Math 1
Lecturer Wala’a Abd
ul_Mageed
Matrix
The location of -5 is 𝑎12 ,,, and location of 3 is 𝑎24
Matrix notation :
B=
𝑏11 𝑏12 𝑏13
𝑏21 𝑏22 𝑏23
Equal Matrices :
By symbols 𝐴𝑚×𝑛 and 𝐵𝑚×𝑛 are two matrices then 𝐴𝑚×𝑛= 𝐵𝑚×𝑛 if and only if 𝑎𝑖𝑗
= 𝑏𝑖𝑗 i=1,2….m , j=1,2…n
EX:
1. A=
1 −3 4
0 5 −2
B=
1 −3 4
0 5 −2
A=B
1. If A=
𝑎 𝑏
𝑐 𝑑
𝑒 𝑓
= B=
1 −2
16 4
5 11
Then a= 1 , b=-2 , c= 16 , d=4 , e= 5 , f = 11
The Addition & Subtraction of Matrices :
𝐴𝑚×𝑛 and 𝐵𝑚×𝑛 are two matrices then 𝐴𝑚×𝑛+ 𝐵𝑚×𝑛 is 𝑎𝑖𝑗 + 𝑏𝑖𝑗
And 𝐴𝑚×𝑛- 𝐵𝑚×𝑛 is 𝑎𝑖𝑗 − 𝑏𝑖𝑗
Ex:
Theorem:
The Multiplication:
1. Scalar Multiplication :
𝐴𝑚×𝑛 and 𝐾 be a scalar then 𝐾(𝐴𝑚×𝑛) = (𝐾 𝑎𝑖𝑗)
EX:
A=
3 6
0 5
k=-2 then kA =
-2.
3 6
0 5
=
−6 −12
0 −10
1. Two matrices Multiplication:
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
Types of Matrices :
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
Transpose of Matrix :
EX:
If A=
1 8 1.5
7 −66 3.3
then 𝐴𝑇
=
1 7
8 −66
1.5 3.3
Determinants of Matrix
To every a square matrix that is assigned a specific number called the determinant of matrix
the determinant of a matrix A is denoted by 𝐴
If A is (1*1) matrix, A=(a) :then 𝐴 = 𝑎 = 𝑎
If A is (2*2) matrix , A=
𝑎 𝑏
𝑐 𝑑
: then 𝐴 =
𝑎 𝑏
𝑐 𝑑
=ad-bc
1f A is (3*3) matrix ,A=
𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33
then
𝐴 =
𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33
= 𝑎11
𝑎22 𝑎22
𝑎32 𝑎33
- 𝑎12
𝑎21 𝑎23
𝑎31 𝑎33
+ 𝑎13
𝑎21 𝑎22
𝑎31 𝑎32
or
𝐴 =
𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33
=[𝑎11𝑎22𝑎33+𝑎12𝑎23𝑎31 + 𝑎13𝑎21𝑎32] − [𝑎12𝑎21𝑎33 + 𝑎11𝑎23𝑎32
+ 𝑎13𝑎22𝑎31]
Note that if 𝐴 = 0 then a matrix A is called a singular
The Properties of Determinants:
The abjoint of Matrix :
Minor of matrix : let A=
𝑎11 𝑎12 … . . 𝑎1𝑛
𝑎21 𝑎22 … . . 𝑎2𝑛
… …
𝑎 𝑛1
𝑎𝑛2 … . . 𝑎𝑛𝑛
(*)
Cofactor of matrix: let A which defined in (*) with 𝑀𝑖𝑗 (minor of A) ,then the
Cofactor of matrix is
𝐶𝑖𝑗= (−1)𝑖+𝑗
𝑀𝑖𝑗
ad joint of matrix : the ad joint of matrix A in(*) is the transpose of matrix Cofactor
of A
i.e adj(A) = 𝐶𝑇
EX: let A =
2 3 5
4 1 6
1 4 0
find the ad joint of A ?
math1مرحلة اولى -compressed.pdf
adj(A) = 𝐶𝑇
=
−24 20 13
6 −5 8
15 −5 −10
Inverse of a square matrix :
denoted by 𝐴−1
is
𝐴−1 =
1
𝐴
adj(A) , 𝐴 ≠ 0
EX: let A=
1 2 3
4 1 5
6 0 2
find 𝐴−1
?
C=
2 22 −6
−4 −16 12
7 7 −7
And adj(A) = 𝐶𝑇 =
2 −4 7
22 −16 7
−6 12 −7
∴ 𝐴−1
=
1
𝐴
adj(A)
=
1
28
2 −4 7
22 −16 7
−6 12 −7
=
2
28
−4
28
7
28
22
28
−16
28
7
28
−6
28
12
28
−7
28
The properties of multiplication
math1مرحلة اولى -compressed.pdf
Solution the System of Linear Equations;
math1مرحلة اولى -compressed.pdf
EX; solve the following system:
A=
1 2 1
3 −4 −2
5 3 5
x=
𝑥1
𝑥2
𝑥3
b=
4
2
−1
x= 𝐴−1.b
we find 𝐴−1
Grammer’s Rule :
If D =
𝑎11 𝑎12 … … 𝑎1𝑛
𝑎 21
……..
𝑎22 … . . 𝑎2𝑛
𝑎𝑛1 𝑎𝑛2 … … 𝑎𝑛𝑛
≠ 0
Then the system has a unique solution by Grammer’s Rule is
𝑥1 =
1
𝐷
𝑏1 𝑎12 … . . 𝑎𝑛1
𝑏2
⋮
𝑎22………
⋮
𝑎𝑛2
𝑏𝑛 𝑎2𝑛 … … 𝑎𝑛𝑛
=
𝐷𝑥1
𝐷
,,𝑥2 =
1
𝐷
𝑎11 𝑏1 … . . 𝑎𝑛1
𝑎21
⋮
𝑏2………
⋮
𝑎𝑛2
𝑎𝑛1 𝑏𝑛 … … 𝑎𝑛𝑛
=
𝐷𝑥2
𝐷
………
𝑥𝑛 =
1
𝐷
𝑎11 𝑎12 … … 𝑏1
𝑎 21
……..
𝑎22 … . . 𝑏2
⋮
𝑎𝑛1 𝑎𝑛2 … … 𝑏𝑛
=
𝐷𝑥𝑛
𝐷
EX: solve the system :
3𝑥1 − 𝑥2 = 9
𝑥1 + 2𝑥2 = −4
D=
3 −1
1 2
=6+1=7
𝑥1 =
1
7
9 −1
−4 2
=
1
7
18 − 4 =
14
7
= 2
𝑥2 =
1
7
3 9
1 −4
=
1
7
−12 − 9 =
−21
7
= −3
EX: solve the system :
𝑋1 =
11 3 −2
−15 −2 1
3 4 −1
−25
=
50
−25
= −2
𝑋2 =
1 11 −2
4 −15 1
3 3 −1
−25
=
−25
−25
= 1 𝑋3 =
1 3 11
4 −2 −15
3 4 3
−25
=
125
−25
= −3
Vectors:
A vector in the plane is a directed line segment . A directed line segment 𝐴𝐵
and the length 𝑖s denoted by 𝐴𝐵
Two equal vectors :
Vector from two points :
Let 𝑝1 = 𝑥1, 𝑦1 𝑎nd 𝑝2 = 𝑥2, 𝑦2 then the vector 𝑝1𝑝2 is
𝑝1𝑝2 = (𝑥2 − 𝑥1,𝑦2 − 𝑦1)
And the length of 𝑝1𝑝2 𝑖𝑠 (𝑥2 − 𝑥1)2+(𝑦2−𝑦1)2 ( magnitude of vector)
EX: let A= (2,3) and B=(1,-2) , find 𝐴𝐵 .
𝐴𝐵 = 1 − 2, −2 − 3 = −1, −5 𝑎𝑛𝑑
𝐴𝐵 = (1 − 2)2+(−2 − 3)2= 1 + 25 = 26
Note: in two dimension then the components of a vector a is ( 𝑎1,𝑎2) and in three
dimension is ( 𝑎1,𝑎2, 𝑎3)
The Addition of Two Vectors :The Addition of Two Vectors :
Theorem:
Let a=(𝑎1, 𝑎2), 𝑏 = (𝑏1, 𝑏2)𝑖𝑛 𝑅2
, 𝑎𝑛𝑑 𝐾 𝑏𝑒 𝑎 𝑠𝑐𝑎𝑙𝑎𝑟 . 𝑡ℎ𝑒𝑛
a. a+ b = (𝑎1 + 𝑏1, 𝑎2 + 𝑏2) b- ka =(K𝑎1, 𝐾𝑎2)
and if a=(𝑎1, 𝑎2, 𝑎3), 𝑏 = (𝑏1, 𝑏2, 𝑏3)𝑖𝑛 𝑅3
, 𝑎𝑛𝑑 𝐾 𝑏𝑒 𝑎 𝑠𝑐𝑎𝑙𝑎𝑟 . 𝑡ℎ𝑒𝑛
a. a+ b = (𝑎1 + 𝑏1, 𝑎2 + 𝑏2, 𝑎3 + 𝑏3) b- ka =(K𝑎1, 𝐾𝑎2, 𝐾𝑎3
EX: 𝑣 = 4, −1 , 𝑤 = 3,2 be are vectors find 𝑣 + 𝑤
𝑣 + 𝑤 = 4 + 3, −1 + 2 = (7,1)
Theorem
For any vectors a,b,c and scalars k ,l, we have
(a) a+ b =b +a Commutative Law
(b) a+( b+c) = (a +b)+c Associative Law
(c) a+0=0+a Additive Identity
(d) a+(-a)=0 Additive Inverse
(e) k(la) = (kl)a Associative Law
(f) k(a+b) = ka+ kb Distributive Law
(g) (k + l)a = ka+ l b Distributive Law
Example Let v = (2,1,−1) and w = (3,−4,2) in 𝑅3.
(a) Find v−w.
Solution: v−w = (2−3,1−(−4),−1−2) = (−1,5,−3)
(b) Find 3v+2w.
Solution: 3v+2w = (6,3,−3)+(6,−8,4) = (12,−5,1)
The unit vectors:
A vector with length equal 1 is called unit vector .The standard unit vectors is
i= (1,0) ,j= (0,1) in two dimension and in 3D is i=(1,0,0) ,j=(0,1,0) ,k=(0,0,1)
Component of Vector in Term of Unit Vectors:
math1مرحلة اولى -compressed.pdf
Vector in The Space :
EX:
a= -i+3j+k and b= 4i+7j .find
1. 2a+3b
2(-i+3j+k) +3(4i+7j) = (-2i+6j+2k)+(12i+21j) = 10i+27j+2k
1. a-b
(-i+3j+k) –( 4i+7j)= -5i- 4j+k
2.
1
2
𝑎
= (−
1
2
)2 + (
3
2
)2 + (
1
2
)2 =
1
4
+
9
4
+
1
4
=
11
4
=
11
2
The Dot Product:
Let a= (𝑎1, 𝑎2, 𝑎3) 𝑎𝑛𝑑 𝑏 = 𝑏1, 𝑏2, 𝑏3 in 3D then, the dot product denoted by a.b is
𝑎1𝑏1 + 𝑎2𝑏2 + 𝑎3𝑏3
Similarly if a= 𝑎1𝑖 + 𝑎2𝑗 + 𝑎3𝑘 𝑎𝑛𝑑 𝑏 = 𝑏1𝑖 + 𝑏2𝑗 + 𝑏3𝑘
a.b= 𝑎1𝑏1 + 𝑎2𝑏2 + 𝑎3𝑏3
EX:
If p=3i-2j+k and q=2i+3j-4k
The Angle between Two Vectors :
The angle between two non zeros vectors is the smallest angle between them .
Theorem:
Let v ,w are two non zeros vectors and 𝜃 𝑖𝑠the angle between a and b then
cos 𝜃 =
𝑣. 𝑤
𝑣 𝑤
EX:
Is a= -i+5j+2k perpendicular to b=3i+j-k ?
a.b = (-1.3+5.1+2.-1)=0 a is perpendicular to b
Theorem :
For any vectors u,v,w and k be a scalar :
The cross product:
Let a= 𝑎1𝑖 + 𝑎2𝑗 + 𝑎3𝑘 𝑎𝑛𝑑 𝑏 = 𝑏1𝑖 + 𝑏2𝑗 + 𝑏3𝑘 in 3D then, the cross product
denoted by a×b is 𝑡he vector :
a×b=
𝑖 𝑗 𝑘
𝑎1 𝑎2 𝑎3
𝑏1 𝑏2 𝑏3
=
𝑎2 𝑎3
𝑏2 𝑏3
𝑖 −
𝑎1 𝑎3
𝑏1 𝑏3
𝑗 +
𝑎1 𝑎2
𝑏1 𝑏2
𝑘=
(𝑎2𝑏3 − 𝑎3𝑏2)𝑖 − (𝑎1𝑏3 − 𝑎3𝑏1)𝑗 +(𝑎1𝑏2 − 𝑎2𝑏1)𝑘
EX:
let p=3i-4j+2k and q= 2i+5j-k ,find p×q?
math1مرحلة اولى -compressed.pdf
Function
Numbers:
1. N={1,2,3,…….} the set of Natural numbers
2-Z={-1,-2,…..,0,1,2,……} the set of integer numbers
3-Q={ N,Z,
𝑝
𝑞
, q≠ 0 and p,q 𝜖𝑍} the set of rational numbers
4- H= { 𝑥} the set of irrational numbers
5- R=Q+H = the set of real numbers
Interval
math1مرحلة اولى -compressed.pdf
Ex: if f(x)=𝑥3
then f(2) =23
= 8
Ex: verify the domains and ranges of these functions :
y= 𝑥2
domain(x)= (-∞, ∞) range(y)=[0,∞)
y=1 𝑥
domain(x)= (-∞, 0) ∪ (0, ∞) range(y)= (-∞, 0) ∪ (0, ∞)
y= 𝑥
domain(x)= [0, ∞) range(y)= [0, ∞)
y= 4 − 𝑥
domain(x)= (−∞, 4) range(y)= [0, ∞)
The gargh of function
Ex:
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
Trigonometric function :
1. sin 𝜃 =
𝑎
𝑐
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
Y=Sin x ,y= cos x, y= tan x, y=cot x , y= sec x, y=csc x,
1. y=sin x : domain (x) −∞ ≤ 𝑥 ≤ ∞ range(y) -1≤ 𝑦 ≤ 1
2. y= cos x : domain (x) −∞ ≤ 𝑥 ≤ ∞ range(y) -1≤ 𝑦 ≤ 1
3. y= tan x : domain (x)={x≠ 𝜋/2, 𝑥 ≠ 3𝜋/2}
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
Special Functions:
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
The Continuity :
math1مرحلة اولى -compressed.pdf
The Derivative:
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
Implicit Functions :
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
The Integration :
Integration is considered as the anti derivative operation.
The formula
𝑑
𝑑𝑥
F(x)=f(x)
is the same as 𝑓 𝑥 𝑑𝑥 = 𝐹 𝑥 + 𝑐
ex:
𝑑
𝑑𝑥
sin 𝑥 = cos 𝑥 cos 𝑥 = sin 𝑥 + 𝑐
Rules:
1. 𝑑𝑥 = 𝑥 + 𝑐 2. 𝑘𝑑𝑥 = 𝑘𝑥 + 𝑐 ,k is constant
3. 𝑥𝑛
𝑑𝑥 =
𝑥𝑛+1
𝑛+1
+ 𝑐 n≠ −1
4. 𝑓 𝑥 + 𝑔 𝑥 𝑑𝑥 = 𝑓 𝑥 𝑑𝑥 + 𝑔 𝑥 𝑑𝑥
5. 𝑘𝑓 𝑥 = 𝑘 𝑓 𝑥 𝑑𝑥 , k is constant
6. 𝑓 𝑥 𝑛
𝑓′
(𝑥)𝑑𝑥 =
𝑓(𝑥)𝑛+1
𝑛+1
+ 𝑐
Ex:
1. 2𝑑𝑥 = 2𝑥 + 𝑐 2. 𝑥3
𝑑𝑥 =
𝑥4
4
+ 𝑐
3. −2𝑥2
𝑑𝑥 =
−2𝑥3
3
+ 𝑐
4. (𝑥2 + 2)2. 2𝑥𝑑𝑥 =
(𝑥2+2)3
3
+ 𝑐
5. (𝑥3 − 1)3. 𝑥2𝑑𝑥 =
1
3
(𝑥3 − 1)3. 3𝑥2𝑑𝑥 =
(𝑥3−1)4
12
+ 𝑐
The Trigonometric functions
1. sin 𝑥 𝑑𝑥 = − cos 𝑥 + 𝑐 2. cos 𝑥 𝑑𝑥 = sin 𝑥 + 𝑐
3. 𝑠𝑒𝑐2𝑥𝑑𝑥 = tan 𝑥 + 𝑐 4. 𝑐𝑠𝑐2𝑥𝑑𝑥 = −𝑐𝑜𝑡𝑥 + 𝑐
5. 𝑠𝑒𝑐 𝑥𝑡𝑎𝑛𝑥𝑑𝑥 = sec 𝑥 + 𝑐
6. 𝑐𝑠𝑐 𝑥𝑐𝑜𝑡𝑥𝑑𝑥 = −csc 𝑥 + 𝑐
EX:
1. 𝑥𝑐𝑜𝑠(𝑥2 + 1)𝑑𝑥 =
1
2
2𝑥𝑐𝑜𝑠 𝑥2 + 1 𝑑𝑥 =
1
2
sin 𝑥2 + 1 + 𝑐
2. 𝑠𝑒𝑐2
(4𝑥) 𝑑𝑥 =
tan(4𝑥)
4
+ 𝑐
3. cot 𝑥 𝑠𝑖𝑛3𝑥 𝑑𝑥 =
cos 𝑥
sin 𝑥
𝑠𝑖𝑛3𝑥𝑑𝑥
= cos 𝑥 𝑠𝑖𝑛2
𝑥 𝑑𝑥 =
𝑠𝑖𝑛3𝑥
3
+c
‫األتي‬ ‫فنتبع‬ ‫المشتقة‬ ‫توفر‬ ‫عدم‬ ‫حالة‬ ‫في‬ ‫أما‬
:
1.if power is even :
𝑐𝑜𝑠2
𝑥 =
(1 + cos 2𝑥)
2
𝑠𝑖𝑛2
𝑥 =
(1 − cos 2𝑥)
2
2.if power is odd:
𝑠𝑖𝑛2
𝑥 = 1 − 𝑐𝑜𝑠2
𝑥 𝑐𝑜𝑠2
𝑥 = 1 − 𝑠𝑖𝑛2
𝑥
𝑠𝑒𝑐2
𝑥 = 1 + 𝑡𝑎𝑛2
𝑥
EX:
𝑐𝑜𝑠3
𝑥 𝑑𝑥 = cos 𝑥 𝑐𝑜𝑠2
𝑥 𝑑𝑥 = cos 𝑥(1
Integration of multiply sin and cos with diff. angles
1. 𝑠𝑖𝑛 𝑎𝑥𝑐𝑜𝑠 𝑏𝑥𝑑𝑥 =
1
2
(sin 𝑎 − 𝑏 𝑥 + sin 𝑎 + 𝑏 𝑥)𝑑𝑥
2. 𝑠𝑖𝑛 𝑎𝑥𝑠𝑖𝑛 𝑏𝑥𝑑𝑥 =
1
2
(cos 𝑎 − 𝑏 𝑥 − cos 𝑎 + 𝑏 𝑥)𝑑𝑥
3. 𝑐𝑜𝑠 𝑎𝑥𝑐𝑜𝑠 𝑏𝑥𝑑𝑥 =
1
2
(cos 𝑎 − 𝑏 𝑥 + cos 𝑎 + 𝑏 𝑥)𝑑𝑥
EX
1. 𝑠𝑖𝑛 4𝑥𝑐𝑜𝑠2𝑥𝑑𝑥 =
1
2
(sin 4 − 2 𝑥 + sin 4 + 2 𝑥)𝑑𝑥 =
1
2
(sin 2 𝑥 + sin 6 𝑥)𝑑𝑥 =
1
2
−
1
2
𝑐𝑜𝑠2𝑥 −
1
6
𝑐𝑜𝑠6𝑥 + 𝑐
The Logarithmic functions
1. Natural logarithm of x
𝑑
𝑑𝑥
𝑙𝑛𝑥 =
1
𝑥
∴
1
𝑥
𝑑𝑥 = 𝑙𝑛 𝑥 + 𝑐
2.𝑒𝑥 function
𝑑
𝑑𝑥
𝑒𝑥
= 𝑒𝑥
∴ 𝑒𝑥
𝑑𝑥 = 𝑒𝑥
+ 𝑐
3. 𝑎𝑥
function
𝑑
𝑑𝑥
𝑎𝑥 = 𝑎𝑥𝑙𝑛𝑎 ∴ 𝑎𝑥 𝑑𝑥 =
𝑎
𝑙𝑛𝑎
𝑥
+ 𝑐
Ex:
1.
2𝑥
𝑥2 𝑑𝑥 = 𝑙𝑛 𝑥2 + 𝑐
2. 𝑒3𝑥
𝑑𝑥 =
1
3
3𝑒3𝑥
𝑑𝑥 =
1
3
𝑒3𝑥
+ 𝑐
3. 24𝑥
𝑑𝑥 =
1
4
2
𝑙𝑛2
𝑥
+ 𝑐
∴. tan 𝑥 𝑑𝑥 = −𝑙𝑛 cos 𝑥 + 𝑐
cot 𝑥 𝑑𝑥 = 𝑙𝑛 sin 𝑥 + 𝑐
The Hyperbolic Functions
1. sinℎ 𝑥 𝑑𝑥 = cos ℎ𝑥 + 𝑐 2. cosh 𝑥 𝑑𝑥 = sin ℎ𝑥 + 𝑐
3. 𝑠𝑒𝑐ℎ2𝑥𝑑𝑥 = tanh 𝑥 + 𝑐 4. 𝑐𝑠𝑐ℎ2𝑥𝑑𝑥 = −𝑐𝑜𝑡ℎ𝑥 + 𝑐
5. 𝑠𝑒𝑐 ℎ𝑥𝑡𝑎𝑛ℎ𝑥𝑑𝑥 = − sec ℎ𝑥 + 𝑐
6. 𝑐𝑠𝑐ℎ 𝑥𝑐𝑜𝑡ℎ𝑥𝑑𝑥 = −csc ℎ𝑥 + 𝑐
7. tanh 𝑥 𝑑𝑥 = 𝑙𝑛 cosh 𝑥 + 𝑐 8. coth 𝑥 𝑑𝑥 = 𝑙𝑛 sinh 𝑥 + 𝑐
Ex:
1.
𝑑𝑥
𝑠𝑖𝑛ℎ𝑥+𝑐𝑜𝑠ℎ𝑥
=
𝑑𝑥
𝑒𝑥 = 𝑒−𝑥𝑑𝑥 = −𝑒−𝑥 + 𝑐
2. 𝑒2𝑥
𝑠𝑖𝑛ℎ3𝑥𝑑𝑥 = 𝑒2𝑥
(
𝑒3𝑥−𝑒−3𝑥
2
)𝑑𝑥 =
1
2
( 𝑒5𝑥
− 𝑒−𝑥
𝑑𝑥 =
1
10
𝑒5𝑥
+
1
2
𝑒−𝑥
+ 𝑐
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
Method of Integral :
1-. Integration by Substitution:
EX:
1. 𝑥(𝑥2
+1)20
𝑑𝑥
Let u=(𝑥2
+1) → 𝑥2
= 𝑢 − 1 → x= 𝑢 − 1
du=2xdx dx=
𝑑𝑢
2𝑥
dx=
𝑑𝑢
2 𝑢−1
𝑢 − 1 (𝑢)20 𝑑𝑢
2 𝑢−1
=
1
2
(𝑢)20
𝑑𝑢 =
(𝑢)21
42
+ 𝑐
2. 𝑥 𝑥 − 3 𝑑𝑥 =
u=x-3 x=u+3 du=dx
(𝑢 + 3) 𝑢 𝑑𝑢
= ( 𝑢 3 2 + 3 𝑢)1 2 𝑑𝑢 =
(𝑢)5 2
5
2
+ 3
(𝑢)3 2
3
2
+ 𝑐 =
2
5
(𝑢)5 2+2(𝑢)3 2+𝑐
2-.Integration by parts( udv)
𝑢𝑑𝑣 = 𝑢𝑣 − 𝑣𝑑𝑢
1. 𝑥𝑒3𝑥
𝑑𝑥 =
u=x du=dx
dv=𝑒3𝑥
𝑑𝑥 𝑣 =
1
3
𝑒3𝑥
∴ 𝑢𝑑𝑣 =
1
3
𝑥𝑒3𝑥
−
1
3
𝑒3𝑥
𝑑𝑥 =
1
3
𝑥𝑒3𝑥
−
1
9
𝑒3𝑥
+ 𝑐 =
1
3
𝑒3𝑥(𝑥 −
1
3
) + 𝑐
EX:
math1مرحلة اولى -compressed.pdf
The Definite Integral :
Theorem: (Fundamental Theorem I):
𝑎
𝑏
𝑓 𝑥 𝑑𝑥 = 𝐹 𝑥 ]𝑎
𝑏 = 𝐹 𝑏 − 𝐹 𝑎 ,
𝑑
𝑑𝑥
𝐹 𝑥 = 𝑓(𝑥)
EX:
1. Find 2
3
𝑥2
𝑑𝑥 =
𝑥3
3
]2
3
=
33
3
−
23
3
=
27
3
−
8
3
=
19
3
2. 0
𝜋
sin2 𝑥 𝑑𝑥 = 0
𝜋 1
2
(1 − cos 2𝑥)𝑑𝑥 =
1
2
𝑥 −
sin 2𝑥
2
]0
𝜋
=
1
2
𝜋 −
sin 2𝜋
2
−
1
2
0
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
The applications of definite integral
1-Area under the curve
2.Area between two curves
3.Volumes
4 The length of the curves
5. Surface area
1. Area under the curve The integral 𝑎
𝑏
𝑓 𝑥 𝑑𝑥 is defined the area under the curve
y=f(x) from x=a to x=b
A= 𝑎
𝑏
𝑦 𝑑𝑥
math1مرحلة اولى -compressed.pdf
2. Area between two curves :
Case 1(No intersecting of two curves in [a,b])
If 𝑦1 = 𝑓 𝑥 , 𝑦2 = 𝑔 𝑥 then the area is defined as
𝐴𝑎
𝑏 = 𝑎
𝑏
𝑦1 − 𝑦2 𝑑𝑥
Case 2(An intersecting point exists in [a,b])
The area between two curves 𝑦1, 𝑦2 from x=a to x=b is defined as
𝐴𝑎
𝑏 =
𝑎
𝑐
𝑦2 − 𝑦1 𝑑𝑥 +
𝑐
𝑏
(𝑦1 − 𝑦2) 𝑑𝑥
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
Inverse of Trigonometric Functions:
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
EX:
1.
𝑥2
1+𝑥6 𝑑𝑥 =
𝑥2
1+(𝑥3)2 𝑑𝑥 =
1
3
3𝑥2
1+(𝑥3)2 𝑑𝑥 =
1
3
𝑡𝑎𝑛−1
𝑥3
+ 𝑐
2.
𝑥
1−𝑥4
𝑑𝑥 =
1
2
2𝑥
1−(𝑥2)2
𝑑𝑥 =
1
2
𝑠𝑖𝑛−1𝑥2 + 𝑐
3- 𝑥𝑠𝑒𝑐−1𝑥 𝑑𝑥 =
u = sec−1 𝑥 𝑑𝑢 =
𝑑𝑥
𝑥 𝑥2−1
dv = xdx v =
𝑥2
2
∴ 𝑥𝑠𝑒𝑐−1𝑥 𝑑𝑥 = sec−1 𝑥
𝑥2
2
−
𝑥2
2
𝑑𝑥
𝑥 𝑥2−1
=
sec−1 𝑥
𝑥2
2
−
1
2
𝑥𝑑𝑥
𝑥 𝑥2−1
= sec−1 𝑥
𝑥2
2
−
1
2
∗
1
2
∗
(𝑥2−1)
1
2
1
2
+c=sec−1 𝑥
𝑥2
2
−
1
2
∗ 𝑥2 − 1 + 𝑐
4-. tan−1 𝑥 𝑑𝑥 =
u= tan−1 𝑥 du=
𝑑𝑥
1+𝑥2
dv= dx v= 𝑥
tan−1
𝑥 𝑑𝑥 = tan−1
𝑥 ∗ 𝑥 − 𝑥
𝑑𝑥
1 + 𝑥2
= tan−1
𝑥 ∗ 𝑥 −
1
2
𝑙𝑛 1 + 𝑥2
+ 𝑐

More Related Content

PPTX
CBSE Class 12 Mathematics formulas
PDF
Elementary linear algebra
PDF
Yassin balja algebra
PDF
CBSE X FORMULAE AND CONCEPTS-1_250105_094142.pdf
PDF
CBSE X FORMULAE AND CONCEPTS-1_250105_094142.pdf
PDF
CBSE X FORMULAE AND CONCEPTS-1_250105_094142.pdf
PDF
CBSE X FORMULAE AND CONCEPTS-1_250105_094142.pdf
PPT
Mathematics
CBSE Class 12 Mathematics formulas
Elementary linear algebra
Yassin balja algebra
CBSE X FORMULAE AND CONCEPTS-1_250105_094142.pdf
CBSE X FORMULAE AND CONCEPTS-1_250105_094142.pdf
CBSE X FORMULAE AND CONCEPTS-1_250105_094142.pdf
CBSE X FORMULAE AND CONCEPTS-1_250105_094142.pdf
Mathematics

Similar to math1مرحلة اولى -compressed.pdf (20)

PDF
Aieee maths-quick review
PDF
Ahlfors sol1
ODP
Seismic data processing introductory lecture
PDF
Metrix[1]
PDF
Student manual
PPTX
PDF
Matrix Theory And Linear Algebra First Peter Selinger
PDF
Matrix Theory And Linear Algebra First Peter Selinger
PDF
Add maths complete f4 & f5 Notes
PDF
linear transformation
PPTX
Advanced algebra
PDF
Mathematical-Formula-Handbook.pdf-76-watermark.pdf-68.pdf
PPTX
Bba i-bm-u-2- matrix -
PDF
eigen valuesandeigenvectors
PPTX
Vector space introduction
PDF
Class 10 mathematics compendium
PPTX
Numerical Linear Algebra in digital image processing
PPTX
MATRICES AND CALCULUS.pptx
PPTX
2023 St Jospeh's College Geelong
PDF
Succesive differntiation
Aieee maths-quick review
Ahlfors sol1
Seismic data processing introductory lecture
Metrix[1]
Student manual
Matrix Theory And Linear Algebra First Peter Selinger
Matrix Theory And Linear Algebra First Peter Selinger
Add maths complete f4 & f5 Notes
linear transformation
Advanced algebra
Mathematical-Formula-Handbook.pdf-76-watermark.pdf-68.pdf
Bba i-bm-u-2- matrix -
eigen valuesandeigenvectors
Vector space introduction
Class 10 mathematics compendium
Numerical Linear Algebra in digital image processing
MATRICES AND CALCULUS.pptx
2023 St Jospeh's College Geelong
Succesive differntiation
Ad

More from HebaEng (20)

PDF
lectNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN2.pdf
PDF
lectااتتتتاارررررررررررررررررررررررررررر1.pdf
PDF
M2M_250327_22434hjjik7_250411_183538.pdf
PDF
M3M_250327ggggt_224420_250411_183353.pdf
PDF
MATHLECT1LECTUREFFFFFFFFFFFFFFFFFFHJ.pdf
PPTX
Estimate the value of the following limits.pptx
PDF
lecrfigfdtj x6 I f I ncccfyuggggrst3.pdf
PPTX
LECtttttttttttttttttttttttttttttt2 M.pptx
PDF
lect4ggghjjjg t I c jifr7hvftu b gvvbb.pdf
PDF
lect5.gggghhhhhhhhhhhhyyhhhygfe6 in b cfpdf
PPTX
sensorshhhhhhhhhhhhhhhhhhhhhhhhhhhhhh.pptx
PDF
Homework lehhhhghjjjjhgd thvfgycture 1.pdf
PDF
PIC1jjkkkkkkkjhgfvjitr c its GJ tagging hugg
PPT
lecture1ddddgggggggggggghhhhhhh (11).ppt
PDF
math6.pdf
PDF
digital10.pdf
PDF
PIC Serial Communication_P2 (2).pdf
PPTX
Instruction 3.pptx
PPTX
IO and MAX 2.pptx
PPTX
BUS DRIVER.pptx
lectNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN2.pdf
lectااتتتتاارررررررررررررررررررررررررررر1.pdf
M2M_250327_22434hjjik7_250411_183538.pdf
M3M_250327ggggt_224420_250411_183353.pdf
MATHLECT1LECTUREFFFFFFFFFFFFFFFFFFHJ.pdf
Estimate the value of the following limits.pptx
lecrfigfdtj x6 I f I ncccfyuggggrst3.pdf
LECtttttttttttttttttttttttttttttt2 M.pptx
lect4ggghjjjg t I c jifr7hvftu b gvvbb.pdf
lect5.gggghhhhhhhhhhhhyyhhhygfe6 in b cfpdf
sensorshhhhhhhhhhhhhhhhhhhhhhhhhhhhhh.pptx
Homework lehhhhghjjjjhgd thvfgycture 1.pdf
PIC1jjkkkkkkkjhgfvjitr c its GJ tagging hugg
lecture1ddddgggggggggggghhhhhhh (11).ppt
math6.pdf
digital10.pdf
PIC Serial Communication_P2 (2).pdf
Instruction 3.pptx
IO and MAX 2.pptx
BUS DRIVER.pptx
Ad

Recently uploaded (20)

PPTX
operating_systems_presentations_delhi_nc
PPTX
Cite It Right: A Compact Illustration of APA 7th Edition.pptx
PDF
The TKT Course. Modules 1, 2, 3.for self study
PDF
BSc-Zoology-02Sem-DrVijay-Comparative anatomy of vertebrates.pdf
PPTX
2025 High Blood Pressure Guideline Slide Set.pptx
PPTX
Power Point PR B.Inggris 12 Ed. 2019.pptx
PDF
Everyday Spelling and Grammar by Kathi Wyldeck
PDF
Chevening Scholarship Application and Interview Preparation Guide
PPTX
PLASMA AND ITS CONSTITUENTS 123.pptx
PDF
FYJC - Chemistry textbook - standard 11.
PPTX
Neurological complocations of systemic disease
PDF
Health aspects of bilberry: A review on its general benefits
PDF
Disorder of Endocrine system (1).pdfyyhyyyy
PPTX
Unit 1 aayurveda and nutrition presentation
PPT
hemostasis and its significance, physiology
PPTX
Theoretical for class.pptxgshdhddhdhdhgd
PPTX
Q2 Week 1.pptx Lesson on Kahalagahan ng Pamilya sa Edukasyon
PPTX
Key-Features-of-the-SHS-Program-v4-Slides (3) PPT2.pptx
PDF
WHAT NURSES SAY_ COMMUNICATION BEHAVIORS ASSOCIATED WITH THE COMP.pdf
PPTX
Thinking Routines and Learning Engagements.pptx
operating_systems_presentations_delhi_nc
Cite It Right: A Compact Illustration of APA 7th Edition.pptx
The TKT Course. Modules 1, 2, 3.for self study
BSc-Zoology-02Sem-DrVijay-Comparative anatomy of vertebrates.pdf
2025 High Blood Pressure Guideline Slide Set.pptx
Power Point PR B.Inggris 12 Ed. 2019.pptx
Everyday Spelling and Grammar by Kathi Wyldeck
Chevening Scholarship Application and Interview Preparation Guide
PLASMA AND ITS CONSTITUENTS 123.pptx
FYJC - Chemistry textbook - standard 11.
Neurological complocations of systemic disease
Health aspects of bilberry: A review on its general benefits
Disorder of Endocrine system (1).pdfyyhyyyy
Unit 1 aayurveda and nutrition presentation
hemostasis and its significance, physiology
Theoretical for class.pptxgshdhddhdhdhgd
Q2 Week 1.pptx Lesson on Kahalagahan ng Pamilya sa Edukasyon
Key-Features-of-the-SHS-Program-v4-Slides (3) PPT2.pptx
WHAT NURSES SAY_ COMMUNICATION BEHAVIORS ASSOCIATED WITH THE COMP.pdf
Thinking Routines and Learning Engagements.pptx

math1مرحلة اولى -compressed.pdf

  • 1. Math 1 Lecturer Wala’a Abd ul_Mageed
  • 3. The location of -5 is 𝑎12 ,,, and location of 3 is 𝑎24
  • 5. B= 𝑏11 𝑏12 𝑏13 𝑏21 𝑏22 𝑏23 Equal Matrices :
  • 6. By symbols 𝐴𝑚×𝑛 and 𝐵𝑚×𝑛 are two matrices then 𝐴𝑚×𝑛= 𝐵𝑚×𝑛 if and only if 𝑎𝑖𝑗 = 𝑏𝑖𝑗 i=1,2….m , j=1,2…n EX: 1. A= 1 −3 4 0 5 −2 B= 1 −3 4 0 5 −2 A=B 1. If A= 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 = B= 1 −2 16 4 5 11 Then a= 1 , b=-2 , c= 16 , d=4 , e= 5 , f = 11
  • 7. The Addition & Subtraction of Matrices : 𝐴𝑚×𝑛 and 𝐵𝑚×𝑛 are two matrices then 𝐴𝑚×𝑛+ 𝐵𝑚×𝑛 is 𝑎𝑖𝑗 + 𝑏𝑖𝑗 And 𝐴𝑚×𝑛- 𝐵𝑚×𝑛 is 𝑎𝑖𝑗 − 𝑏𝑖𝑗 Ex:
  • 9. 𝐴𝑚×𝑛 and 𝐾 be a scalar then 𝐾(𝐴𝑚×𝑛) = (𝐾 𝑎𝑖𝑗) EX: A= 3 6 0 5 k=-2 then kA = -2. 3 6 0 5 = −6 −12 0 −10 1. Two matrices Multiplication:
  • 18. EX: If A= 1 8 1.5 7 −66 3.3 then 𝐴𝑇 = 1 7 8 −66 1.5 3.3
  • 19. Determinants of Matrix To every a square matrix that is assigned a specific number called the determinant of matrix the determinant of a matrix A is denoted by 𝐴 If A is (1*1) matrix, A=(a) :then 𝐴 = 𝑎 = 𝑎 If A is (2*2) matrix , A= 𝑎 𝑏 𝑐 𝑑 : then 𝐴 = 𝑎 𝑏 𝑐 𝑑 =ad-bc 1f A is (3*3) matrix ,A= 𝑎11 𝑎12 𝑎13 𝑎21 𝑎22 𝑎23 𝑎31 𝑎32 𝑎33 then 𝐴 = 𝑎11 𝑎12 𝑎13 𝑎21 𝑎22 𝑎23 𝑎31 𝑎32 𝑎33 = 𝑎11 𝑎22 𝑎22 𝑎32 𝑎33 - 𝑎12 𝑎21 𝑎23 𝑎31 𝑎33 + 𝑎13 𝑎21 𝑎22 𝑎31 𝑎32 or 𝐴 = 𝑎11 𝑎12 𝑎13 𝑎21 𝑎22 𝑎23 𝑎31 𝑎32 𝑎33 =[𝑎11𝑎22𝑎33+𝑎12𝑎23𝑎31 + 𝑎13𝑎21𝑎32] − [𝑎12𝑎21𝑎33 + 𝑎11𝑎23𝑎32 + 𝑎13𝑎22𝑎31]
  • 20. Note that if 𝐴 = 0 then a matrix A is called a singular The Properties of Determinants:
  • 21. The abjoint of Matrix : Minor of matrix : let A= 𝑎11 𝑎12 … . . 𝑎1𝑛 𝑎21 𝑎22 … . . 𝑎2𝑛 … … 𝑎 𝑛1 𝑎𝑛2 … . . 𝑎𝑛𝑛 (*) Cofactor of matrix: let A which defined in (*) with 𝑀𝑖𝑗 (minor of A) ,then the Cofactor of matrix is 𝐶𝑖𝑗= (−1)𝑖+𝑗 𝑀𝑖𝑗
  • 22. ad joint of matrix : the ad joint of matrix A in(*) is the transpose of matrix Cofactor of A i.e adj(A) = 𝐶𝑇 EX: let A = 2 3 5 4 1 6 1 4 0 find the ad joint of A ?
  • 24. adj(A) = 𝐶𝑇 = −24 20 13 6 −5 8 15 −5 −10 Inverse of a square matrix : denoted by 𝐴−1 is 𝐴−1 = 1 𝐴 adj(A) , 𝐴 ≠ 0 EX: let A= 1 2 3 4 1 5 6 0 2 find 𝐴−1 ?
  • 25. C= 2 22 −6 −4 −16 12 7 7 −7 And adj(A) = 𝐶𝑇 = 2 −4 7 22 −16 7 −6 12 −7 ∴ 𝐴−1 = 1 𝐴 adj(A)
  • 26. = 1 28 2 −4 7 22 −16 7 −6 12 −7 = 2 28 −4 28 7 28 22 28 −16 28 7 28 −6 28 12 28 −7 28 The properties of multiplication
  • 28. Solution the System of Linear Equations;
  • 30. EX; solve the following system: A= 1 2 1 3 −4 −2 5 3 5 x= 𝑥1 𝑥2 𝑥3 b= 4 2 −1 x= 𝐴−1.b we find 𝐴−1
  • 32. If D = 𝑎11 𝑎12 … … 𝑎1𝑛 𝑎 21 …….. 𝑎22 … . . 𝑎2𝑛 𝑎𝑛1 𝑎𝑛2 … … 𝑎𝑛𝑛 ≠ 0 Then the system has a unique solution by Grammer’s Rule is 𝑥1 = 1 𝐷 𝑏1 𝑎12 … . . 𝑎𝑛1 𝑏2 ⋮ 𝑎22……… ⋮ 𝑎𝑛2 𝑏𝑛 𝑎2𝑛 … … 𝑎𝑛𝑛 = 𝐷𝑥1 𝐷 ,,𝑥2 = 1 𝐷 𝑎11 𝑏1 … . . 𝑎𝑛1 𝑎21 ⋮ 𝑏2……… ⋮ 𝑎𝑛2 𝑎𝑛1 𝑏𝑛 … … 𝑎𝑛𝑛 = 𝐷𝑥2 𝐷 ……… 𝑥𝑛 = 1 𝐷 𝑎11 𝑎12 … … 𝑏1 𝑎 21 …….. 𝑎22 … . . 𝑏2 ⋮ 𝑎𝑛1 𝑎𝑛2 … … 𝑏𝑛 = 𝐷𝑥𝑛 𝐷 EX: solve the system :
  • 33. 3𝑥1 − 𝑥2 = 9 𝑥1 + 2𝑥2 = −4 D= 3 −1 1 2 =6+1=7 𝑥1 = 1 7 9 −1 −4 2 = 1 7 18 − 4 = 14 7 = 2 𝑥2 = 1 7 3 9 1 −4 = 1 7 −12 − 9 = −21 7 = −3
  • 34. EX: solve the system : 𝑋1 = 11 3 −2 −15 −2 1 3 4 −1 −25 = 50 −25 = −2
  • 35. 𝑋2 = 1 11 −2 4 −15 1 3 3 −1 −25 = −25 −25 = 1 𝑋3 = 1 3 11 4 −2 −15 3 4 3 −25 = 125 −25 = −3 Vectors: A vector in the plane is a directed line segment . A directed line segment 𝐴𝐵 and the length 𝑖s denoted by 𝐴𝐵
  • 36. Two equal vectors : Vector from two points : Let 𝑝1 = 𝑥1, 𝑦1 𝑎nd 𝑝2 = 𝑥2, 𝑦2 then the vector 𝑝1𝑝2 is 𝑝1𝑝2 = (𝑥2 − 𝑥1,𝑦2 − 𝑦1) And the length of 𝑝1𝑝2 𝑖𝑠 (𝑥2 − 𝑥1)2+(𝑦2−𝑦1)2 ( magnitude of vector)
  • 37. EX: let A= (2,3) and B=(1,-2) , find 𝐴𝐵 . 𝐴𝐵 = 1 − 2, −2 − 3 = −1, −5 𝑎𝑛𝑑 𝐴𝐵 = (1 − 2)2+(−2 − 3)2= 1 + 25 = 26 Note: in two dimension then the components of a vector a is ( 𝑎1,𝑎2) and in three dimension is ( 𝑎1,𝑎2, 𝑎3) The Addition of Two Vectors :The Addition of Two Vectors :
  • 38. Theorem: Let a=(𝑎1, 𝑎2), 𝑏 = (𝑏1, 𝑏2)𝑖𝑛 𝑅2 , 𝑎𝑛𝑑 𝐾 𝑏𝑒 𝑎 𝑠𝑐𝑎𝑙𝑎𝑟 . 𝑡ℎ𝑒𝑛 a. a+ b = (𝑎1 + 𝑏1, 𝑎2 + 𝑏2) b- ka =(K𝑎1, 𝐾𝑎2) and if a=(𝑎1, 𝑎2, 𝑎3), 𝑏 = (𝑏1, 𝑏2, 𝑏3)𝑖𝑛 𝑅3 , 𝑎𝑛𝑑 𝐾 𝑏𝑒 𝑎 𝑠𝑐𝑎𝑙𝑎𝑟 . 𝑡ℎ𝑒𝑛 a. a+ b = (𝑎1 + 𝑏1, 𝑎2 + 𝑏2, 𝑎3 + 𝑏3) b- ka =(K𝑎1, 𝐾𝑎2, 𝐾𝑎3 EX: 𝑣 = 4, −1 , 𝑤 = 3,2 be are vectors find 𝑣 + 𝑤 𝑣 + 𝑤 = 4 + 3, −1 + 2 = (7,1)
  • 39. Theorem For any vectors a,b,c and scalars k ,l, we have (a) a+ b =b +a Commutative Law (b) a+( b+c) = (a +b)+c Associative Law (c) a+0=0+a Additive Identity (d) a+(-a)=0 Additive Inverse (e) k(la) = (kl)a Associative Law (f) k(a+b) = ka+ kb Distributive Law (g) (k + l)a = ka+ l b Distributive Law Example Let v = (2,1,−1) and w = (3,−4,2) in 𝑅3. (a) Find v−w. Solution: v−w = (2−3,1−(−4),−1−2) = (−1,5,−3) (b) Find 3v+2w. Solution: 3v+2w = (6,3,−3)+(6,−8,4) = (12,−5,1)
  • 40. The unit vectors: A vector with length equal 1 is called unit vector .The standard unit vectors is i= (1,0) ,j= (0,1) in two dimension and in 3D is i=(1,0,0) ,j=(0,1,0) ,k=(0,0,1) Component of Vector in Term of Unit Vectors:
  • 42. Vector in The Space :
  • 43. EX: a= -i+3j+k and b= 4i+7j .find 1. 2a+3b 2(-i+3j+k) +3(4i+7j) = (-2i+6j+2k)+(12i+21j) = 10i+27j+2k 1. a-b (-i+3j+k) –( 4i+7j)= -5i- 4j+k 2. 1 2 𝑎 = (− 1 2 )2 + ( 3 2 )2 + ( 1 2 )2 = 1 4 + 9 4 + 1 4 = 11 4 = 11 2 The Dot Product:
  • 44. Let a= (𝑎1, 𝑎2, 𝑎3) 𝑎𝑛𝑑 𝑏 = 𝑏1, 𝑏2, 𝑏3 in 3D then, the dot product denoted by a.b is 𝑎1𝑏1 + 𝑎2𝑏2 + 𝑎3𝑏3 Similarly if a= 𝑎1𝑖 + 𝑎2𝑗 + 𝑎3𝑘 𝑎𝑛𝑑 𝑏 = 𝑏1𝑖 + 𝑏2𝑗 + 𝑏3𝑘 a.b= 𝑎1𝑏1 + 𝑎2𝑏2 + 𝑎3𝑏3 EX: If p=3i-2j+k and q=2i+3j-4k
  • 45. The Angle between Two Vectors : The angle between two non zeros vectors is the smallest angle between them . Theorem: Let v ,w are two non zeros vectors and 𝜃 𝑖𝑠the angle between a and b then cos 𝜃 = 𝑣. 𝑤 𝑣 𝑤
  • 46. EX: Is a= -i+5j+2k perpendicular to b=3i+j-k ? a.b = (-1.3+5.1+2.-1)=0 a is perpendicular to b Theorem : For any vectors u,v,w and k be a scalar :
  • 47. The cross product: Let a= 𝑎1𝑖 + 𝑎2𝑗 + 𝑎3𝑘 𝑎𝑛𝑑 𝑏 = 𝑏1𝑖 + 𝑏2𝑗 + 𝑏3𝑘 in 3D then, the cross product denoted by a×b is 𝑡he vector :
  • 48. a×b= 𝑖 𝑗 𝑘 𝑎1 𝑎2 𝑎3 𝑏1 𝑏2 𝑏3 = 𝑎2 𝑎3 𝑏2 𝑏3 𝑖 − 𝑎1 𝑎3 𝑏1 𝑏3 𝑗 + 𝑎1 𝑎2 𝑏1 𝑏2 𝑘= (𝑎2𝑏3 − 𝑎3𝑏2)𝑖 − (𝑎1𝑏3 − 𝑎3𝑏1)𝑗 +(𝑎1𝑏2 − 𝑎2𝑏1)𝑘 EX: let p=3i-4j+2k and q= 2i+5j-k ,find p×q?
  • 50. Function Numbers: 1. N={1,2,3,…….} the set of Natural numbers 2-Z={-1,-2,…..,0,1,2,……} the set of integer numbers 3-Q={ N,Z, 𝑝 𝑞 , q≠ 0 and p,q 𝜖𝑍} the set of rational numbers 4- H= { 𝑥} the set of irrational numbers 5- R=Q+H = the set of real numbers Interval
  • 52. Ex: if f(x)=𝑥3 then f(2) =23 = 8 Ex: verify the domains and ranges of these functions : y= 𝑥2 domain(x)= (-∞, ∞) range(y)=[0,∞) y=1 𝑥 domain(x)= (-∞, 0) ∪ (0, ∞) range(y)= (-∞, 0) ∪ (0, ∞) y= 𝑥 domain(x)= [0, ∞) range(y)= [0, ∞) y= 4 − 𝑥 domain(x)= (−∞, 4) range(y)= [0, ∞)
  • 53. The gargh of function
  • 54. Ex:
  • 58. Trigonometric function : 1. sin 𝜃 = 𝑎 𝑐
  • 63. Y=Sin x ,y= cos x, y= tan x, y=cot x , y= sec x, y=csc x, 1. y=sin x : domain (x) −∞ ≤ 𝑥 ≤ ∞ range(y) -1≤ 𝑦 ≤ 1 2. y= cos x : domain (x) −∞ ≤ 𝑥 ≤ ∞ range(y) -1≤ 𝑦 ≤ 1 3. y= tan x : domain (x)={x≠ 𝜋/2, 𝑥 ≠ 3𝜋/2}
  • 84. The Integration : Integration is considered as the anti derivative operation. The formula 𝑑 𝑑𝑥 F(x)=f(x) is the same as 𝑓 𝑥 𝑑𝑥 = 𝐹 𝑥 + 𝑐 ex: 𝑑 𝑑𝑥 sin 𝑥 = cos 𝑥 cos 𝑥 = sin 𝑥 + 𝑐 Rules: 1. 𝑑𝑥 = 𝑥 + 𝑐 2. 𝑘𝑑𝑥 = 𝑘𝑥 + 𝑐 ,k is constant 3. 𝑥𝑛 𝑑𝑥 = 𝑥𝑛+1 𝑛+1 + 𝑐 n≠ −1 4. 𝑓 𝑥 + 𝑔 𝑥 𝑑𝑥 = 𝑓 𝑥 𝑑𝑥 + 𝑔 𝑥 𝑑𝑥 5. 𝑘𝑓 𝑥 = 𝑘 𝑓 𝑥 𝑑𝑥 , k is constant 6. 𝑓 𝑥 𝑛 𝑓′ (𝑥)𝑑𝑥 = 𝑓(𝑥)𝑛+1 𝑛+1 + 𝑐
  • 85. Ex: 1. 2𝑑𝑥 = 2𝑥 + 𝑐 2. 𝑥3 𝑑𝑥 = 𝑥4 4 + 𝑐 3. −2𝑥2 𝑑𝑥 = −2𝑥3 3 + 𝑐 4. (𝑥2 + 2)2. 2𝑥𝑑𝑥 = (𝑥2+2)3 3 + 𝑐 5. (𝑥3 − 1)3. 𝑥2𝑑𝑥 = 1 3 (𝑥3 − 1)3. 3𝑥2𝑑𝑥 = (𝑥3−1)4 12 + 𝑐 The Trigonometric functions 1. sin 𝑥 𝑑𝑥 = − cos 𝑥 + 𝑐 2. cos 𝑥 𝑑𝑥 = sin 𝑥 + 𝑐 3. 𝑠𝑒𝑐2𝑥𝑑𝑥 = tan 𝑥 + 𝑐 4. 𝑐𝑠𝑐2𝑥𝑑𝑥 = −𝑐𝑜𝑡𝑥 + 𝑐 5. 𝑠𝑒𝑐 𝑥𝑡𝑎𝑛𝑥𝑑𝑥 = sec 𝑥 + 𝑐 6. 𝑐𝑠𝑐 𝑥𝑐𝑜𝑡𝑥𝑑𝑥 = −csc 𝑥 + 𝑐
  • 86. EX: 1. 𝑥𝑐𝑜𝑠(𝑥2 + 1)𝑑𝑥 = 1 2 2𝑥𝑐𝑜𝑠 𝑥2 + 1 𝑑𝑥 = 1 2 sin 𝑥2 + 1 + 𝑐 2. 𝑠𝑒𝑐2 (4𝑥) 𝑑𝑥 = tan(4𝑥) 4 + 𝑐 3. cot 𝑥 𝑠𝑖𝑛3𝑥 𝑑𝑥 = cos 𝑥 sin 𝑥 𝑠𝑖𝑛3𝑥𝑑𝑥 = cos 𝑥 𝑠𝑖𝑛2 𝑥 𝑑𝑥 = 𝑠𝑖𝑛3𝑥 3 +c ‫األتي‬ ‫فنتبع‬ ‫المشتقة‬ ‫توفر‬ ‫عدم‬ ‫حالة‬ ‫في‬ ‫أما‬ : 1.if power is even : 𝑐𝑜𝑠2 𝑥 = (1 + cos 2𝑥) 2 𝑠𝑖𝑛2 𝑥 = (1 − cos 2𝑥) 2 2.if power is odd: 𝑠𝑖𝑛2 𝑥 = 1 − 𝑐𝑜𝑠2 𝑥 𝑐𝑜𝑠2 𝑥 = 1 − 𝑠𝑖𝑛2 𝑥 𝑠𝑒𝑐2 𝑥 = 1 + 𝑡𝑎𝑛2 𝑥 EX: 𝑐𝑜𝑠3 𝑥 𝑑𝑥 = cos 𝑥 𝑐𝑜𝑠2 𝑥 𝑑𝑥 = cos 𝑥(1
  • 87. Integration of multiply sin and cos with diff. angles 1. 𝑠𝑖𝑛 𝑎𝑥𝑐𝑜𝑠 𝑏𝑥𝑑𝑥 = 1 2 (sin 𝑎 − 𝑏 𝑥 + sin 𝑎 + 𝑏 𝑥)𝑑𝑥 2. 𝑠𝑖𝑛 𝑎𝑥𝑠𝑖𝑛 𝑏𝑥𝑑𝑥 = 1 2 (cos 𝑎 − 𝑏 𝑥 − cos 𝑎 + 𝑏 𝑥)𝑑𝑥 3. 𝑐𝑜𝑠 𝑎𝑥𝑐𝑜𝑠 𝑏𝑥𝑑𝑥 = 1 2 (cos 𝑎 − 𝑏 𝑥 + cos 𝑎 + 𝑏 𝑥)𝑑𝑥 EX 1. 𝑠𝑖𝑛 4𝑥𝑐𝑜𝑠2𝑥𝑑𝑥 = 1 2 (sin 4 − 2 𝑥 + sin 4 + 2 𝑥)𝑑𝑥 = 1 2 (sin 2 𝑥 + sin 6 𝑥)𝑑𝑥 = 1 2 − 1 2 𝑐𝑜𝑠2𝑥 − 1 6 𝑐𝑜𝑠6𝑥 + 𝑐 The Logarithmic functions 1. Natural logarithm of x 𝑑 𝑑𝑥 𝑙𝑛𝑥 = 1 𝑥 ∴ 1 𝑥 𝑑𝑥 = 𝑙𝑛 𝑥 + 𝑐
  • 88. 2.𝑒𝑥 function 𝑑 𝑑𝑥 𝑒𝑥 = 𝑒𝑥 ∴ 𝑒𝑥 𝑑𝑥 = 𝑒𝑥 + 𝑐 3. 𝑎𝑥 function 𝑑 𝑑𝑥 𝑎𝑥 = 𝑎𝑥𝑙𝑛𝑎 ∴ 𝑎𝑥 𝑑𝑥 = 𝑎 𝑙𝑛𝑎 𝑥 + 𝑐 Ex: 1. 2𝑥 𝑥2 𝑑𝑥 = 𝑙𝑛 𝑥2 + 𝑐 2. 𝑒3𝑥 𝑑𝑥 = 1 3 3𝑒3𝑥 𝑑𝑥 = 1 3 𝑒3𝑥 + 𝑐 3. 24𝑥 𝑑𝑥 = 1 4 2 𝑙𝑛2 𝑥 + 𝑐 ∴. tan 𝑥 𝑑𝑥 = −𝑙𝑛 cos 𝑥 + 𝑐 cot 𝑥 𝑑𝑥 = 𝑙𝑛 sin 𝑥 + 𝑐
  • 89. The Hyperbolic Functions 1. sinℎ 𝑥 𝑑𝑥 = cos ℎ𝑥 + 𝑐 2. cosh 𝑥 𝑑𝑥 = sin ℎ𝑥 + 𝑐 3. 𝑠𝑒𝑐ℎ2𝑥𝑑𝑥 = tanh 𝑥 + 𝑐 4. 𝑐𝑠𝑐ℎ2𝑥𝑑𝑥 = −𝑐𝑜𝑡ℎ𝑥 + 𝑐 5. 𝑠𝑒𝑐 ℎ𝑥𝑡𝑎𝑛ℎ𝑥𝑑𝑥 = − sec ℎ𝑥 + 𝑐 6. 𝑐𝑠𝑐ℎ 𝑥𝑐𝑜𝑡ℎ𝑥𝑑𝑥 = −csc ℎ𝑥 + 𝑐 7. tanh 𝑥 𝑑𝑥 = 𝑙𝑛 cosh 𝑥 + 𝑐 8. coth 𝑥 𝑑𝑥 = 𝑙𝑛 sinh 𝑥 + 𝑐 Ex: 1. 𝑑𝑥 𝑠𝑖𝑛ℎ𝑥+𝑐𝑜𝑠ℎ𝑥 = 𝑑𝑥 𝑒𝑥 = 𝑒−𝑥𝑑𝑥 = −𝑒−𝑥 + 𝑐 2. 𝑒2𝑥 𝑠𝑖𝑛ℎ3𝑥𝑑𝑥 = 𝑒2𝑥 ( 𝑒3𝑥−𝑒−3𝑥 2 )𝑑𝑥 = 1 2 ( 𝑒5𝑥 − 𝑒−𝑥 𝑑𝑥 = 1 10 𝑒5𝑥 + 1 2 𝑒−𝑥 + 𝑐
  • 92. Method of Integral : 1-. Integration by Substitution: EX: 1. 𝑥(𝑥2 +1)20 𝑑𝑥 Let u=(𝑥2 +1) → 𝑥2 = 𝑢 − 1 → x= 𝑢 − 1 du=2xdx dx= 𝑑𝑢 2𝑥 dx= 𝑑𝑢 2 𝑢−1 𝑢 − 1 (𝑢)20 𝑑𝑢 2 𝑢−1 = 1 2 (𝑢)20 𝑑𝑢 = (𝑢)21 42 + 𝑐 2. 𝑥 𝑥 − 3 𝑑𝑥 = u=x-3 x=u+3 du=dx (𝑢 + 3) 𝑢 𝑑𝑢 = ( 𝑢 3 2 + 3 𝑢)1 2 𝑑𝑢 = (𝑢)5 2 5 2 + 3 (𝑢)3 2 3 2 + 𝑐 = 2 5 (𝑢)5 2+2(𝑢)3 2+𝑐
  • 93. 2-.Integration by parts( udv) 𝑢𝑑𝑣 = 𝑢𝑣 − 𝑣𝑑𝑢 1. 𝑥𝑒3𝑥 𝑑𝑥 = u=x du=dx dv=𝑒3𝑥 𝑑𝑥 𝑣 = 1 3 𝑒3𝑥 ∴ 𝑢𝑑𝑣 = 1 3 𝑥𝑒3𝑥 − 1 3 𝑒3𝑥 𝑑𝑥 = 1 3 𝑥𝑒3𝑥 − 1 9 𝑒3𝑥 + 𝑐 = 1 3 𝑒3𝑥(𝑥 − 1 3 ) + 𝑐 EX:
  • 95. The Definite Integral : Theorem: (Fundamental Theorem I): 𝑎 𝑏 𝑓 𝑥 𝑑𝑥 = 𝐹 𝑥 ]𝑎 𝑏 = 𝐹 𝑏 − 𝐹 𝑎 , 𝑑 𝑑𝑥 𝐹 𝑥 = 𝑓(𝑥) EX: 1. Find 2 3 𝑥2 𝑑𝑥 = 𝑥3 3 ]2 3 = 33 3 − 23 3 = 27 3 − 8 3 = 19 3 2. 0 𝜋 sin2 𝑥 𝑑𝑥 = 0 𝜋 1 2 (1 − cos 2𝑥)𝑑𝑥 = 1 2 𝑥 − sin 2𝑥 2 ]0 𝜋 = 1 2 𝜋 − sin 2𝜋 2 − 1 2 0
  • 98. The applications of definite integral 1-Area under the curve 2.Area between two curves 3.Volumes 4 The length of the curves 5. Surface area 1. Area under the curve The integral 𝑎 𝑏 𝑓 𝑥 𝑑𝑥 is defined the area under the curve y=f(x) from x=a to x=b A= 𝑎 𝑏 𝑦 𝑑𝑥
  • 100. 2. Area between two curves : Case 1(No intersecting of two curves in [a,b]) If 𝑦1 = 𝑓 𝑥 , 𝑦2 = 𝑔 𝑥 then the area is defined as 𝐴𝑎 𝑏 = 𝑎 𝑏 𝑦1 − 𝑦2 𝑑𝑥 Case 2(An intersecting point exists in [a,b]) The area between two curves 𝑦1, 𝑦2 from x=a to x=b is defined as 𝐴𝑎 𝑏 = 𝑎 𝑐 𝑦2 − 𝑦1 𝑑𝑥 + 𝑐 𝑏 (𝑦1 − 𝑦2) 𝑑𝑥
  • 108. EX: 1. 𝑥2 1+𝑥6 𝑑𝑥 = 𝑥2 1+(𝑥3)2 𝑑𝑥 = 1 3 3𝑥2 1+(𝑥3)2 𝑑𝑥 = 1 3 𝑡𝑎𝑛−1 𝑥3 + 𝑐 2. 𝑥 1−𝑥4 𝑑𝑥 = 1 2 2𝑥 1−(𝑥2)2 𝑑𝑥 = 1 2 𝑠𝑖𝑛−1𝑥2 + 𝑐 3- 𝑥𝑠𝑒𝑐−1𝑥 𝑑𝑥 = u = sec−1 𝑥 𝑑𝑢 = 𝑑𝑥 𝑥 𝑥2−1 dv = xdx v = 𝑥2 2 ∴ 𝑥𝑠𝑒𝑐−1𝑥 𝑑𝑥 = sec−1 𝑥 𝑥2 2 − 𝑥2 2 𝑑𝑥 𝑥 𝑥2−1 = sec−1 𝑥 𝑥2 2 − 1 2 𝑥𝑑𝑥 𝑥 𝑥2−1 = sec−1 𝑥 𝑥2 2 − 1 2 ∗ 1 2 ∗ (𝑥2−1) 1 2 1 2 +c=sec−1 𝑥 𝑥2 2 − 1 2 ∗ 𝑥2 − 1 + 𝑐
  • 109. 4-. tan−1 𝑥 𝑑𝑥 = u= tan−1 𝑥 du= 𝑑𝑥 1+𝑥2 dv= dx v= 𝑥 tan−1 𝑥 𝑑𝑥 = tan−1 𝑥 ∗ 𝑥 − 𝑥 𝑑𝑥 1 + 𝑥2 = tan−1 𝑥 ∗ 𝑥 − 1 2 𝑙𝑛 1 + 𝑥2 + 𝑐