SlideShare a Scribd company logo
Deep Dive:
Memory Management in Apache
Andrew Or
May 18th, 2016
@andrewor14
How familiar are you with Apache Spark?
a) I contribute to it
b) I use it in production
c) I am evaluating it
d) I have nothing to do with it
2
What is Apache ?
3
Fast and general engine for big data processing
Fast to run code
– In-memory data sharing
– General computation graphs
Fast to write code
– Rich APIs in Java, Scala, Python
– Interactive shell
4
Spark Core
Spark
Streaming
real-time
Spark SQL
structured data
MLlib
machine
learning
GraphX
graph
…
What is Apache ?
About Databricks
5
Team that created Spark
at UC Berkeley
Offer a hosted service
– Spark in the cloud
– Notebooks
– Plot visualizations
– Cluster management
About Me
6
Apache Spark committer
Software eng @ Databricks
Hadoop Summit ‘15
Spark Summit Europe ‘15
Some other meetup talks
7
Efficient memory use is
critical to good performance
Memory Management in Apache Spark
Memory contention poses three
challenges for Apache Spark
9
How to arbitrate memory between execution and storage?
How to arbitrate memory across tasks running in parallel?
How to arbitrate memory across operators running within
the same task?
Two usages of memory in Apache Spark
10
Execution
Memory used for shuffles, joins, sorts and aggregations
Storage
Memory used to cache data that will be reused later
Iterator
4, 3, 5, 1, 6, 2, 8
4 3 5 1 6 2 8
Sort
4 3 5 1 6 2 8
Sort
Execution memory
Iterator
1, 2, 3, 4, 5, 6, 8
1 2 3 4 5 6 8
Sort
Execution memory
Iterator Map Iterator
1, 2, 3, 4, 5, 6, 8 +1 2, 3, 4, 5, 6, 7, 9
Iterator Map
1, 2, 3, 4, 5, 6, 8 +1
Map
+1
Iterator
1, 2, 3, 4, 5, 6, 8
...
Iterator
2, 3, 4, 5, 6, 7, 9
Iterator
2, 3, 4, 5, 6, 7, 9
Cached
Iterator
1, 2, 3, 4, 5, 6, 8
Map Iterator
Map Iterator
...
Storage
memory
Map
+1
Iterator
2, 3, 4, 5, 6, 7, 9
Challenge #1
How to arbitrate memory between
execution and storage?
Easy, static allocation!
18
Total available memory
Execution Storage
Spark 1.0
May 2014
Easy, static allocation!
19
Execution Storage
Spill to disk
Spark 1.0
May 2014
Easy, static allocation!
20
Execution Storage
Spark 1.0
May 2014
Easy, static allocation!
21
Execution Storage
Evict LRU block to disk
Spark 1.0
May 2014
22
Inefficient memory use means
bad performance
Easy, static allocation!
23
Execution can only use a fraction of the memory,
even when there is no storage!
Execution Storage
Spark 1.0May 2014
Storage
Easy, static allocation!
24
Efficient use of memory required user tuning
Execution
Spark 1.0May 2014
25
Fast forward to 2016…
How could we have done better?
26
Execution Storage
27
Execution Storage
Unified memory management
Spark 1.6+
Jan 2016
What happens if there is already storage?
28
Execution Storage
Unified memory management
Spark 1.6+
Jan 2016
Evict LRU block to disk
29
Execution Storage
Unified memory management
Spark 1.6+
Jan 2016
What about the other way round?
30
Execution Storage
Unified memory management
Spark 1.6+
Jan 2016
Evict LRU block to disk
Design considerations
31
Why evict storage, not execution?
Spilled execution data will always be read back from disk,
whereas cached data may not.
What if the application relies on caching?
Allow the user to specify a minimum unevictable amount of
cached data (not a reservation!).
Spark 1.6+
Jan 2016
Challenge #2
How to arbitrate memory across
tasks running in parallel?
Easy, static allocation!
Worker machine has 4 cores
Each task gets 1/4 of the total memory
Slot 1 Slot 2 Slot 3 Slot 4
Alternative: What Spark does
Worker machine has 4 cores
The share of each task depends on
number of actively running tasks (N)
Task 1
Alternative: What Spark does
Now, another task comes along
so the first task will have to spill
Task 1
Alternative: What Spark does
Each task is assigned 1/N of the
memory, where N = 2
Task 1 Task 2
Alternative: What Spark does
Each task is assigned 1/N of the
memory, where N = 4
Task 1 Task 2 Task 3 Task 4
Alternative: What Spark does
Last remaining task gets all the
memory because N = 1
Task 3
Spark 1.0+
May 2014
Static allocation vs What Spark does
39
Both are fair and starvation free
Static allocation is simpler
What Spark does handles stragglers better
Challenge #3
How to arbitrate memory across
operators running within the same task?
SELECT age, avg(height)
FROM students
GROUP BY age
ORDER BY avg(height)
students.groupBy("age")
.avg("height")
.orderBy("avg(height)")
.collect()
Scan
Project
Aggregate
Sort
Worker has 6
pages of memory
Scan
Project
Aggregate
Sort
Scan
Project
Aggregate
Sort
Map { // age → heights
20 → [154, 174, 175]
21 → [167, 168, 181]
22 → [155, 166, 188]
23 → [160, 168, 178, 183]
}
Scan
Project
Aggregate
Sort
All 6 pages were used
by Aggregate, leaving
no memory for Sort!
Solution #1:
Reserve a page for
each operator
Scan
Project
Aggregate
Sort
Solution #1:
Reserve a page for
each operator
Scan
Project
Aggregate
Sort
Starvation free, but still not fair…
What if there were more operators?
Solution #2:
Cooperative spilling
Scan
Project
Aggregate
Sort
Scan
Project
Aggregate
Sort
Solution #2:
Cooperative spilling
Scan
Project
Aggregate
Sort
Solution #2:
Cooperative spilling
Sort forces Aggregate to spill
a page to free memory
Scan
Project
Aggregate
Sort
Solution #2:
Cooperative spilling
Sort needs more memory so
it forces Aggregate to spill
another page (and so on)
Scan
Project
Aggregate
Sort
Solution #2:
Cooperative spilling
Sort finishes with 3 pages
Aggregate does not have to
spill its remaining pages
Spark 1.6+
Jan 2016
Recap: Three sources of contention
52
How to arbitrate memory …
● between execution and storage?
● across tasks running in parallel?
● across operators running within the same task?
Instead of avoid statically reserving memory in advance, deal with
memory contention when it arises by forcing members to spill
Project Tungsten
53
Binary in-memory data representation
Cache-aware computation
Code generation (next time)
Spark 1.4+
Jun 2015
“abcd”
54
• Native: 4 bytes with UTF-8 encoding
• Java: 48 bytes
– 12 byte header
– 2 bytes per character (UTF-16 internal representation)
– 20 bytes of additional overhead
– 8 byte hash code
Java objects have large overheads
55
Schema: (Int, String, string)
Row
Array String(“data”)
String(“bricks”)
5+ objects, high space overhead, expensive hashCode()
BoxedInteger(123)
Java objects based row format
6 “bricks”
56
0x0 123 32L 48L 4 “data”
(123, “data”, “bricks”)
Null tracking bitmap
Offset to var. length data
Offset to var. length data
Tungsten row format
Cache-aware Computation
57
ptr key rec
ptr key rec
ptr key rec
Naive layout
Poor cache locality
ptrkey prefix rec
ptrkey prefix rec
ptrkey prefix rec
Cache-aware layout
Good cache locality
E.g. sorting a list of records
For more info...
Deep Dive into Project Tungsten: Bringing Spark Closer to Bare Metal
https://www.youtube.com/watch?v=5ajs8EIPWGI
Spark Performance: What’s Next
https://www.youtube.com/watch?v=JX0CdOTWYX4
Unified Memory Management
https://issues.apache.org/jira/browse/SPARK-10000
Thank you
andrew@databricks.com
@andrewor14

More Related Content

What's hot (20)

The Parquet Format and Performance Optimization Opportunities
The Parquet Format and Performance Optimization OpportunitiesThe Parquet Format and Performance Optimization Opportunities
The Parquet Format and Performance Optimization Opportunities
Databricks
 
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Databricks
 
Apache Spark Core—Deep Dive—Proper Optimization
Apache Spark Core—Deep Dive—Proper OptimizationApache Spark Core—Deep Dive—Proper Optimization
Apache Spark Core—Deep Dive—Proper Optimization
Databricks
 
RocksDB Performance and Reliability Practices
RocksDB Performance and Reliability PracticesRocksDB Performance and Reliability Practices
RocksDB Performance and Reliability Practices
Yoshinori Matsunobu
 
Amazon S3 Best Practice and Tuning for Hadoop/Spark in the Cloud
Amazon S3 Best Practice and Tuning for Hadoop/Spark in the CloudAmazon S3 Best Practice and Tuning for Hadoop/Spark in the Cloud
Amazon S3 Best Practice and Tuning for Hadoop/Spark in the Cloud
Noritaka Sekiyama
 
Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...
Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...
Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...
Spark Summit
 
Fine Tuning and Enhancing Performance of Apache Spark Jobs
Fine Tuning and Enhancing Performance of Apache Spark JobsFine Tuning and Enhancing Performance of Apache Spark Jobs
Fine Tuning and Enhancing Performance of Apache Spark Jobs
Databricks
 
Apache Spark Core – Practical Optimization
Apache Spark Core – Practical OptimizationApache Spark Core – Practical Optimization
Apache Spark Core – Practical Optimization
Databricks
 
Introduction to Spark Internals
Introduction to Spark InternalsIntroduction to Spark Internals
Introduction to Spark Internals
Pietro Michiardi
 
Understanding Query Plans and Spark UIs
Understanding Query Plans and Spark UIsUnderstanding Query Plans and Spark UIs
Understanding Query Plans and Spark UIs
Databricks
 
A Deep Dive into Query Execution Engine of Spark SQL
A Deep Dive into Query Execution Engine of Spark SQLA Deep Dive into Query Execution Engine of Spark SQL
A Deep Dive into Query Execution Engine of Spark SQL
Databricks
 
Spark tuning
Spark tuningSpark tuning
Spark tuning
GMO-Z.com Vietnam Lab Center
 
A Deep Dive into Spark SQL's Catalyst Optimizer with Yin Huai
A Deep Dive into Spark SQL's Catalyst Optimizer with Yin HuaiA Deep Dive into Spark SQL's Catalyst Optimizer with Yin Huai
A Deep Dive into Spark SQL's Catalyst Optimizer with Yin Huai
Databricks
 
Optimizing Apache Spark SQL Joins
Optimizing Apache Spark SQL JoinsOptimizing Apache Spark SQL Joins
Optimizing Apache Spark SQL Joins
Databricks
 
Hive Bucketing in Apache Spark with Tejas Patil
Hive Bucketing in Apache Spark with Tejas PatilHive Bucketing in Apache Spark with Tejas Patil
Hive Bucketing in Apache Spark with Tejas Patil
Databricks
 
Apache Spark Architecture
Apache Spark ArchitectureApache Spark Architecture
Apache Spark Architecture
Alexey Grishchenko
 
Improving SparkSQL Performance by 30%: How We Optimize Parquet Pushdown and P...
Improving SparkSQL Performance by 30%: How We Optimize Parquet Pushdown and P...Improving SparkSQL Performance by 30%: How We Optimize Parquet Pushdown and P...
Improving SparkSQL Performance by 30%: How We Optimize Parquet Pushdown and P...
Databricks
 
Apache Spark At Scale in the Cloud
Apache Spark At Scale in the CloudApache Spark At Scale in the Cloud
Apache Spark At Scale in the Cloud
Databricks
 
Apache Spark overview
Apache Spark overviewApache Spark overview
Apache Spark overview
DataArt
 
Parquet performance tuning: the missing guide
Parquet performance tuning: the missing guideParquet performance tuning: the missing guide
Parquet performance tuning: the missing guide
Ryan Blue
 
The Parquet Format and Performance Optimization Opportunities
The Parquet Format and Performance Optimization OpportunitiesThe Parquet Format and Performance Optimization Opportunities
The Parquet Format and Performance Optimization Opportunities
Databricks
 
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Databricks
 
Apache Spark Core—Deep Dive—Proper Optimization
Apache Spark Core—Deep Dive—Proper OptimizationApache Spark Core—Deep Dive—Proper Optimization
Apache Spark Core—Deep Dive—Proper Optimization
Databricks
 
RocksDB Performance and Reliability Practices
RocksDB Performance and Reliability PracticesRocksDB Performance and Reliability Practices
RocksDB Performance and Reliability Practices
Yoshinori Matsunobu
 
Amazon S3 Best Practice and Tuning for Hadoop/Spark in the Cloud
Amazon S3 Best Practice and Tuning for Hadoop/Spark in the CloudAmazon S3 Best Practice and Tuning for Hadoop/Spark in the Cloud
Amazon S3 Best Practice and Tuning for Hadoop/Spark in the Cloud
Noritaka Sekiyama
 
Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...
Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...
Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...
Spark Summit
 
Fine Tuning and Enhancing Performance of Apache Spark Jobs
Fine Tuning and Enhancing Performance of Apache Spark JobsFine Tuning and Enhancing Performance of Apache Spark Jobs
Fine Tuning and Enhancing Performance of Apache Spark Jobs
Databricks
 
Apache Spark Core – Practical Optimization
Apache Spark Core – Practical OptimizationApache Spark Core – Practical Optimization
Apache Spark Core – Practical Optimization
Databricks
 
Introduction to Spark Internals
Introduction to Spark InternalsIntroduction to Spark Internals
Introduction to Spark Internals
Pietro Michiardi
 
Understanding Query Plans and Spark UIs
Understanding Query Plans and Spark UIsUnderstanding Query Plans and Spark UIs
Understanding Query Plans and Spark UIs
Databricks
 
A Deep Dive into Query Execution Engine of Spark SQL
A Deep Dive into Query Execution Engine of Spark SQLA Deep Dive into Query Execution Engine of Spark SQL
A Deep Dive into Query Execution Engine of Spark SQL
Databricks
 
A Deep Dive into Spark SQL's Catalyst Optimizer with Yin Huai
A Deep Dive into Spark SQL's Catalyst Optimizer with Yin HuaiA Deep Dive into Spark SQL's Catalyst Optimizer with Yin Huai
A Deep Dive into Spark SQL's Catalyst Optimizer with Yin Huai
Databricks
 
Optimizing Apache Spark SQL Joins
Optimizing Apache Spark SQL JoinsOptimizing Apache Spark SQL Joins
Optimizing Apache Spark SQL Joins
Databricks
 
Hive Bucketing in Apache Spark with Tejas Patil
Hive Bucketing in Apache Spark with Tejas PatilHive Bucketing in Apache Spark with Tejas Patil
Hive Bucketing in Apache Spark with Tejas Patil
Databricks
 
Improving SparkSQL Performance by 30%: How We Optimize Parquet Pushdown and P...
Improving SparkSQL Performance by 30%: How We Optimize Parquet Pushdown and P...Improving SparkSQL Performance by 30%: How We Optimize Parquet Pushdown and P...
Improving SparkSQL Performance by 30%: How We Optimize Parquet Pushdown and P...
Databricks
 
Apache Spark At Scale in the Cloud
Apache Spark At Scale in the CloudApache Spark At Scale in the Cloud
Apache Spark At Scale in the Cloud
Databricks
 
Apache Spark overview
Apache Spark overviewApache Spark overview
Apache Spark overview
DataArt
 
Parquet performance tuning: the missing guide
Parquet performance tuning: the missing guideParquet performance tuning: the missing guide
Parquet performance tuning: the missing guide
Ryan Blue
 

Viewers also liked (20)

Understanding Memory Management In Spark For Fun And Profit
Understanding Memory Management In Spark For Fun And ProfitUnderstanding Memory Management In Spark For Fun And Profit
Understanding Memory Management In Spark For Fun And Profit
Spark Summit
 
Top 5 Mistakes to Avoid When Writing Apache Spark Applications
Top 5 Mistakes to Avoid When Writing Apache Spark ApplicationsTop 5 Mistakes to Avoid When Writing Apache Spark Applications
Top 5 Mistakes to Avoid When Writing Apache Spark Applications
Cloudera, Inc.
 
700 Queries Per Second with Updates: Spark As A Real-Time Web Service
700 Queries Per Second with Updates: Spark As A Real-Time Web Service700 Queries Per Second with Updates: Spark As A Real-Time Web Service
700 Queries Per Second with Updates: Spark As A Real-Time Web Service
Spark Summit
 
Why your Spark job is failing
Why your Spark job is failingWhy your Spark job is failing
Why your Spark job is failing
Sandy Ryza
 
Visualizing AutoTrader Traffic in Near Real-Time with Spark Streaming-(Jon Gr...
Visualizing AutoTrader Traffic in Near Real-Time with Spark Streaming-(Jon Gr...Visualizing AutoTrader Traffic in Near Real-Time with Spark Streaming-(Jon Gr...
Visualizing AutoTrader Traffic in Near Real-Time with Spark Streaming-(Jon Gr...
Spark Summit
 
Visualizing big data in the browser using spark
Visualizing big data in the browser using sparkVisualizing big data in the browser using spark
Visualizing big data in the browser using spark
Databricks
 
Apache HAWQ Architecture
Apache HAWQ ArchitectureApache HAWQ Architecture
Apache HAWQ Architecture
Alexey Grishchenko
 
Beyond SQL: Speeding up Spark with DataFrames
Beyond SQL: Speeding up Spark with DataFramesBeyond SQL: Speeding up Spark with DataFrames
Beyond SQL: Speeding up Spark with DataFrames
Databricks
 
TensorFrames: Google Tensorflow on Apache Spark
TensorFrames: Google Tensorflow on Apache SparkTensorFrames: Google Tensorflow on Apache Spark
TensorFrames: Google Tensorflow on Apache Spark
Databricks
 
Real time data viz with Spark Streaming, Kafka and D3.js
Real time data viz with Spark Streaming, Kafka and D3.jsReal time data viz with Spark Streaming, Kafka and D3.js
Real time data viz with Spark Streaming, Kafka and D3.js
Ben Laird
 
R, Scikit-Learn and Apache Spark ML - What difference does it make?
R, Scikit-Learn and Apache Spark ML - What difference does it make?R, Scikit-Learn and Apache Spark ML - What difference does it make?
R, Scikit-Learn and Apache Spark ML - What difference does it make?
Villu Ruusmann
 
Lessons from Running Large Scale Spark Workloads
Lessons from Running Large Scale Spark WorkloadsLessons from Running Large Scale Spark Workloads
Lessons from Running Large Scale Spark Workloads
Databricks
 
Spark Infrastructure Made Easy
Spark Infrastructure Made EasySpark Infrastructure Made Easy
Spark Infrastructure Made Easy
BlueData, Inc.
 
Jump Start with Apache Spark 2.0 on Databricks
Jump Start with Apache Spark 2.0 on DatabricksJump Start with Apache Spark 2.0 on Databricks
Jump Start with Apache Spark 2.0 on Databricks
Anyscale
 
Deep Dive Into Catalyst: Apache Spark 2.0'S Optimizer
Deep Dive Into Catalyst: Apache Spark 2.0'S OptimizerDeep Dive Into Catalyst: Apache Spark 2.0'S Optimizer
Deep Dive Into Catalyst: Apache Spark 2.0'S Optimizer
Spark Summit
 
Interactive Visualization of Streaming Data Powered by Spark by Ruhollah Farc...
Interactive Visualization of Streaming Data Powered by Spark by Ruhollah Farc...Interactive Visualization of Streaming Data Powered by Spark by Ruhollah Farc...
Interactive Visualization of Streaming Data Powered by Spark by Ruhollah Farc...
Spark Summit
 
Apache Spark: What's under the hood
Apache Spark: What's under the hoodApache Spark: What's under the hood
Apache Spark: What's under the hood
Adarsh Pannu
 
SORT & JOIN IN SPARK 2.0
SORT & JOIN IN SPARK 2.0SORT & JOIN IN SPARK 2.0
SORT & JOIN IN SPARK 2.0
Sigmoid
 
Apps to spark memory
Apps to spark memoryApps to spark memory
Apps to spark memory
University of Southern Queensland
 
Making Sense of Spark Performance-(Kay Ousterhout, UC Berkeley)
Making Sense of Spark Performance-(Kay Ousterhout, UC Berkeley)Making Sense of Spark Performance-(Kay Ousterhout, UC Berkeley)
Making Sense of Spark Performance-(Kay Ousterhout, UC Berkeley)
Spark Summit
 
Understanding Memory Management In Spark For Fun And Profit
Understanding Memory Management In Spark For Fun And ProfitUnderstanding Memory Management In Spark For Fun And Profit
Understanding Memory Management In Spark For Fun And Profit
Spark Summit
 
Top 5 Mistakes to Avoid When Writing Apache Spark Applications
Top 5 Mistakes to Avoid When Writing Apache Spark ApplicationsTop 5 Mistakes to Avoid When Writing Apache Spark Applications
Top 5 Mistakes to Avoid When Writing Apache Spark Applications
Cloudera, Inc.
 
700 Queries Per Second with Updates: Spark As A Real-Time Web Service
700 Queries Per Second with Updates: Spark As A Real-Time Web Service700 Queries Per Second with Updates: Spark As A Real-Time Web Service
700 Queries Per Second with Updates: Spark As A Real-Time Web Service
Spark Summit
 
Why your Spark job is failing
Why your Spark job is failingWhy your Spark job is failing
Why your Spark job is failing
Sandy Ryza
 
Visualizing AutoTrader Traffic in Near Real-Time with Spark Streaming-(Jon Gr...
Visualizing AutoTrader Traffic in Near Real-Time with Spark Streaming-(Jon Gr...Visualizing AutoTrader Traffic in Near Real-Time with Spark Streaming-(Jon Gr...
Visualizing AutoTrader Traffic in Near Real-Time with Spark Streaming-(Jon Gr...
Spark Summit
 
Visualizing big data in the browser using spark
Visualizing big data in the browser using sparkVisualizing big data in the browser using spark
Visualizing big data in the browser using spark
Databricks
 
Beyond SQL: Speeding up Spark with DataFrames
Beyond SQL: Speeding up Spark with DataFramesBeyond SQL: Speeding up Spark with DataFrames
Beyond SQL: Speeding up Spark with DataFrames
Databricks
 
TensorFrames: Google Tensorflow on Apache Spark
TensorFrames: Google Tensorflow on Apache SparkTensorFrames: Google Tensorflow on Apache Spark
TensorFrames: Google Tensorflow on Apache Spark
Databricks
 
Real time data viz with Spark Streaming, Kafka and D3.js
Real time data viz with Spark Streaming, Kafka and D3.jsReal time data viz with Spark Streaming, Kafka and D3.js
Real time data viz with Spark Streaming, Kafka and D3.js
Ben Laird
 
R, Scikit-Learn and Apache Spark ML - What difference does it make?
R, Scikit-Learn and Apache Spark ML - What difference does it make?R, Scikit-Learn and Apache Spark ML - What difference does it make?
R, Scikit-Learn and Apache Spark ML - What difference does it make?
Villu Ruusmann
 
Lessons from Running Large Scale Spark Workloads
Lessons from Running Large Scale Spark WorkloadsLessons from Running Large Scale Spark Workloads
Lessons from Running Large Scale Spark Workloads
Databricks
 
Spark Infrastructure Made Easy
Spark Infrastructure Made EasySpark Infrastructure Made Easy
Spark Infrastructure Made Easy
BlueData, Inc.
 
Jump Start with Apache Spark 2.0 on Databricks
Jump Start with Apache Spark 2.0 on DatabricksJump Start with Apache Spark 2.0 on Databricks
Jump Start with Apache Spark 2.0 on Databricks
Anyscale
 
Deep Dive Into Catalyst: Apache Spark 2.0'S Optimizer
Deep Dive Into Catalyst: Apache Spark 2.0'S OptimizerDeep Dive Into Catalyst: Apache Spark 2.0'S Optimizer
Deep Dive Into Catalyst: Apache Spark 2.0'S Optimizer
Spark Summit
 
Interactive Visualization of Streaming Data Powered by Spark by Ruhollah Farc...
Interactive Visualization of Streaming Data Powered by Spark by Ruhollah Farc...Interactive Visualization of Streaming Data Powered by Spark by Ruhollah Farc...
Interactive Visualization of Streaming Data Powered by Spark by Ruhollah Farc...
Spark Summit
 
Apache Spark: What's under the hood
Apache Spark: What's under the hoodApache Spark: What's under the hood
Apache Spark: What's under the hood
Adarsh Pannu
 
SORT & JOIN IN SPARK 2.0
SORT & JOIN IN SPARK 2.0SORT & JOIN IN SPARK 2.0
SORT & JOIN IN SPARK 2.0
Sigmoid
 
Making Sense of Spark Performance-(Kay Ousterhout, UC Berkeley)
Making Sense of Spark Performance-(Kay Ousterhout, UC Berkeley)Making Sense of Spark Performance-(Kay Ousterhout, UC Berkeley)
Making Sense of Spark Performance-(Kay Ousterhout, UC Berkeley)
Spark Summit
 
Ad

Similar to Memory Management in Apache Spark (20)

A Developer’s View into Spark's Memory Model with Wenchen Fan
A Developer’s View into Spark's Memory Model with Wenchen FanA Developer’s View into Spark's Memory Model with Wenchen Fan
A Developer’s View into Spark's Memory Model with Wenchen Fan
Databricks
 
A Developer's View Into Spark's Memory Model with Wenchen Fan
A Developer's View Into Spark's Memory Model with Wenchen FanA Developer's View Into Spark's Memory Model with Wenchen Fan
A Developer's View Into Spark's Memory Model with Wenchen Fan
Databricks
 
Anatomy of in memory processing in Spark
Anatomy of in memory processing in SparkAnatomy of in memory processing in Spark
Anatomy of in memory processing in Spark
datamantra
 
Spark - Migration Story
Spark - Migration Story Spark - Migration Story
Spark - Migration Story
Roman Chukh
 
Spark.pptx to knowledge gaining in wdm days ago
Spark.pptx to knowledge gaining in wdm days agoSpark.pptx to knowledge gaining in wdm days ago
Spark.pptx to knowledge gaining in wdm days ago
PreethamMCPreethamMC
 
Intro to Spark development
 Intro to Spark development  Intro to Spark development
Intro to Spark development
Spark Summit
 
Started with-apache-spark
Started with-apache-sparkStarted with-apache-spark
Started with-apache-spark
Happiest Minds Technologies
 
Introduction to Spark Training
Introduction to Spark TrainingIntroduction to Spark Training
Introduction to Spark Training
Spark Summit
 
Spark architechure.pptx
Spark architechure.pptxSpark architechure.pptx
Spark architechure.pptx
SaiSriMadhuriYatam
 
Garbage Collector Tuning
Garbage Collector TuningGarbage Collector Tuning
Garbage Collector Tuning
ESUG
 
4Introduction+to+Spark.pptx sdfsdfsdfsdfsdf
4Introduction+to+Spark.pptx sdfsdfsdfsdfsdf4Introduction+to+Spark.pptx sdfsdfsdfsdfsdf
4Introduction+to+Spark.pptx sdfsdfsdfsdfsdf
yafora8192
 
Scaling Apache Spark at Facebook
Scaling Apache Spark at FacebookScaling Apache Spark at Facebook
Scaling Apache Spark at Facebook
Databricks
 
Apache® Spark™ 1.6 presented by Databricks co-founder Patrick Wendell
Apache® Spark™ 1.6 presented by Databricks co-founder Patrick WendellApache® Spark™ 1.6 presented by Databricks co-founder Patrick Wendell
Apache® Spark™ 1.6 presented by Databricks co-founder Patrick Wendell
Databricks
 
Apache Spark Introduction.pdf
Apache Spark Introduction.pdfApache Spark Introduction.pdf
Apache Spark Introduction.pdf
MaheshPandit16
 
Spark Concepts Cheat Sheet_Interview_Question.pdf
Spark Concepts Cheat Sheet_Interview_Question.pdfSpark Concepts Cheat Sheet_Interview_Question.pdf
Spark Concepts Cheat Sheet_Interview_Question.pdf
aekannake
 
EuroMPI 2016 Keynote: How Can MPI Fit Into Today's Big Computing
EuroMPI 2016 Keynote: How Can MPI Fit Into Today's Big ComputingEuroMPI 2016 Keynote: How Can MPI Fit Into Today's Big Computing
EuroMPI 2016 Keynote: How Can MPI Fit Into Today's Big Computing
Jonathan Dursi
 
Deep Dive into Project Tungsten: Bringing Spark Closer to Bare Metal-(Josh Ro...
Deep Dive into Project Tungsten: Bringing Spark Closer to Bare Metal-(Josh Ro...Deep Dive into Project Tungsten: Bringing Spark Closer to Bare Metal-(Josh Ro...
Deep Dive into Project Tungsten: Bringing Spark Closer to Bare Metal-(Josh Ro...
Spark Summit
 
Top 5 mistakes when writing Spark applications
Top 5 mistakes when writing Spark applicationsTop 5 mistakes when writing Spark applications
Top 5 mistakes when writing Spark applications
hadooparchbook
 
Everything You Always Wanted to Know About Memory in Python But Were Afraid t...
Everything You Always Wanted to Know About Memory in Python But Were Afraid t...Everything You Always Wanted to Know About Memory in Python But Were Afraid t...
Everything You Always Wanted to Know About Memory in Python But Were Afraid t...
Piotr Przymus
 
In Memory Analytics with Apache Spark
In Memory Analytics with Apache SparkIn Memory Analytics with Apache Spark
In Memory Analytics with Apache Spark
Venkata Naga Ravi
 
A Developer’s View into Spark's Memory Model with Wenchen Fan
A Developer’s View into Spark's Memory Model with Wenchen FanA Developer’s View into Spark's Memory Model with Wenchen Fan
A Developer’s View into Spark's Memory Model with Wenchen Fan
Databricks
 
A Developer's View Into Spark's Memory Model with Wenchen Fan
A Developer's View Into Spark's Memory Model with Wenchen FanA Developer's View Into Spark's Memory Model with Wenchen Fan
A Developer's View Into Spark's Memory Model with Wenchen Fan
Databricks
 
Anatomy of in memory processing in Spark
Anatomy of in memory processing in SparkAnatomy of in memory processing in Spark
Anatomy of in memory processing in Spark
datamantra
 
Spark - Migration Story
Spark - Migration Story Spark - Migration Story
Spark - Migration Story
Roman Chukh
 
Spark.pptx to knowledge gaining in wdm days ago
Spark.pptx to knowledge gaining in wdm days agoSpark.pptx to knowledge gaining in wdm days ago
Spark.pptx to knowledge gaining in wdm days ago
PreethamMCPreethamMC
 
Intro to Spark development
 Intro to Spark development  Intro to Spark development
Intro to Spark development
Spark Summit
 
Introduction to Spark Training
Introduction to Spark TrainingIntroduction to Spark Training
Introduction to Spark Training
Spark Summit
 
Garbage Collector Tuning
Garbage Collector TuningGarbage Collector Tuning
Garbage Collector Tuning
ESUG
 
4Introduction+to+Spark.pptx sdfsdfsdfsdfsdf
4Introduction+to+Spark.pptx sdfsdfsdfsdfsdf4Introduction+to+Spark.pptx sdfsdfsdfsdfsdf
4Introduction+to+Spark.pptx sdfsdfsdfsdfsdf
yafora8192
 
Scaling Apache Spark at Facebook
Scaling Apache Spark at FacebookScaling Apache Spark at Facebook
Scaling Apache Spark at Facebook
Databricks
 
Apache® Spark™ 1.6 presented by Databricks co-founder Patrick Wendell
Apache® Spark™ 1.6 presented by Databricks co-founder Patrick WendellApache® Spark™ 1.6 presented by Databricks co-founder Patrick Wendell
Apache® Spark™ 1.6 presented by Databricks co-founder Patrick Wendell
Databricks
 
Apache Spark Introduction.pdf
Apache Spark Introduction.pdfApache Spark Introduction.pdf
Apache Spark Introduction.pdf
MaheshPandit16
 
Spark Concepts Cheat Sheet_Interview_Question.pdf
Spark Concepts Cheat Sheet_Interview_Question.pdfSpark Concepts Cheat Sheet_Interview_Question.pdf
Spark Concepts Cheat Sheet_Interview_Question.pdf
aekannake
 
EuroMPI 2016 Keynote: How Can MPI Fit Into Today's Big Computing
EuroMPI 2016 Keynote: How Can MPI Fit Into Today's Big ComputingEuroMPI 2016 Keynote: How Can MPI Fit Into Today's Big Computing
EuroMPI 2016 Keynote: How Can MPI Fit Into Today's Big Computing
Jonathan Dursi
 
Deep Dive into Project Tungsten: Bringing Spark Closer to Bare Metal-(Josh Ro...
Deep Dive into Project Tungsten: Bringing Spark Closer to Bare Metal-(Josh Ro...Deep Dive into Project Tungsten: Bringing Spark Closer to Bare Metal-(Josh Ro...
Deep Dive into Project Tungsten: Bringing Spark Closer to Bare Metal-(Josh Ro...
Spark Summit
 
Top 5 mistakes when writing Spark applications
Top 5 mistakes when writing Spark applicationsTop 5 mistakes when writing Spark applications
Top 5 mistakes when writing Spark applications
hadooparchbook
 
Everything You Always Wanted to Know About Memory in Python But Were Afraid t...
Everything You Always Wanted to Know About Memory in Python But Were Afraid t...Everything You Always Wanted to Know About Memory in Python But Were Afraid t...
Everything You Always Wanted to Know About Memory in Python But Were Afraid t...
Piotr Przymus
 
In Memory Analytics with Apache Spark
In Memory Analytics with Apache SparkIn Memory Analytics with Apache Spark
In Memory Analytics with Apache Spark
Venkata Naga Ravi
 
Ad

More from Databricks (20)

DW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptxDW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptx
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2
Databricks
 
Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2
Databricks
 
Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4
Databricks
 
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
Databricks
 
Democratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized PlatformDemocratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized Platform
Databricks
 
Learn to Use Databricks for Data Science
Learn to Use Databricks for Data ScienceLearn to Use Databricks for Data Science
Learn to Use Databricks for Data Science
Databricks
 
Why APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML MonitoringWhy APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML Monitoring
Databricks
 
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch FixThe Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
Databricks
 
Stage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI IntegrationStage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI Integration
Databricks
 
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorchSimplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Databricks
 
Scaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on KubernetesScaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on Kubernetes
Databricks
 
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark PipelinesScaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Databricks
 
Sawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature AggregationsSawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature Aggregations
Databricks
 
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen SinkRedis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Databricks
 
Re-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and SparkRe-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and Spark
Databricks
 
Raven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction QueriesRaven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction Queries
Databricks
 
Processing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache SparkProcessing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache Spark
Databricks
 
Massive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta LakeMassive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta Lake
Databricks
 
DW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptxDW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptx
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2
Databricks
 
Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2
Databricks
 
Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4
Databricks
 
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
Databricks
 
Democratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized PlatformDemocratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized Platform
Databricks
 
Learn to Use Databricks for Data Science
Learn to Use Databricks for Data ScienceLearn to Use Databricks for Data Science
Learn to Use Databricks for Data Science
Databricks
 
Why APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML MonitoringWhy APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML Monitoring
Databricks
 
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch FixThe Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
Databricks
 
Stage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI IntegrationStage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI Integration
Databricks
 
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorchSimplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Databricks
 
Scaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on KubernetesScaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on Kubernetes
Databricks
 
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark PipelinesScaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Databricks
 
Sawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature AggregationsSawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature Aggregations
Databricks
 
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen SinkRedis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Databricks
 
Re-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and SparkRe-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and Spark
Databricks
 
Raven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction QueriesRaven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction Queries
Databricks
 
Processing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache SparkProcessing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache Spark
Databricks
 
Massive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta LakeMassive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta Lake
Databricks
 

Recently uploaded (20)

BoxLang-Dynamic-AWS-Lambda by Luis Majano.pdf
BoxLang-Dynamic-AWS-Lambda by Luis Majano.pdfBoxLang-Dynamic-AWS-Lambda by Luis Majano.pdf
BoxLang-Dynamic-AWS-Lambda by Luis Majano.pdf
Ortus Solutions, Corp
 
How to Generate Financial Statements in QuickBooks Like a Pro (1).pdf
How to Generate Financial Statements in QuickBooks Like a Pro (1).pdfHow to Generate Financial Statements in QuickBooks Like a Pro (1).pdf
How to Generate Financial Statements in QuickBooks Like a Pro (1).pdf
QuickBooks Training
 
SQL-COMMANDS instructionsssssssssss.pptx
SQL-COMMANDS instructionsssssssssss.pptxSQL-COMMANDS instructionsssssssssss.pptx
SQL-COMMANDS instructionsssssssssss.pptx
Ashlei5
 
Scalefusion Remote Access for Apple Devices
Scalefusion Remote Access for Apple DevicesScalefusion Remote Access for Apple Devices
Scalefusion Remote Access for Apple Devices
Scalefusion
 
Custom Software Development: Types, Applications and Benefits.pdf
Custom Software Development: Types, Applications and Benefits.pdfCustom Software Development: Types, Applications and Benefits.pdf
Custom Software Development: Types, Applications and Benefits.pdf
Digital Aptech
 
Facility Management Solution - TeroTAM CMMS Software
Facility Management Solution - TeroTAM CMMS SoftwareFacility Management Solution - TeroTAM CMMS Software
Facility Management Solution - TeroTAM CMMS Software
TeroTAM
 
Secure and Simplify IT Management with ManageEngine Endpoint Central.pdf
Secure and Simplify IT Management with ManageEngine Endpoint Central.pdfSecure and Simplify IT Management with ManageEngine Endpoint Central.pdf
Secure and Simplify IT Management with ManageEngine Endpoint Central.pdf
Northwind Technologies
 
Marketing And Sales Software Services.pptx
Marketing And Sales Software Services.pptxMarketing And Sales Software Services.pptx
Marketing And Sales Software Services.pptx
julia smits
 
AI Alternative - Discover the best AI tools and their alternatives
AI Alternative - Discover the best AI tools and their alternativesAI Alternative - Discover the best AI tools and their alternatives
AI Alternative - Discover the best AI tools and their alternatives
AI Alternative
 
Oliveira2024 - Combining GPT and Weak Supervision.pdf
Oliveira2024 - Combining GPT and Weak Supervision.pdfOliveira2024 - Combining GPT and Weak Supervision.pdf
Oliveira2024 - Combining GPT and Weak Supervision.pdf
GiliardGodoi1
 
Agentic AI Desgin Principles in five slides.pptx
Agentic AI Desgin Principles in five slides.pptxAgentic AI Desgin Principles in five slides.pptx
Agentic AI Desgin Principles in five slides.pptx
MOSIUOA WESI
 
How to purchase, license and subscribe to Microsoft Azure_PDF.pdf
How to purchase, license and subscribe to Microsoft Azure_PDF.pdfHow to purchase, license and subscribe to Microsoft Azure_PDF.pdf
How to purchase, license and subscribe to Microsoft Azure_PDF.pdf
victordsane
 
Design by Contract - Building Robust Software with Contract-First Development
Design by Contract - Building Robust Software with Contract-First DevelopmentDesign by Contract - Building Robust Software with Contract-First Development
Design by Contract - Building Robust Software with Contract-First Development
Par-Tec S.p.A.
 
How John started to like TDD (instead of hating it) (ViennaJUG, June'25)
How John started to like TDD (instead of hating it) (ViennaJUG, June'25)How John started to like TDD (instead of hating it) (ViennaJUG, June'25)
How John started to like TDD (instead of hating it) (ViennaJUG, June'25)
Nacho Cougil
 
Risk Management in Software Projects: Identifying, Analyzing, and Controlling...
Risk Management in Software Projects: Identifying, Analyzing, and Controlling...Risk Management in Software Projects: Identifying, Analyzing, and Controlling...
Risk Management in Software Projects: Identifying, Analyzing, and Controlling...
gauravvmanchandaa200
 
Optimising Claims Management with Claims Processing Systems
Optimising Claims Management with Claims Processing SystemsOptimising Claims Management with Claims Processing Systems
Optimising Claims Management with Claims Processing Systems
Insurance Tech Services
 
List Unfolding - 'unfold' as the Computational Dual of 'fold', and how 'unfol...
List Unfolding - 'unfold' as the Computational Dual of 'fold', and how 'unfol...List Unfolding - 'unfold' as the Computational Dual of 'fold', and how 'unfol...
List Unfolding - 'unfold' as the Computational Dual of 'fold', and how 'unfol...
Philip Schwarz
 
UberEats clone app Development TechBuilder
UberEats clone app Development  TechBuilderUberEats clone app Development  TechBuilder
UberEats clone app Development TechBuilder
TechBuilder
 
GirikHire Unlocking the Future of Tech Talent with AI-Powered Hiring Solution...
GirikHire Unlocking the Future of Tech Talent with AI-Powered Hiring Solution...GirikHire Unlocking the Future of Tech Talent with AI-Powered Hiring Solution...
GirikHire Unlocking the Future of Tech Talent with AI-Powered Hiring Solution...
GirikHire
 
iOS Developer Resume 2025 | Pramod Kumar
iOS Developer Resume 2025 | Pramod KumariOS Developer Resume 2025 | Pramod Kumar
iOS Developer Resume 2025 | Pramod Kumar
Pramod Kumar
 
BoxLang-Dynamic-AWS-Lambda by Luis Majano.pdf
BoxLang-Dynamic-AWS-Lambda by Luis Majano.pdfBoxLang-Dynamic-AWS-Lambda by Luis Majano.pdf
BoxLang-Dynamic-AWS-Lambda by Luis Majano.pdf
Ortus Solutions, Corp
 
How to Generate Financial Statements in QuickBooks Like a Pro (1).pdf
How to Generate Financial Statements in QuickBooks Like a Pro (1).pdfHow to Generate Financial Statements in QuickBooks Like a Pro (1).pdf
How to Generate Financial Statements in QuickBooks Like a Pro (1).pdf
QuickBooks Training
 
SQL-COMMANDS instructionsssssssssss.pptx
SQL-COMMANDS instructionsssssssssss.pptxSQL-COMMANDS instructionsssssssssss.pptx
SQL-COMMANDS instructionsssssssssss.pptx
Ashlei5
 
Scalefusion Remote Access for Apple Devices
Scalefusion Remote Access for Apple DevicesScalefusion Remote Access for Apple Devices
Scalefusion Remote Access for Apple Devices
Scalefusion
 
Custom Software Development: Types, Applications and Benefits.pdf
Custom Software Development: Types, Applications and Benefits.pdfCustom Software Development: Types, Applications and Benefits.pdf
Custom Software Development: Types, Applications and Benefits.pdf
Digital Aptech
 
Facility Management Solution - TeroTAM CMMS Software
Facility Management Solution - TeroTAM CMMS SoftwareFacility Management Solution - TeroTAM CMMS Software
Facility Management Solution - TeroTAM CMMS Software
TeroTAM
 
Secure and Simplify IT Management with ManageEngine Endpoint Central.pdf
Secure and Simplify IT Management with ManageEngine Endpoint Central.pdfSecure and Simplify IT Management with ManageEngine Endpoint Central.pdf
Secure and Simplify IT Management with ManageEngine Endpoint Central.pdf
Northwind Technologies
 
Marketing And Sales Software Services.pptx
Marketing And Sales Software Services.pptxMarketing And Sales Software Services.pptx
Marketing And Sales Software Services.pptx
julia smits
 
AI Alternative - Discover the best AI tools and their alternatives
AI Alternative - Discover the best AI tools and their alternativesAI Alternative - Discover the best AI tools and their alternatives
AI Alternative - Discover the best AI tools and their alternatives
AI Alternative
 
Oliveira2024 - Combining GPT and Weak Supervision.pdf
Oliveira2024 - Combining GPT and Weak Supervision.pdfOliveira2024 - Combining GPT and Weak Supervision.pdf
Oliveira2024 - Combining GPT and Weak Supervision.pdf
GiliardGodoi1
 
Agentic AI Desgin Principles in five slides.pptx
Agentic AI Desgin Principles in five slides.pptxAgentic AI Desgin Principles in five slides.pptx
Agentic AI Desgin Principles in five slides.pptx
MOSIUOA WESI
 
How to purchase, license and subscribe to Microsoft Azure_PDF.pdf
How to purchase, license and subscribe to Microsoft Azure_PDF.pdfHow to purchase, license and subscribe to Microsoft Azure_PDF.pdf
How to purchase, license and subscribe to Microsoft Azure_PDF.pdf
victordsane
 
Design by Contract - Building Robust Software with Contract-First Development
Design by Contract - Building Robust Software with Contract-First DevelopmentDesign by Contract - Building Robust Software with Contract-First Development
Design by Contract - Building Robust Software with Contract-First Development
Par-Tec S.p.A.
 
How John started to like TDD (instead of hating it) (ViennaJUG, June'25)
How John started to like TDD (instead of hating it) (ViennaJUG, June'25)How John started to like TDD (instead of hating it) (ViennaJUG, June'25)
How John started to like TDD (instead of hating it) (ViennaJUG, June'25)
Nacho Cougil
 
Risk Management in Software Projects: Identifying, Analyzing, and Controlling...
Risk Management in Software Projects: Identifying, Analyzing, and Controlling...Risk Management in Software Projects: Identifying, Analyzing, and Controlling...
Risk Management in Software Projects: Identifying, Analyzing, and Controlling...
gauravvmanchandaa200
 
Optimising Claims Management with Claims Processing Systems
Optimising Claims Management with Claims Processing SystemsOptimising Claims Management with Claims Processing Systems
Optimising Claims Management with Claims Processing Systems
Insurance Tech Services
 
List Unfolding - 'unfold' as the Computational Dual of 'fold', and how 'unfol...
List Unfolding - 'unfold' as the Computational Dual of 'fold', and how 'unfol...List Unfolding - 'unfold' as the Computational Dual of 'fold', and how 'unfol...
List Unfolding - 'unfold' as the Computational Dual of 'fold', and how 'unfol...
Philip Schwarz
 
UberEats clone app Development TechBuilder
UberEats clone app Development  TechBuilderUberEats clone app Development  TechBuilder
UberEats clone app Development TechBuilder
TechBuilder
 
GirikHire Unlocking the Future of Tech Talent with AI-Powered Hiring Solution...
GirikHire Unlocking the Future of Tech Talent with AI-Powered Hiring Solution...GirikHire Unlocking the Future of Tech Talent with AI-Powered Hiring Solution...
GirikHire Unlocking the Future of Tech Talent with AI-Powered Hiring Solution...
GirikHire
 
iOS Developer Resume 2025 | Pramod Kumar
iOS Developer Resume 2025 | Pramod KumariOS Developer Resume 2025 | Pramod Kumar
iOS Developer Resume 2025 | Pramod Kumar
Pramod Kumar
 

Memory Management in Apache Spark