This document discusses an empirical Bayesian approach for estimating regularization parameters in inverse problems using maximum likelihood estimation. It proposes the Stochastic Optimization with Unadjusted Langevin (SOUL) algorithm, which uses Markov chain sampling to approximate gradients in a stochastic projected gradient descent scheme for optimizing the regularization parameter. The algorithm is shown to converge to the maximum likelihood estimate under certain conditions on the log-likelihood and prior distributions.