Macaulay's method provides a continuous expression for the bending moment of a beam subjected to discontinuous loads like point loads, allowing the constants of integration to be valid for all sections of the beam. The key steps are:
1) Determine reaction forces.
2) Assume a section XX distance x from the left support and calculate the moment about it.
3) Insert the bending moment expression into the differential equation for the elastic curve and integrate twice to obtain expressions for slope and deflection with constants of integration.
4) Apply boundary conditions to determine the constants, resulting in final equations to calculate slope and deflection at any section. This avoids deriving separate equations for each beam section as with traditional methods