Apache Mahout - Random Forests - #TokyoWebmining #8 Koichi Hamada
The document discusses social media, social graphs, personality modeling, data mining, machine learning, and random forests. It references social media, how individuals connect through social graphs, modeling personality objectively, extracting patterns from data through data mining and machine learning techniques, and the random forests algorithm developed by Leo Breiman in 2001.
The document summarizes the results of using naive Bayes and complementary naive Bayes classifiers on Japanese text data. The naive Bayes classifier correctly classified around 94% of instances while complementary naive Bayes correctly classified around 72% of instances. Confusion matrices are provided to show the classification breakdown between different categories for each model.
This document discusses Hadoop, HBase, Mahout, naive Bayes classification, and analyzing web content. It provides an example of using Mahout to train a naive Bayes classifier on web content stored in Hadoop and HBase. Evaluation results are presented, showing over 90% accuracy in classifying different types of web content. The effects of parameters like alpha values, n-grams, and feature selection are also explored.
Apache Mahout - Random Forests - #TokyoWebmining #8 Koichi Hamada
The document discusses social media, social graphs, personality modeling, data mining, machine learning, and random forests. It references social media, how individuals connect through social graphs, modeling personality objectively, extracting patterns from data through data mining and machine learning techniques, and the random forests algorithm developed by Leo Breiman in 2001.
The document summarizes the results of using naive Bayes and complementary naive Bayes classifiers on Japanese text data. The naive Bayes classifier correctly classified around 94% of instances while complementary naive Bayes correctly classified around 72% of instances. Confusion matrices are provided to show the classification breakdown between different categories for each model.
This document discusses Hadoop, HBase, Mahout, naive Bayes classification, and analyzing web content. It provides an example of using Mahout to train a naive Bayes classifier on web content stored in Hadoop and HBase. Evaluation results are presented, showing over 90% accuracy in classifying different types of web content. The effects of parameters like alpha values, n-grams, and feature selection are also explored.
実践機械学習 — MahoutとSolrを活用したレコメンデーションにおけるイノベーション - 2014/07/08 Hadoop Conference ...MapR Technologies Japan
機械学習は、増え続けるデータをもとに、事業戦略の判断やより正確な予測、関連性の推定を行うための、重要なツールです。機械学習の中でも、最も幅広く活用されているアプリケーションはレコメンデーションエンジンです。スケーラブルな機械学習ライブラリであるMahoutは、レコメンデーションの生成とデータの扱いをシンプルなものにしてくれます。本講演では、より構築が簡単なレコメンデーションエンジンのデザインと、そのイノベーティブな実装方法を活用した場合の利点を紹介します。2014年7月8日に開催されたHadoop Conference Japan 2014での講演資料です。
This document discusses TensorFlow.rb, a Ruby wrapper for TensorFlow that allows Ruby programmers to use TensorFlow for machine learning tasks. It summarizes Jason Toy's background in machine learning and Ruby, describes common machine learning problems and algorithms, provides an overview of deep learning compared to traditional machine learning, and details the status and goals of the TensorFlow.rb project. The document encourages contributors to the open source project and thanks current contributors.
8th wocs presentation for HAZOP. This presentation is checked by HAZOP study in http://www.slideshare.net/kaizenjapan/hazop-ogawa
"Anime Generation with AI".
- Video: Generated Anime: https://youtu.be/X9j1fwexK2c
- Video: Other AI Solutions for Anime Production Issues: https://youtu.be/Gz90H1M7_u4
The document discusses recent advances in generative adversarial networks (GANs) for image generation. It summarizes two influential GAN models: ProgressiveGAN (Karras et al., 2018) and BigGAN (Brock et al., 2019). ProgressiveGAN introduced progressive growing of GANs to produce high resolution images. BigGAN scaled up GAN training through techniques like large batch sizes and regularization methods to generate high fidelity natural images. The document also discusses using GANs to generate full-body, high-resolution anime characters and adding motion through structure-conditional GANs.
「樹木モデルとランダムフォレスト(Tree-based Models and Random Forest) -機械学習による分類・予測-」。 Tree-based Model, Random Forest の入門的な内容です。機械学習・データマイニングセミナー 2010/10/07 。 hamadakoichi 濱田晃一
8. 活動領域: ソーシャルメディアのデータマイニング
楽しさのデータマイニング・ユーザー体験還元
2900万人以上の人々へ
各人のつながり・楽しみ・好み 個性にあった適切なサービス提供
Data Mining
Machine Learning
of Fun
PatternMining Clustering
Classification Regression Recommendation
TimeSeriesAnalysis StatisticalAnalysis
NaturalLanguageProcessing ..etc
Social Media
Experience
Social Graph
Detailed Actions
Changes of Status
Social Communications
Personality ..etc 8
14. 数理解析手法の実ビジネスへの適用
2004年 博士号取得後
数理解析手法を実ビジネス適用の方法論構築
主な領域
◆活動の数理モデル化・解析手法
◆活動の分析手法・再構築手法
◆活動の実行制御・実績解析システム
…
内容抜粋
“Decoupling Executions in Navigating Manufacturing "Unified graph representation of processes
Processes for Shortening Lead Time and Its Implementation for scheduling with flexible resource
to an Unmanned Machine Shop”, assignment",
14
15. 数理解析手法の実ビジネスへの適用:活動例
活動の統一グラフモデルを構築・解析
Unified graphical model of processes and resources
青字:割付モデル属性
[ ] : Optional
Node ・priority(優先度) Edge
・duration(予定時間)
[・earliest(再早開始日時) ] Process Edge
Process [・deadline(納期) ]
[・or(条件集約数) ]
前プロセスの終了後に後プロセスが
プロセスを表す 開始できること表す
・attributes(属性)
preemptable(中断可否),
successive(引継ぎ可否)
Uses Edge
workload(作業負荷) Processが使用する
uses uses uses uses uses uses Assign Region を表す
Assign Region Assigns from Edge
同一Resourceを割付け続ける Assign Regionに
assigns from assigns from 指定Resourceの子Resource集合の
範囲を表す
assigns assigns 中から割付けることを示す
企業01 [process]
has has [startDate(開始日時)]
[endDate(終了日時)] Assigns Edge
製品01 組織A StartDateからEndDateまでの間
Resource has Assign RegionにResourceを
割付対象要素を表す has has has has has has 割付けることを表す
・capacity(容量)
・calender(カレンダー)
AAA01 AAB02 … 山田さん 田中さん 鈴木さん ・attributes(属性) Has Edge
東さん Resourceの所有関係を表す
15
17. 数理解析手法の実ビジネスへの適用:活動例
ビジネスとともに
学術分野でも貢献
変動性から生じる動的な課題
・リソースの競合 ・滞留 ・納期遅延 …
一品一様な業務プロセスを含む
統計解析・制御数理モデル
・統計的な有効変数算出
・統計数理モデル化
-優先順位制御
-実行タイミング制御
-統計フィードバック
-適正リソース量算出
・予測数理体系
論文(体系の一部)
M.Nakao, N. Kobayashi, K.Hamada, T.Totsuka, S.Yamada,
“Decoupling Executions in Navigating Manufacturing Processes for Shortening Lead Time and Its Implementation
to an Unmanned Machine Shop”,
CIRP Annals - Manufacturing Technology Volume 56, Issue 1, Pages 171-174 (2007) 17
18. 思い
より広く蓄積されたデータを有効活用し
世界の未来をよりよいものにしていきたい
データマイニング+WEB勉強会@東京
Google Group: http://groups.google.com/group/webmining-tokyo 18
19. 現在の活動領域
ソーシャルメディアのデータマイニング活用
2900万人以上の人々へ
各人のつながり・楽しみ・好み 個性にあった適切なサービス配信
日々20億以上の活動の活用
Social Media
Social Graph
Fun Like Personality
Objective Process
Data Mining
Machine Learning
各人のつながり、楽しみ、好み、個性にあった
より適切なサービス提供
19
20. よりよい世界の実現
ソーシャル・活動情報の活用により
より適切な情報・サービス配信される世界を実現したい
Social Media
Social Graph
Fun Like Personality
Objective Process
Data Mining
Machine Learning
各人のつながり、楽しみ、好み、個性にあった
より適切なサービス提供
20
21. よりよい世界の実現
ソーシャル・活動情報の活用により
より適切な情報・サービス配信される世界を実現したい
世界中の人々が
個々人のつながり・楽しみ・好みにあった適切な情報・サービスを
自ら探さなくても得ることができる世界
Social Media
Social Graph
Fun Like Personality
Objective Process
Data Mining
Machine Learning
各人のつながり、楽しみ、好み、個性にあった
より適切なサービス提供
21