traffic simultaneously • Accessing techniques – OFDMA for the DL – SC-FDMA for the UL
  • 14. Modulation and coding • Adaptive Modulation and Coding – DL Modulations: QPSK, 16-QAM and 64-QAM modulation – UL Modulations: QPSK and 16-QAM – Turbo code
  • 15. LTE Maximum Latency (1-2) • For control Plane – The delay of changing the mobile mode from the active to non active and vice versa • If the terminal was in the idle mode it needs 100msec • If the terminal was in the dormant it needs 50msec • For User Plane – Time the terminal takes to transmit small packets to the RAN and Vice versa is 5 msec
  • 16. LTE Maximum Latency (2-2) • What is the idle mode – Terminal unknown for the RAN – No Radio resources assigned • What is the dormant mode – Terminal is known for the RAN – No Radio resources assigned
  • 17. LTE theoretical Capacity • Active Mode – At 5MHZ BW the Cell can support 200 users simultaneously. – At BW more than 5 MHZ the Cell can support up to 400 Simultaneously terminal. • IDLE Mode – Can support more than 400 Users at the same time
  • 18. LTE System Performance targets(1-2) • User throughput – 95% from the users will take average throughput – 5% will be little bit smaller than the average • Spectrum efficiency – It define high spectrum efficiency Bits/MHZ/Cell • Coverage – 5 Km with high throughput – 30 Km with low throughput – 100Km with very low throughput
  • 19. LTE System Performance targets(2-2) • Mobility – 0-15km/ hour the more better subscriber behavior. – 120 km/ hour the accepted behavior. – 350 km/ hour very low data rate and data throughput. • Enhanced MBMS – Up to 16 multimedia channels per just one carrier
  • 20. LTE deployment aspects • Flexible spectrum – The carrier could be 1.25 MHZ , 1.6 MHZ, 2.5 MHZ ,5MHZ , 10MHZ , 15MHZ or 20 MHZ – Can use the IMT2000 Band • 1910-1920 and 2010-2025 are the TDD Band • 1920- 1960 FDD UL and 2110- 2170 FDD DL • Stand alone • Coexisted with WCDMA and GSM – HO from LTE to GSM 500msec for NRT and 300 for RT and the same for GSM
  • 21. • LTE Frequency Reuse Pattern – Generally it is equal to 1 – IIC (Inter cell interference coordinator) is used to reduce the interference and make the reuse for cell outer area > 1 Interference handling
  • 22. Architecture and Migration • LTE RAN agreed on the following – Packet bearer support • Real Time • Conversational – Reduce the number of the new interfaces – NO RNC – NO CS-CN – Reduce the single point of failure – NO RNC – Separate the treatment of different types of traffic (O&M, Control and Data) to utilize the BW – Reduce the variable delay and Jitter (TCP/IP) – Agreed QOS between Transmitting end and receiving end – No SHO or Macro diversity – MIMO and Tx diversity techniques used
  • 23. Complexity • Easy design • Less complex • No redundant feature • Minimize Cost and maintain system performance – Low complexity – Low power consumption
  • 26. Course Contents • Historical Vision • LTE Capabilities • System architecture
  • 39. EPC Interfaces ( 1 – 5 )
  • 40. EPC Interfaces ( 1 – 5 )
  • 41. EPC Interfaces ( 2 – 5 )
  • 42. EPC Interfaces ( 3 – 5 )
  • 43. EPC Interfaces ( 4 – 5 )
  • 44. EPC Interfaces ( 5 – 5 )
  • 52. Overall LTE system Architecture